1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
|
/*
* Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
* Copyright (C) 2019 Collabora, Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "compiler.h"
#include "midgard_ops.h"
#include "util/register_allocate.h"
#include "util/u_math.h"
/* For work registers, we can subdivide in various ways. So we create
* classes for the various sizes and conflict accordingly, keeping in
* mind that physical registers are divided along 128-bit boundaries.
* The important part is that 128-bit boundaries are not crossed.
*
* For each 128-bit register, we can subdivide to 32-bits 10 ways
*
* vec4: xyzw
* vec3: xyz, yzw
* vec2: xy, yz, zw,
* vec1: x, y, z, w
*
* For each 64-bit register, we can subdivide similarly to 16-bit
* (TODO: half-float RA, not that we support fp16 yet)
*/
#define WORK_STRIDE 10
/* Prepacked masks/swizzles for virtual register types */
static unsigned reg_type_to_mask[WORK_STRIDE] = {
0xF, /* xyzw */
0x7, 0x7 << 1, /* xyz */
0x3, 0x3 << 1, 0x3 << 2, /* xy */
0x1, 0x1 << 1, 0x1 << 2, 0x1 << 3 /* x */
};
static unsigned reg_type_to_swizzle[WORK_STRIDE] = {
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_W, COMPONENT_W),
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Z, COMPONENT_W, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Y, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Z, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_W, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
};
struct phys_reg {
unsigned reg;
unsigned mask;
unsigned swizzle;
};
/* Given the mask/swizzle of both the register and the original source,
* compose to find the actual mask/swizzle to give the hardware */
static unsigned
compose_writemask(unsigned mask, struct phys_reg reg)
{
/* Note: the reg mask is guaranteed to be contiguous. So we shift
* into the X place, compose via a simple AND, and shift back */
unsigned shift = __builtin_ctz(reg.mask);
return ((reg.mask >> shift) & mask) << shift;
}
static unsigned
compose_swizzle(unsigned swizzle, unsigned mask,
struct phys_reg reg, struct phys_reg dst)
{
unsigned out = pan_compose_swizzle(swizzle, reg.swizzle);
/* Based on the register mask, we need to adjust over. E.g if we're
* writing to yz, a base swizzle of xy__ becomes _xy_. Save the
* original first component (x). But to prevent duplicate shifting
* (only applies to ALU -- mask param is set to xyzw out on L/S to
* prevent changes), we have to account for the shift inherent to the
* original writemask */
unsigned rep = out & 0x3;
unsigned shift = __builtin_ctz(dst.mask) - __builtin_ctz(mask);
unsigned shifted = out << (2*shift);
/* ..but we fill in the gaps so it appears to replicate */
for (unsigned s = 0; s < shift; ++s)
shifted |= rep << (2*s);
return shifted;
}
/* When we're 'squeezing down' the values in the IR, we maintain a hash
* as such */
static unsigned
find_or_allocate_temp(compiler_context *ctx, unsigned hash)
{
if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
return hash;
unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(
ctx->hash_to_temp, hash + 1);
if (temp)
return temp - 1;
/* If no temp is find, allocate one */
temp = ctx->temp_count++;
ctx->max_hash = MAX2(ctx->max_hash, hash);
_mesa_hash_table_u64_insert(ctx->hash_to_temp,
hash + 1, (void *) ((uintptr_t) temp + 1));
return temp;
}
/* Callback for register allocation selection, trivial default for now */
static unsigned int
midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
{
/* Choose the first available register to minimise register pressure */
for (int i = 0; i < (16 * WORK_STRIDE); ++i) {
if (BITSET_TEST(regs, i)) {
return i;
}
}
assert(0);
return 0;
}
/* Helper to return the default phys_reg for a given register */
static struct phys_reg
default_phys_reg(int reg)
{
struct phys_reg r = {
.reg = reg,
.mask = 0xF, /* xyzw */
.swizzle = 0xE4 /* xyzw */
};
return r;
}
/* Determine which physical register, swizzle, and mask a virtual
* register corresponds to */
static struct phys_reg
index_to_reg(compiler_context *ctx, struct ra_graph *g, int reg)
{
/* Check for special cases */
if (reg >= SSA_FIXED_MINIMUM)
return default_phys_reg(SSA_REG_FROM_FIXED(reg));
else if ((reg < 0) || !g)
return default_phys_reg(REGISTER_UNUSED);
/* Special cases aside, we pick the underlying register */
int virt = ra_get_node_reg(g, reg);
/* Divide out the register and classification */
int phys = virt / WORK_STRIDE;
int type = virt % WORK_STRIDE;
struct phys_reg r = {
.reg = phys,
.mask = reg_type_to_mask[type],
.swizzle = reg_type_to_swizzle[type]
};
/* Report that we actually use this register, and return it */
ctx->work_registers = MAX2(ctx->work_registers, phys);
return r;
}
/* This routine performs the actual register allocation. It should be succeeded
* by install_registers */
struct ra_graph *
allocate_registers(compiler_context *ctx)
{
/* The number of vec4 work registers available depends on when the
* uniforms start, so compute that first */
int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
int virtual_count = work_count * WORK_STRIDE;
/* First, initialize the RA */
struct ra_regs *regs = ra_alloc_reg_set(NULL, virtual_count, true);
int work_vec4 = ra_alloc_reg_class(regs);
int work_vec3 = ra_alloc_reg_class(regs);
int work_vec2 = ra_alloc_reg_class(regs);
int work_vec1 = ra_alloc_reg_class(regs);
unsigned classes[4] = {
work_vec1,
work_vec2,
work_vec3,
work_vec4
};
/* Add the full set of work registers */
for (unsigned i = 0; i < work_count; ++i) {
int base = WORK_STRIDE * i;
/* Build a full set of subdivisions */
ra_class_add_reg(regs, work_vec4, base);
ra_class_add_reg(regs, work_vec3, base + 1);
ra_class_add_reg(regs, work_vec3, base + 2);
ra_class_add_reg(regs, work_vec2, base + 3);
ra_class_add_reg(regs, work_vec2, base + 4);
ra_class_add_reg(regs, work_vec2, base + 5);
ra_class_add_reg(regs, work_vec1, base + 6);
ra_class_add_reg(regs, work_vec1, base + 7);
ra_class_add_reg(regs, work_vec1, base + 8);
ra_class_add_reg(regs, work_vec1, base + 9);
for (unsigned a = 0; a < 10; ++a) {
unsigned mask1 = reg_type_to_mask[a];
for (unsigned b = 0; b < 10; ++b) {
unsigned mask2 = reg_type_to_mask[b];
if (mask1 & mask2)
ra_add_reg_conflict(regs,
base + a, base + b);
}
}
}
/* We're done setting up */
ra_set_finalize(regs, NULL);
/* Transform the MIR into squeezed index form */
mir_foreach_block(ctx, block) {
mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue;
ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
if (!ins->ssa_args.inline_constant)
ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
}
}
/* No register allocation to do with no SSA */
if (!ctx->temp_count)
return NULL;
/* Let's actually do register allocation */
int nodes = ctx->temp_count;
struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
/* Determine minimum size needed to hold values, to indirectly
* determine class */
unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
mir_foreach_block(ctx, block) {
mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue;
if (ins->ssa_args.dest < 0) continue;
if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
int class = util_logbase2(ins->mask) + 1;
/* Use the largest class if there's ambiguity, this
* handles partial writes */
int dest = ins->ssa_args.dest;
found_class[dest] = MAX2(found_class[dest], class);
}
}
for (unsigned i = 0; i < ctx->temp_count; ++i) {
unsigned class = found_class[i];
if (!class) continue;
ra_set_node_class(g, i, classes[class - 1]);
}
/* Determine liveness */
int *live_start = malloc(nodes * sizeof(int));
int *live_end = malloc(nodes * sizeof(int));
/* Initialize as non-existent */
for (int i = 0; i < nodes; ++i) {
live_start[i] = live_end[i] = -1;
}
int d = 0;
mir_foreach_block(ctx, block) {
mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue;
/* Dest is < 0 for st_vary instructions, which break
* the usual SSA conventions. Liveness analysis doesn't
* make sense on these instructions, so skip them to
* avoid memory corruption */
if (ins->ssa_args.dest < 0) continue;
if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
/* If this destination is not yet live, it is
* now since we just wrote it */
int dest = ins->ssa_args.dest;
if (live_start[dest] == -1)
live_start[dest] = d;
}
/* Since we just used a source, the source might be
* dead now. Scan the rest of the block for
* invocations, and if there are none, the source dies
* */
int sources[2] = {
ins->ssa_args.src0, ins->ssa_args.src1
};
for (int src = 0; src < 2; ++src) {
int s = sources[src];
if (s < 0) continue;
if (s >= SSA_FIXED_MINIMUM) continue;
if (!mir_is_live_after(ctx, block, ins, s)) {
live_end[s] = d;
}
}
++d;
}
}
/* If a node still hasn't been killed, kill it now */
for (int i = 0; i < nodes; ++i) {
/* live_start == -1 most likely indicates a pinned output */
if (live_end[i] == -1)
live_end[i] = d;
}
/* Setup interference between nodes that are live at the same time */
for (int i = 0; i < nodes; ++i) {
for (int j = i + 1; j < nodes; ++j) {
bool j_overlaps_i = live_start[j] < live_end[i];
bool i_overlaps_j = live_end[j] < live_start[i];
if (i_overlaps_j || j_overlaps_i)
ra_add_node_interference(g, i, j);
}
}
ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
if (!ra_allocate(g)) {
unreachable("Error allocating registers\n");
}
/* Cleanup */
free(live_start);
free(live_end);
return g;
}
/* Once registers have been decided via register allocation
* (allocate_registers), we need to rewrite the MIR to use registers instead of
* indices */
static void
install_registers_instr(
compiler_context *ctx,
struct ra_graph *g,
midgard_instruction *ins)
{
ssa_args args = ins->ssa_args;
switch (ins->type) {
case TAG_ALU_4: {
int adjusted_src = args.inline_constant ? -1 : args.src1;
struct phys_reg src1 = index_to_reg(ctx, g, args.src0);
struct phys_reg src2 = index_to_reg(ctx, g, adjusted_src);
struct phys_reg dest = index_to_reg(ctx, g, args.dest);
unsigned uncomposed_mask = ins->mask;
ins->mask = compose_writemask(uncomposed_mask, dest);
/* Adjust the dest mask if necessary. Mostly this is a no-op
* but it matters for dot products */
dest.mask = effective_writemask(&ins->alu, ins->mask);
midgard_vector_alu_src mod1 =
vector_alu_from_unsigned(ins->alu.src1);
mod1.swizzle = compose_swizzle(mod1.swizzle, uncomposed_mask, src1, dest);
ins->alu.src1 = vector_alu_srco_unsigned(mod1);
ins->registers.src1_reg = src1.reg;
ins->registers.src2_imm = args.inline_constant;
if (args.inline_constant) {
/* Encode inline 16-bit constant. See disassembler for
* where the algorithm is from */
ins->registers.src2_reg = ins->inline_constant >> 11;
int lower_11 = ins->inline_constant & ((1 << 12) - 1);
uint16_t imm = ((lower_11 >> 8) & 0x7) |
((lower_11 & 0xFF) << 3);
ins->alu.src2 = imm << 2;
} else {
midgard_vector_alu_src mod2 =
vector_alu_from_unsigned(ins->alu.src2);
mod2.swizzle = compose_swizzle(
mod2.swizzle, uncomposed_mask, src2, dest);
ins->alu.src2 = vector_alu_srco_unsigned(mod2);
ins->registers.src2_reg = src2.reg;
}
ins->registers.out_reg = dest.reg;
break;
}
case TAG_LOAD_STORE_4: {
if (OP_IS_STORE_VARY(ins->load_store.op)) {
/* TODO: use ssa_args for st_vary */
ins->load_store.reg = 0;
} else {
/* Which physical register we read off depends on
* whether we are loading or storing -- think about the
* logical dataflow */
unsigned r = OP_IS_STORE(ins->load_store.op) ?
args.src0 : args.dest;
struct phys_reg src = index_to_reg(ctx, g, r);
ins->load_store.reg = src.reg;
ins->load_store.swizzle = compose_swizzle(
ins->load_store.swizzle, 0xF,
default_phys_reg(0), src);
ins->mask = compose_writemask(
ins->mask, src);
}
break;
}
default:
break;
}
}
void
install_registers(compiler_context *ctx, struct ra_graph *g)
{
mir_foreach_block(ctx, block) {
mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue;
install_registers_instr(ctx, g, ins);
}
}
}
|