1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
|
/* $Id: swrast.h,v 1.17 2002/01/28 00:07:33 brianp Exp $ */
/*
* Mesa 3-D graphics library
* Version: 4.1
*
* Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keithw@valinux.com>
*/
#ifndef SWRAST_H
#define SWRAST_H
#include "mtypes.h"
/* The software rasterizer now uses this format for vertices. Thus a
* 'RasterSetup' stage or other translation is required between the
* tnl module and the swrast rasterization functions. This serves to
* isolate the swrast module from the internals of the tnl module, and
* improve its usefulness as a fallback mechanism for hardware
* drivers.
*
* Full software drivers:
* - Register the rastersetup and triangle functions from
* utils/software_helper.
* - On statechange, update the rasterization pointers in that module.
*
* Rasterization hardware drivers:
* - Keep native rastersetup.
* - Implement native twoside,offset and unfilled triangle setup.
* - Implement a translator from native vertices to swrast vertices.
* - On partial fallback (mix of accelerated and unaccelerated
* prims), call a pass-through function which translates native
* vertices to SWvertices and calls the appropriate swrast function.
* - On total fallback (vertex format insufficient for state or all
* primitives unaccelerated), hook in swrast_setup instead.
*/
typedef struct {
GLfloat win[4];
GLfloat texcoord[MAX_TEXTURE_UNITS][4];
GLchan color[4];
GLchan specular[4];
GLfloat fog;
GLuint index;
GLfloat pointSize;
} SWvertex;
/*
* The sw_span structure is used by the triangle template code in
* s_tritemp.h. It describes how colors, Z, texcoords, etc are to be
* interpolated across each scanline of triangle.
* With this structure it's easy to hand-off span rasterization to a
* subroutine instead of doing it all inline like we used to do.
* It also cleans up the local variable namespace a great deal.
*
* It would be interesting to experiment with multiprocessor rasterization
* with this structure. The triangle rasterizer could simply emit a
* stream of these structures which would be consumed by one or more
* span-processing threads which could run in parallel.
*/
/* When the sw_span struct is initialized, these flags indicates
* which values are needed for rendering the triangle.
*/
#define SPAN_RGBA 0x001
#define SPAN_SPEC 0x002
#define SPAN_INDEX 0x004
#define SPAN_Z 0x008
#define SPAN_FOG 0x010
#define SPAN_TEXTURE 0x020
#define SPAN_INT_TEXTURE 0x040
#define SPAN_LAMBDA 0x080
#define SPAN_COVERAGE 0x100
#define SPAN_FLAT 0x200 /* flat shading? */
struct sw_span {
GLint x, y;
/* only need to process pixels between start <= i < end */
GLuint start, end;
/* This flag indicates that only a part of the span is visible */
GLboolean writeAll;
/* This bitmask (bitwise-or of SPAN_* flags) indicates which of the
* x/xStep variables are relevant.
*/
GLuint interpMask;
#if CHAN_TYPE == GL_FLOAT
GLfloat red, redStep;
GLfloat green, greenStep;
GLfloat blue, blueStep;
GLfloat alpha, alphaStep;
GLfloat specRed, specRedStep;
GLfloat specGreen, specGreenStep;
GLfloat specBlue, specBlueStep;
#else /* CHAN_TYPE == */
GLfixed red, redStep;
GLfixed green, greenStep;
GLfixed blue, blueStep;
GLfixed alpha, alphaStep;
GLfixed specRed, specRedStep;
GLfixed specGreen, specGreenStep;
GLfixed specBlue, specBlueStep;
#endif
GLfixed index, indexStep;
GLfixed z, zStep;
GLfloat fog, fogStep;
GLfloat tex[MAX_TEXTURE_UNITS][4], texStep[MAX_TEXTURE_UNITS][4];
GLfixed intTex[2], intTexStep[2];
/* Needed for texture lambda (LOD) computation */
GLfloat rho[MAX_TEXTURE_UNITS];
GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS];
/* This bitmask (bitwise-or of SPAN_* flags) indicates which of the
* fragment arrays are relevant.
*/
GLuint arrayMask;
/**
* Arrays of fragment values. These will either be computed from the
* x/xStep values above or loadd from glDrawPixels, etc.
*/
union {
GLchan rgb[MAX_WIDTH][3];
GLchan rgba[MAX_WIDTH][4];
GLuint index[MAX_WIDTH];
} color;
GLchan specArray[MAX_WIDTH][4];
GLdepth zArray[MAX_WIDTH];
GLfloat fogArray[MAX_WIDTH];
/* Texture (s,t,r). 4th component only used for pixel texture */
GLfloat texcoords[MAX_TEXTURE_UNITS][MAX_WIDTH][4];
GLfloat lambda[MAX_TEXTURE_UNITS][MAX_WIDTH];
GLfloat coverage[MAX_WIDTH];
/* This mask indicates if fragment is alive or culled */
GLubyte mask[MAX_WIDTH];
#ifdef DEBUG
GLboolean filledAlpha, filledColor;
#endif
};
#define INIT_SPAN(S) \
do { \
S.interpMask = 0; \
S.arrayMask = 0; \
S.start = S.end = 0; \
} while (0)
#ifdef DEBUG
#define SW_SPAN_SET_FLAG(flag) {ASSERT((flag) == GL_FALSE);(flag) = GL_TRUE;}
#define SW_SPAN_RESET(span) { \
(span).filledAlpha = (span).filledColor = GL_FALSE; \
(span).start = 0; (span).writeAll = GL_TRUE;}
#else
#define SW_SPAN_SET_FLAG(flag) ;
#define SW_SPAN_RESET(span) {(span).start = 0;(span).writeAll = GL_TRUE;}
#endif
struct swrast_device_driver;
/* These are the public-access functions exported from swrast.
*/
extern void
_swrast_alloc_buffers( GLcontext *ctx );
extern GLboolean
_swrast_CreateContext( GLcontext *ctx );
extern void
_swrast_DestroyContext( GLcontext *ctx );
/* Get a (non-const) reference to the device driver struct for swrast.
*/
extern struct swrast_device_driver *
_swrast_GetDeviceDriverReference( GLcontext *ctx );
extern void
_swrast_Bitmap( GLcontext *ctx,
GLint px, GLint py,
GLsizei width, GLsizei height,
const struct gl_pixelstore_attrib *unpack,
const GLubyte *bitmap );
extern void
_swrast_CopyPixels( GLcontext *ctx,
GLint srcx, GLint srcy,
GLint destx, GLint desty,
GLsizei width, GLsizei height,
GLenum type );
extern void
_swrast_DrawPixels( GLcontext *ctx,
GLint x, GLint y,
GLsizei width, GLsizei height,
GLenum format, GLenum type,
const struct gl_pixelstore_attrib *unpack,
const GLvoid *pixels );
extern void
_swrast_ReadPixels( GLcontext *ctx,
GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type,
const struct gl_pixelstore_attrib *unpack,
GLvoid *pixels );
extern void
_swrast_Clear( GLcontext *ctx, GLbitfield mask, GLboolean all,
GLint x, GLint y, GLint width, GLint height );
extern void
_swrast_Accum( GLcontext *ctx, GLenum op,
GLfloat value, GLint xpos, GLint ypos,
GLint width, GLint height );
/* Reset the stipple counter
*/
extern void
_swrast_ResetLineStipple( GLcontext *ctx );
/* These will always render the correct point/line/triangle for the
* current state.
*
* For flatshaded primitives, the provoking vertex is the final one.
*/
extern void
_swrast_Point( GLcontext *ctx, const SWvertex *v );
extern void
_swrast_Line( GLcontext *ctx, const SWvertex *v0, const SWvertex *v1 );
extern void
_swrast_Triangle( GLcontext *ctx, const SWvertex *v0,
const SWvertex *v1, const SWvertex *v2 );
extern void
_swrast_Quad( GLcontext *ctx,
const SWvertex *v0, const SWvertex *v1,
const SWvertex *v2, const SWvertex *v3);
extern void
_swrast_flush( GLcontext *ctx );
/* Tell the software rasterizer about core state changes.
*/
extern void
_swrast_InvalidateState( GLcontext *ctx, GLuint new_state );
/* Configure software rasterizer to match hardware rasterizer characteristics:
*/
extern void
_swrast_allow_vertex_fog( GLcontext *ctx, GLboolean value );
extern void
_swrast_allow_pixel_fog( GLcontext *ctx, GLboolean value );
/* Debug:
*/
extern void
_swrast_print_vertex( GLcontext *ctx, const SWvertex *v );
/*
* Imaging fallbacks (a better solution should be found, perhaps
* moving all the imaging fallback code to a new module)
*/
void
_swrast_CopyConvolutionFilter2D(GLcontext *ctx, GLenum target,
GLenum internalFormat,
GLint x, GLint y, GLsizei width,
GLsizei height);
void
_swrast_CopyConvolutionFilter1D(GLcontext *ctx, GLenum target,
GLenum internalFormat,
GLint x, GLint y, GLsizei width);
void
_swrast_CopyColorSubTable( GLcontext *ctx,GLenum target, GLsizei start,
GLint x, GLint y, GLsizei width);
void
_swrast_CopyColorTable( GLcontext *ctx,
GLenum target, GLenum internalformat,
GLint x, GLint y, GLsizei width);
/*
* Texture fallbacks, Brian Paul. Could also live in a new module
* with the rest of the texture store fallbacks?
*/
extern void
_swrast_copy_teximage1d(GLcontext *ctx, GLenum target, GLint level,
GLenum internalFormat,
GLint x, GLint y, GLsizei width, GLint border);
extern void
_swrast_copy_teximage2d(GLcontext *ctx, GLenum target, GLint level,
GLenum internalFormat,
GLint x, GLint y, GLsizei width, GLsizei height,
GLint border);
extern void
_swrast_copy_texsubimage1d(GLcontext *ctx, GLenum target, GLint level,
GLint xoffset, GLint x, GLint y, GLsizei width);
extern void
_swrast_copy_texsubimage2d(GLcontext *ctx,
GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLint x, GLint y, GLsizei width, GLsizei height);
extern void
_swrast_copy_texsubimage3d(GLcontext *ctx,
GLenum target, GLint level,
GLint xoffset, GLint yoffset, GLint zoffset,
GLint x, GLint y, GLsizei width, GLsizei height);
/* The driver interface for the software rasterizer. Unless otherwise
* noted, all functions are mandatory.
*/
struct swrast_device_driver {
void (*SetReadBuffer)( GLcontext *ctx, GLframebuffer *colorBuffer,
GLenum buffer );
/*
* Specifies the current buffer for span/pixel reading.
* colorBuffer will be one of:
* GL_FRONT_LEFT - this buffer always exists
* GL_BACK_LEFT - when double buffering
* GL_FRONT_RIGHT - when using stereo
* GL_BACK_RIGHT - when using stereo and double buffering
*/
/***
*** Functions for synchronizing access to the framebuffer:
***/
void (*SpanRenderStart)(GLcontext *ctx);
void (*SpanRenderFinish)(GLcontext *ctx);
/* OPTIONAL.
*
* Called before and after all rendering operations, including DrawPixels,
* ReadPixels, Bitmap, span functions, and CopyTexImage, etc commands.
* These are a suitable place for grabbing/releasing hardware locks.
*
* NOTE: The swrast triangle/line/point routines *DO NOT* call
* these functions. Locking in that case must be organized by the
* driver by other mechanisms.
*/
/***
*** Functions for writing pixels to the frame buffer:
***/
void (*WriteRGBASpan)( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
CONST GLchan rgba[][4], const GLubyte mask[] );
void (*WriteRGBSpan)( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
CONST GLchan rgb[][3], const GLubyte mask[] );
/* Write a horizontal run of RGBA or RGB pixels.
* If mask is NULL, draw all pixels.
* If mask is not null, only draw pixel [i] when mask [i] is true.
*/
void (*WriteMonoRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
const GLchan color[4], const GLubyte mask[] );
/* Write a horizontal run of RGBA pixels all with the same color.
*/
void (*WriteRGBAPixels)( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
CONST GLchan rgba[][4], const GLubyte mask[] );
/* Write array of RGBA pixels at random locations.
*/
void (*WriteMonoRGBAPixels)( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
const GLchan color[4], const GLubyte mask[] );
/* Write an array of mono-RGBA pixels at random locations.
*/
void (*WriteCI32Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
const GLuint index[], const GLubyte mask[] );
void (*WriteCI8Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
const GLubyte index[], const GLubyte mask[] );
/* Write a horizontal run of CI pixels. One function is for 32bpp
* indexes and the other for 8bpp pixels (the common case). You mus
* implement both for color index mode.
*/
void (*WriteMonoCISpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
GLuint colorIndex, const GLubyte mask[] );
/* Write a horizontal run of color index pixels using the color index
* last specified by the Index() function.
*/
void (*WriteCI32Pixels)( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
const GLuint index[], const GLubyte mask[] );
/*
* Write a random array of CI pixels.
*/
void (*WriteMonoCIPixels)( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
GLuint colorIndex, const GLubyte mask[] );
/* Write a random array of color index pixels using the color index
* last specified by the Index() function.
*/
/***
*** Functions to read pixels from frame buffer:
***/
void (*ReadCI32Span)( const GLcontext *ctx,
GLuint n, GLint x, GLint y, GLuint index[] );
/* Read a horizontal run of color index pixels.
*/
void (*ReadRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
GLchan rgba[][4] );
/* Read a horizontal run of RGBA pixels.
*/
void (*ReadCI32Pixels)( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
GLuint indx[], const GLubyte mask[] );
/* Read a random array of CI pixels.
*/
void (*ReadRGBAPixels)( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
GLchan rgba[][4], const GLubyte mask[] );
/* Read a random array of RGBA pixels.
*/
/***
*** For supporting hardware Z buffers:
*** Either ALL or NONE of these functions must be implemented!
*** NOTE that Each depth value is a 32-bit GLuint. If the depth
*** buffer is less than 32 bits deep then the extra upperbits are zero.
***/
void (*WriteDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
const GLdepth depth[], const GLubyte mask[] );
/* Write a horizontal span of values into the depth buffer. Only write
* depth[i] value if mask[i] is nonzero.
*/
void (*ReadDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
GLdepth depth[] );
/* Read a horizontal span of values from the depth buffer.
*/
void (*WriteDepthPixels)( GLcontext *ctx, GLuint n,
const GLint x[], const GLint y[],
const GLdepth depth[], const GLubyte mask[] );
/* Write an array of randomly positioned depth values into the
* depth buffer. Only write depth[i] value if mask[i] is nonzero.
*/
void (*ReadDepthPixels)( GLcontext *ctx, GLuint n,
const GLint x[], const GLint y[],
GLdepth depth[] );
/* Read an array of randomly positioned depth values from the depth buffer.
*/
/***
*** For supporting hardware stencil buffers:
*** Either ALL or NONE of these functions must be implemented!
***/
void (*WriteStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
const GLstencil stencil[], const GLubyte mask[] );
/* Write a horizontal span of stencil values into the stencil buffer.
* If mask is NULL, write all stencil values.
* Else, only write stencil[i] if mask[i] is non-zero.
*/
void (*ReadStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
GLstencil stencil[] );
/* Read a horizontal span of stencil values from the stencil buffer.
*/
void (*WriteStencilPixels)( GLcontext *ctx, GLuint n,
const GLint x[], const GLint y[],
const GLstencil stencil[],
const GLubyte mask[] );
/* Write an array of stencil values into the stencil buffer.
* If mask is NULL, write all stencil values.
* Else, only write stencil[i] if mask[i] is non-zero.
*/
void (*ReadStencilPixels)( GLcontext *ctx, GLuint n,
const GLint x[], const GLint y[],
GLstencil stencil[] );
/* Read an array of stencil values from the stencil buffer.
*/
};
#endif
|