1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keithw@vmware.com>
*/
#include "main/api_arrayelt.h"
#include "main/glheader.h"
#include "main/mtypes.h"
#include "main/vtxfmt.h"
#include "vbo_context.h"
void vbo_exec_init( struct gl_context *ctx )
{
struct vbo_exec_context *exec = &vbo_context(ctx)->exec;
exec->ctx = ctx;
/* Initialize the arrayelt helper
*/
if (!ctx->aelt_context &&
!_ae_create_context( ctx ))
return;
vbo_exec_vtx_init( exec );
ctx->Driver.NeedFlush = 0;
ctx->Driver.CurrentExecPrimitive = PRIM_OUTSIDE_BEGIN_END;
ctx->Driver.FlushVertices = vbo_exec_FlushVertices;
vbo_exec_invalidate_state( ctx, ~0 );
}
void vbo_exec_destroy( struct gl_context *ctx )
{
struct vbo_exec_context *exec = &vbo_context(ctx)->exec;
if (ctx->aelt_context) {
_ae_destroy_context( ctx );
ctx->aelt_context = NULL;
}
vbo_exec_vtx_destroy( exec );
}
/**
* Really want to install these callbacks to a central facility to be
* invoked according to the state flags. That will have to wait for a
* mesa rework:
*/
void vbo_exec_invalidate_state( struct gl_context *ctx, GLuint new_state )
{
struct vbo_context *vbo = vbo_context(ctx);
struct vbo_exec_context *exec = &vbo->exec;
if (!exec->validating && new_state & (_NEW_PROGRAM|_NEW_ARRAY)) {
exec->array.recalculate_inputs = GL_TRUE;
}
if (new_state & _NEW_EVAL)
exec->eval.recalculate_maps = GL_TRUE;
_ae_invalidate_state(ctx, new_state);
}
/**
* Figure out the number of transform feedback primitives that will be output
* considering the drawing mode, number of vertices, and instance count,
* assuming that no geometry shading is done and primitive restart is not
* used.
*
* This is used by driver back-ends in implementing the PRIMITIVES_GENERATED
* and TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN queries. It is also used to
* pre-validate draw calls in GLES3 (where draw calls only succeed if there is
* enough room in the transform feedback buffer for the result).
*/
size_t
vbo_count_tessellated_primitives(GLenum mode, GLuint count,
GLuint num_instances)
{
size_t num_primitives;
switch (mode) {
case GL_POINTS:
num_primitives = count;
break;
case GL_LINE_STRIP:
num_primitives = count >= 2 ? count - 1 : 0;
break;
case GL_LINE_LOOP:
num_primitives = count >= 2 ? count : 0;
break;
case GL_LINES:
num_primitives = count / 2;
break;
case GL_TRIANGLE_STRIP:
case GL_TRIANGLE_FAN:
case GL_POLYGON:
num_primitives = count >= 3 ? count - 2 : 0;
break;
case GL_TRIANGLES:
num_primitives = count / 3;
break;
case GL_QUAD_STRIP:
num_primitives = count >= 4 ? ((count / 2) - 1) * 2 : 0;
break;
case GL_QUADS:
num_primitives = (count / 4) * 2;
break;
case GL_LINES_ADJACENCY:
num_primitives = count / 4;
break;
case GL_LINE_STRIP_ADJACENCY:
num_primitives = count >= 4 ? count - 3 : 0;
break;
case GL_TRIANGLES_ADJACENCY:
num_primitives = count / 6;
break;
case GL_TRIANGLE_STRIP_ADJACENCY:
num_primitives = count >= 6 ? (count - 4) / 2 : 0;
break;
default:
assert(!"Unexpected primitive type in count_tessellated_primitives");
num_primitives = 0;
break;
}
return num_primitives * num_instances;
}
/**
* In some degenarate cases we can improve our ability to merge
* consecutive primitives. For example:
* glBegin(GL_LINE_STRIP);
* glVertex(1);
* glVertex(1);
* glEnd();
* glBegin(GL_LINE_STRIP);
* glVertex(1);
* glVertex(1);
* glEnd();
* Can be merged as a GL_LINES prim with four vertices.
*
* This function converts 2-vertex line strips/loops into GL_LINES, etc.
*/
void
vbo_try_prim_conversion(struct _mesa_prim *p)
{
if (p->mode == GL_LINE_STRIP && p->count == 2) {
/* convert 2-vertex line strip to a separate line */
p->mode = GL_LINES;
}
else if ((p->mode == GL_TRIANGLE_STRIP || p->mode == GL_TRIANGLE_FAN)
&& p->count == 3) {
/* convert 3-vertex tri strip or fan to a separate triangle */
p->mode = GL_TRIANGLES;
}
/* Note: we can't convert a 4-vertex quad strip to a separate quad
* because the vertex ordering is different. We'd have to muck
* around in the vertex data to make it work.
*/
}
/**
* Helper function for determining if two subsequent glBegin/glEnd
* primitives can be combined. This is only possible for GL_POINTS,
* GL_LINES, GL_TRIANGLES and GL_QUADS.
* If we return true, it means that we can concatenate p1 onto p0 (and
* discard p1).
*/
bool
vbo_can_merge_prims(const struct _mesa_prim *p0, const struct _mesa_prim *p1)
{
if (!p0->begin ||
!p1->begin ||
!p0->end ||
!p1->end)
return false;
/* The prim mode must match (ex: both GL_TRIANGLES) */
if (p0->mode != p1->mode)
return false;
/* p1's vertices must come right after p0 */
if (p0->start + p0->count != p1->start)
return false;
if (p0->basevertex != p1->basevertex ||
p0->num_instances != p1->num_instances ||
p0->base_instance != p1->base_instance)
return false;
/* can always merge subsequent GL_POINTS primitives */
if (p0->mode == GL_POINTS)
return true;
/* independent lines with no extra vertices */
if (p0->mode == GL_LINES && p0->count % 2 == 0 && p1->count % 2 == 0)
return true;
/* independent tris */
if (p0->mode == GL_TRIANGLES && p0->count % 3 == 0 && p1->count % 3 == 0)
return true;
/* independent quads */
if (p0->mode == GL_QUADS && p0->count % 4 == 0 && p1->count % 4 == 0)
return true;
return false;
}
/**
* If we've determined that p0 and p1 can be merged, this function
* concatenates p1 onto p0.
*/
void
vbo_merge_prims(struct _mesa_prim *p0, const struct _mesa_prim *p1)
{
assert(vbo_can_merge_prims(p0, p1));
p0->count += p1->count;
p0->end = p1->end;
}
|