1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
/*
* Mesa 3-D graphics library
* Version: 6.3
*
* Copyright (C) 1999-2004 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* Author:
* Keith Whitwell <keith@tungstengraphics.com>
*/
#include "glheader.h"
#include "context.h"
#include "enums.h"
#include "glapi.h"
#include "imports.h"
#include "macros.h"
#include "mtypes.h"
#include "t_context.h"
#include "t_save_api.h"
#include "dispatch.h"
/* If someone compiles a display list like:
* glBegin(Triangles)
* glVertex()
* ... lots of vertices ...
* glEnd()
*
* or:
* glDrawArrays(...)
*
* and then tries to execute it like this:
*
* glBegin(Lines)
* glCallList()
* glEnd()
*
* it will wind up in here, as the vertex copying used when wrapping
* buffers in list compilation (Triangles) won't be right for how the
* list is being executed (as Lines).
*
* This could be avoided by not compiling as vertex_lists until after
* the first glEnd() has been seen. However, that would miss an
* important category of display lists, for the sake of a degenerate
* usage.
*
* Further, replaying degenerately-called lists in this fashion is
* probably still faster than the replay using opcodes.
*/
typedef void (*attr_func)( GLcontext *ctx, GLint target, const GLfloat * );
/* Wrapper functions in case glVertexAttrib*fvNV doesn't exist */
static void VertexAttrib1fvNV(GLcontext *ctx, GLint target, const GLfloat *v)
{
CALL_VertexAttrib1fvNV(ctx->Exec, (target, v));
}
static void VertexAttrib2fvNV(GLcontext *ctx, GLint target, const GLfloat *v)
{
CALL_VertexAttrib2fvNV(ctx->Exec, (target, v));
}
static void VertexAttrib3fvNV(GLcontext *ctx, GLint target, const GLfloat *v)
{
CALL_VertexAttrib3fvNV(ctx->Exec, (target, v));
}
static void VertexAttrib4fvNV(GLcontext *ctx, GLint target, const GLfloat *v)
{
CALL_VertexAttrib4fvNV(ctx->Exec, (target, v));
}
static attr_func vert_attrfunc[4] = {
VertexAttrib1fvNV,
VertexAttrib2fvNV,
VertexAttrib3fvNV,
VertexAttrib4fvNV
};
static void VertexAttrib1fvARB(GLcontext *ctx, GLint target, const GLfloat *v)
{
CALL_VertexAttrib1fvARB(ctx->Exec, (target, v));
}
static void VertexAttrib2fvARB(GLcontext *ctx, GLint target, const GLfloat *v)
{
CALL_VertexAttrib2fvARB(ctx->Exec, (target, v));
}
static void VertexAttrib3fvARB(GLcontext *ctx, GLint target, const GLfloat *v)
{
CALL_VertexAttrib3fvARB(ctx->Exec, (target, v));
}
static void VertexAttrib4fvARB(GLcontext *ctx, GLint target, const GLfloat *v)
{
CALL_VertexAttrib4fvARB(ctx->Exec, (target, v));
}
static attr_func vert_attrfunc_arb[4] = {
VertexAttrib1fvARB,
VertexAttrib2fvARB,
VertexAttrib3fvARB,
VertexAttrib4fvARB
};
static void mat_attr1fv( GLcontext *ctx, GLint target, const GLfloat *v )
{
switch (target) {
case _TNL_ATTRIB_MAT_FRONT_SHININESS:
CALL_Materialfv(ctx->Exec, ( GL_FRONT, GL_SHININESS, v ));
break;
case _TNL_ATTRIB_MAT_BACK_SHININESS:
CALL_Materialfv(ctx->Exec, ( GL_BACK, GL_SHININESS, v ));
break;
}
}
static void mat_attr3fv( GLcontext *ctx, GLint target, const GLfloat *v )
{
switch (target) {
case _TNL_ATTRIB_MAT_FRONT_INDEXES:
CALL_Materialfv(ctx->Exec, ( GL_FRONT, GL_COLOR_INDEXES, v ));
break;
case _TNL_ATTRIB_MAT_BACK_INDEXES:
CALL_Materialfv(ctx->Exec, ( GL_BACK, GL_COLOR_INDEXES, v ));
break;
}
}
static void mat_attr4fv( GLcontext *ctx, GLint target, const GLfloat *v )
{
switch (target) {
case _TNL_ATTRIB_MAT_FRONT_EMISSION:
CALL_Materialfv(ctx->Exec, ( GL_FRONT, GL_EMISSION, v ));
break;
case _TNL_ATTRIB_MAT_BACK_EMISSION:
CALL_Materialfv(ctx->Exec, ( GL_BACK, GL_EMISSION, v ));
break;
case _TNL_ATTRIB_MAT_FRONT_AMBIENT:
CALL_Materialfv(ctx->Exec, ( GL_FRONT, GL_AMBIENT, v ));
break;
case _TNL_ATTRIB_MAT_BACK_AMBIENT:
CALL_Materialfv(ctx->Exec, ( GL_BACK, GL_AMBIENT, v ));
break;
case _TNL_ATTRIB_MAT_FRONT_DIFFUSE:
CALL_Materialfv(ctx->Exec, ( GL_FRONT, GL_DIFFUSE, v ));
break;
case _TNL_ATTRIB_MAT_BACK_DIFFUSE:
CALL_Materialfv(ctx->Exec, ( GL_BACK, GL_DIFFUSE, v ));
break;
case _TNL_ATTRIB_MAT_FRONT_SPECULAR:
CALL_Materialfv(ctx->Exec, ( GL_FRONT, GL_SPECULAR, v ));
break;
case _TNL_ATTRIB_MAT_BACK_SPECULAR:
CALL_Materialfv(ctx->Exec, ( GL_BACK, GL_SPECULAR, v ));
break;
}
}
static attr_func mat_attrfunc[4] = {
mat_attr1fv,
NULL,
mat_attr3fv,
mat_attr4fv
};
static void index_attr1fv(GLcontext *ctx, GLint target, const GLfloat *v)
{
(void) target;
CALL_Indexf(ctx->Exec, (v[0]));
}
static void edgeflag_attr1fv(GLcontext *ctx, GLint target, const GLfloat *v)
{
(void) target;
CALL_EdgeFlag(ctx->Exec, ((GLboolean)(v[0] == 1.0)));
}
struct loopback_attr {
GLint target;
GLint sz;
attr_func func;
};
/* Don't emit ends and begins on wrapped primitives. Don't replay
* wrapped vertices. If we get here, it's probably because the the
* precalculated wrapping is wrong.
*/
static void loopback_prim( GLcontext *ctx,
const struct tnl_vertex_list *list, GLuint i,
const struct loopback_attr *la, GLuint nr )
{
struct tnl_prim *prim = &list->prim[i];
GLint begin = prim->start;
GLint end = begin + prim->count;
GLfloat *data;
GLint j;
GLuint k;
if (prim->mode & PRIM_BEGIN) {
CALL_Begin(GET_DISPATCH(), ( prim->mode & PRIM_MODE_MASK ));
}
else {
assert(i == 0);
assert(begin == 0);
begin += list->wrap_count;
}
data = list->buffer + begin * list->vertex_size;
for (j = begin ; j < end ; j++) {
GLfloat *tmp = data + la[0].sz;
for (k = 1 ; k < nr ; k++) {
la[k].func( ctx, la[k].target, tmp );
tmp += la[k].sz;
}
/* Fire the vertex
*/
la[0].func( ctx, VERT_ATTRIB_POS, data );
data = tmp;
}
if (prim->mode & PRIM_END) {
CALL_End(GET_DISPATCH(), ());
}
else {
assert (i == list->prim_count-1);
}
}
/* Primitives generated by DrawArrays/DrawElements/Rectf may be
* caught here. If there is no primitive in progress, execute them
* normally, otherwise need to track and discard the generated
* primitives.
*/
static void loopback_weak_prim( GLcontext *ctx,
const struct tnl_vertex_list *list, GLuint i,
const struct loopback_attr *la, GLuint nr )
{
if (ctx->Driver.CurrentExecPrimitive == PRIM_OUTSIDE_BEGIN_END)
loopback_prim( ctx, list, i, la, nr );
else {
struct tnl_prim *prim = &list->prim[i];
/* Use the prim_weak flag to ensure that if this primitive
* wraps, we don't mistake future vertex_lists for part of the
* surrounding primitive.
*
* While this flag is set, we are simply disposing of data
* generated by an operation now known to be a noop.
*/
if (prim->mode & PRIM_BEGIN)
ctx->Driver.CurrentExecPrimitive |= PRIM_WEAK;
if (prim->mode & PRIM_END)
ctx->Driver.CurrentExecPrimitive &= ~PRIM_WEAK;
}
}
void _tnl_loopback_vertex_list( GLcontext *ctx,
const struct tnl_vertex_list *list )
{
struct loopback_attr la[_TNL_ATTRIB_MAX];
GLuint i, nr = 0;
/* conventional + generic attributes */
for (i = 0 ; i <= _TNL_ATTRIB_ATTRIBUTE15 ; i++) {
if (list->attrsz[i]) {
la[nr].target = i;
la[nr].sz = list->attrsz[i];
la[nr].func = vert_attrfunc[list->attrsz[i]-1];
nr++;
}
}
/* material attributes */
for (i = _TNL_ATTRIB_MAT_FRONT_AMBIENT ;
i <= _TNL_ATTRIB_MAT_BACK_INDEXES ;
i++) {
if (list->attrsz[i]) {
la[nr].target = i;
la[nr].sz = list->attrsz[i];
la[nr].func = mat_attrfunc[list->attrsz[i]-1];
nr++;
}
}
/* special-case: edgeflag */
if (list->attrsz[_TNL_ATTRIB_EDGEFLAG]) {
la[nr].target = _TNL_ATTRIB_EDGEFLAG;
la[nr].sz = list->attrsz[_TNL_ATTRIB_EDGEFLAG];
la[nr].func = edgeflag_attr1fv;
nr++;
}
for (i = 0 ; i < list->prim_count ; i++) {
if (list->prim[i].mode & PRIM_WEAK)
loopback_weak_prim( ctx, list, i, la, nr );
else
loopback_prim( ctx, list, i, la, nr );
}
}
|