summaryrefslogtreecommitdiffstats
path: root/src/mesa/swrast/s_aatritemp.h
blob: b5d82a615c122fb983a417dd72bf21d49a79c404 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
/* $Id: s_aatritemp.h,v 1.34 2003/01/28 00:14:32 brianp Exp $ */

/*
 * Mesa 3-D graphics library
 * Version:  5.1
 *
 * Copyright (C) 1999-2003  Brian Paul   All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */


/*
 * Antialiased Triangle Rasterizer Template
 *
 * This file is #include'd to generate custom AA triangle rasterizers.
 * NOTE: this code hasn't been optimized yet.  That'll come after it
 * works correctly.
 *
 * The following macros may be defined to indicate what auxillary information
 * must be copmuted across the triangle:
 *    DO_Z         - if defined, compute Z values
 *    DO_RGBA      - if defined, compute RGBA values
 *    DO_INDEX     - if defined, compute color index values
 *    DO_SPEC      - if defined, compute specular RGB values
 *    DO_TEX       - if defined, compute unit 0 STRQ texcoords
 *    DO_MULTITEX  - if defined, compute all unit's STRQ texcoords
 */

/*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
{
   const GLfloat *p0 = v0->win;
   const GLfloat *p1 = v1->win;
   const GLfloat *p2 = v2->win;
   const SWvertex *vMin, *vMid, *vMax;
   GLint iyMin, iyMax;
   GLfloat yMin, yMax;
   GLboolean ltor;
   GLfloat majDx, majDy;  /* major (i.e. long) edge dx and dy */
   
   struct sw_span span;
   
#ifdef DO_Z
   GLfloat zPlane[4];
#endif
#ifdef DO_FOG
   GLfloat fogPlane[4];
#else
   GLfloat *fog = NULL;
#endif
#ifdef DO_RGBA
   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
#endif
#ifdef DO_INDEX
   GLfloat iPlane[4];
#endif
#ifdef DO_SPEC
   GLfloat srPlane[4], sgPlane[4], sbPlane[4];
#endif
#ifdef DO_TEX
   GLfloat sPlane[4], tPlane[4], uPlane[4], vPlane[4];
   GLfloat texWidth, texHeight;
#elif defined(DO_MULTITEX)
   GLfloat sPlane[MAX_TEXTURE_COORD_UNITS][4];  /* texture S */
   GLfloat tPlane[MAX_TEXTURE_COORD_UNITS][4];  /* texture T */
   GLfloat uPlane[MAX_TEXTURE_COORD_UNITS][4];  /* texture R */
   GLfloat vPlane[MAX_TEXTURE_COORD_UNITS][4];  /* texture Q */
   GLfloat texWidth[MAX_TEXTURE_COORD_UNITS];
   GLfloat texHeight[MAX_TEXTURE_COORD_UNITS];
#endif
   GLfloat bf = SWRAST_CONTEXT(ctx)->_backface_sign;
   
   
   INIT_SPAN(span, GL_POLYGON, 0, 0, SPAN_COVERAGE);

   /* determine bottom to top order of vertices */
   {
      GLfloat y0 = v0->win[1];
      GLfloat y1 = v1->win[1];
      GLfloat y2 = v2->win[1];
      if (y0 <= y1) {
	 if (y1 <= y2) {
	    vMin = v0;   vMid = v1;   vMax = v2;   /* y0<=y1<=y2 */
	 }
	 else if (y2 <= y0) {
	    vMin = v2;   vMid = v0;   vMax = v1;   /* y2<=y0<=y1 */
	 }
	 else {
	    vMin = v0;   vMid = v2;   vMax = v1;  bf = -bf; /* y0<=y2<=y1 */
	 }
      }
      else {
	 if (y0 <= y2) {
	    vMin = v1;   vMid = v0;   vMax = v2;  bf = -bf; /* y1<=y0<=y2 */
	 }
	 else if (y2 <= y1) {
	    vMin = v2;   vMid = v1;   vMax = v0;  bf = -bf; /* y2<=y1<=y0 */
	 }
	 else {
	    vMin = v1;   vMid = v2;   vMax = v0;   /* y1<=y2<=y0 */
	 }
      }
   }

   majDx = vMax->win[0] - vMin->win[0];
   majDy = vMax->win[1] - vMin->win[1];

   {
      const GLfloat botDx = vMid->win[0] - vMin->win[0];
      const GLfloat botDy = vMid->win[1] - vMin->win[1];
      const GLfloat area = majDx * botDy - botDx * majDy;
      /* Do backface culling */
      if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area))
	 return;
      ltor = (GLboolean) (area < 0.0F);
   }

#ifndef DO_OCCLUSION_TEST
   ctx->OcclusionResult = GL_TRUE;
#endif

   /* Plane equation setup:
    * We evaluate plane equations at window (x,y) coordinates in order
    * to compute color, Z, fog, texcoords, etc.  This isn't terribly
    * efficient but it's easy and reliable.
    */
#ifdef DO_Z
   compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
   span.arrayMask |= SPAN_Z;
#endif
#ifdef DO_FOG
   compute_plane(p0, p1, p2, v0->fog, v1->fog, v2->fog, fogPlane);
   span.arrayMask |= SPAN_FOG;
#endif
#ifdef DO_RGBA
   if (ctx->Light.ShadeModel == GL_SMOOTH) {
      compute_plane(p0, p1, p2, v0->color[RCOMP], v1->color[RCOMP], v2->color[RCOMP], rPlane);
      compute_plane(p0, p1, p2, v0->color[GCOMP], v1->color[GCOMP], v2->color[GCOMP], gPlane);
      compute_plane(p0, p1, p2, v0->color[BCOMP], v1->color[BCOMP], v2->color[BCOMP], bPlane);
      compute_plane(p0, p1, p2, v0->color[ACOMP], v1->color[ACOMP], v2->color[ACOMP], aPlane);
   }
   else {
      constant_plane(v2->color[RCOMP], rPlane);
      constant_plane(v2->color[GCOMP], gPlane);
      constant_plane(v2->color[BCOMP], bPlane);
      constant_plane(v2->color[ACOMP], aPlane);
   }
   span.arrayMask |= SPAN_RGBA;
#endif
#ifdef DO_INDEX
   if (ctx->Light.ShadeModel == GL_SMOOTH) {
      compute_plane(p0, p1, p2, (GLfloat) v0->index,
                    (GLfloat) v1->index, (GLfloat) v2->index, iPlane);
   }
   else {
      constant_plane((GLfloat) v2->index, iPlane);
   }
   span.arrayMask |= SPAN_INDEX;
#endif
#ifdef DO_SPEC
   if (ctx->Light.ShadeModel == GL_SMOOTH) {
      compute_plane(p0, p1, p2, v0->specular[RCOMP], v1->specular[RCOMP], v2->specular[RCOMP], srPlane);
      compute_plane(p0, p1, p2, v0->specular[GCOMP], v1->specular[GCOMP], v2->specular[GCOMP], sgPlane);
      compute_plane(p0, p1, p2, v0->specular[BCOMP], v1->specular[BCOMP], v2->specular[BCOMP], sbPlane);
   }
   else {
      constant_plane(v2->specular[RCOMP], srPlane);
      constant_plane(v2->specular[GCOMP], sgPlane);
      constant_plane(v2->specular[BCOMP], sbPlane);
   }
   span.arrayMask |= SPAN_SPEC;
#endif
#ifdef DO_TEX
   {
      const struct gl_texture_object *obj = ctx->Texture.Unit[0]._Current;
      const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel];
      const GLfloat invW0 = v0->win[3];
      const GLfloat invW1 = v1->win[3];
      const GLfloat invW2 = v2->win[3];
      const GLfloat s0 = v0->texcoord[0][0] * invW0;
      const GLfloat s1 = v1->texcoord[0][0] * invW1;
      const GLfloat s2 = v2->texcoord[0][0] * invW2;
      const GLfloat t0 = v0->texcoord[0][1] * invW0;
      const GLfloat t1 = v1->texcoord[0][1] * invW1;
      const GLfloat t2 = v2->texcoord[0][1] * invW2;
      const GLfloat r0 = v0->texcoord[0][2] * invW0;
      const GLfloat r1 = v1->texcoord[0][2] * invW1;
      const GLfloat r2 = v2->texcoord[0][2] * invW2;
      const GLfloat q0 = v0->texcoord[0][3] * invW0;
      const GLfloat q1 = v1->texcoord[0][3] * invW1;
      const GLfloat q2 = v2->texcoord[0][3] * invW2;
      compute_plane(p0, p1, p2, s0, s1, s2, sPlane);
      compute_plane(p0, p1, p2, t0, t1, t2, tPlane);
      compute_plane(p0, p1, p2, r0, r1, r2, uPlane);
      compute_plane(p0, p1, p2, q0, q1, q2, vPlane);
      texWidth = (GLfloat) texImage->Width;
      texHeight = (GLfloat) texImage->Height;
   }
   span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA);
#elif defined(DO_MULTITEX)
   {
      GLuint u;
      for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
         if (ctx->Texture.Unit[u]._ReallyEnabled) {
            const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
            const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel];
            const GLfloat invW0 = v0->win[3];
            const GLfloat invW1 = v1->win[3];
            const GLfloat invW2 = v2->win[3];
            const GLfloat s0 = v0->texcoord[u][0] * invW0;
            const GLfloat s1 = v1->texcoord[u][0] * invW1;
            const GLfloat s2 = v2->texcoord[u][0] * invW2;
            const GLfloat t0 = v0->texcoord[u][1] * invW0;
            const GLfloat t1 = v1->texcoord[u][1] * invW1;
            const GLfloat t2 = v2->texcoord[u][1] * invW2;
            const GLfloat r0 = v0->texcoord[u][2] * invW0;
            const GLfloat r1 = v1->texcoord[u][2] * invW1;
            const GLfloat r2 = v2->texcoord[u][2] * invW2;
            const GLfloat q0 = v0->texcoord[u][3] * invW0;
            const GLfloat q1 = v1->texcoord[u][3] * invW1;
            const GLfloat q2 = v2->texcoord[u][3] * invW2;
            compute_plane(p0, p1, p2, s0, s1, s2, sPlane[u]);
            compute_plane(p0, p1, p2, t0, t1, t2, tPlane[u]);
            compute_plane(p0, p1, p2, r0, r1, r2, uPlane[u]);
            compute_plane(p0, p1, p2, q0, q1, q2, vPlane[u]);
            texWidth[u]  = (GLfloat) texImage->Width;
            texHeight[u] = (GLfloat) texImage->Height;
         }
      }
   }
   span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA);
#endif

   /* Begin bottom-to-top scan over the triangle.
    * The long edge will either be on the left or right side of the
    * triangle.  We always scan from the long edge toward the shorter
    * edges, stopping when we find that coverage = 0.  If the long edge
    * is on the left we scan left-to-right.  Else, we scan right-to-left.
    */
   yMin = vMin->win[1];
   yMax = vMax->win[1];
   iyMin = (GLint) yMin;
   iyMax = (GLint) yMax + 1;

   if (ltor) {
      /* scan left to right */
      const GLfloat *pMin = vMin->win;
      const GLfloat *pMid = vMid->win;
      const GLfloat *pMax = vMax->win;
      const GLfloat dxdy = majDx / majDy;
      const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
      GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
      GLint iy;
      for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
         GLint ix, startX = (GLint) (x - xAdj);
         GLuint count;
         GLfloat coverage = 0.0F;

         /* skip over fragments with zero coverage */
         while (startX < MAX_WIDTH) {
            coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
            if (coverage > 0.0F)
               break;
            startX++;
         }

         /* enter interior of triangle */
         ix = startX;
         count = 0;
         while (coverage > 0.0F) {
            /* (cx,cy) = center of fragment */
            const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
            struct span_arrays *array = span.array;
#ifdef DO_INDEX
            array->coverage[count] = (GLfloat) compute_coveragei(pMin, pMid, pMax, ix, iy);
#else
            array->coverage[count] = coverage;
#endif
#ifdef DO_Z
            array->z[count] = (GLdepth) solve_plane(cx, cy, zPlane);
#endif
#ifdef DO_FOG
	    array->fog[count] = solve_plane(cx, cy, fogPlane);
#endif
#ifdef DO_RGBA
            array->rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
            array->rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
            array->rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
            array->rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
#endif
#ifdef DO_INDEX
            array->index[count] = (GLint) solve_plane(cx, cy, iPlane);
#endif
#ifdef DO_SPEC
            array->spec[count][RCOMP] = solve_plane_chan(cx, cy, srPlane);
            array->spec[count][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
            array->spec[count][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
#endif
#ifdef DO_TEX
            {
               const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
               array->texcoords[0][count][0] = solve_plane(cx, cy, sPlane) * invQ;
               array->texcoords[0][count][1] = solve_plane(cx, cy, tPlane) * invQ;
               array->texcoords[0][count][2] = solve_plane(cx, cy, uPlane) * invQ;
               array->lambda[0][count] = compute_lambda(sPlane, tPlane, vPlane,
                                                      cx, cy, invQ,
                                                      texWidth, texHeight);
            }
#elif defined(DO_MULTITEX)
            {
               GLuint unit;
               for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
                  if (ctx->Texture.Unit[unit]._ReallyEnabled) {
                     GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
                     array->texcoords[unit][count][0] = solve_plane(cx, cy, sPlane[unit]) * invQ;
                     array->texcoords[unit][count][1] = solve_plane(cx, cy, tPlane[unit]) * invQ;
                     array->texcoords[unit][count][2] = solve_plane(cx, cy, uPlane[unit]) * invQ;
                     array->lambda[unit][count] = compute_lambda(sPlane[unit],
                                      tPlane[unit], vPlane[unit], cx, cy, invQ,
                                      texWidth[unit], texHeight[unit]);
                  }
               }
            }
#endif
            ix++;
            count++;
            coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
         }
         
         if (ix <= startX)
            continue;
         
         span.x = startX;
         span.y = iy;
         span.end = (GLuint) ix - (GLuint) startX;
         ASSERT(span.interpMask == 0);
#if defined(DO_MULTITEX) || defined(DO_TEX)
         _mesa_write_texture_span(ctx, &span);
#elif defined(DO_RGBA)
         _mesa_write_rgba_span(ctx, &span);
#elif defined(DO_INDEX)
         _mesa_write_index_span(ctx, &span);
#endif
      }
   }
   else {
      /* scan right to left */
      const GLfloat *pMin = vMin->win;
      const GLfloat *pMid = vMid->win;
      const GLfloat *pMax = vMax->win;
      const GLfloat dxdy = majDx / majDy;
      const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
      GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
      GLint iy;
      for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
         GLint ix, left, startX = (GLint) (x + xAdj);
         GLuint count, n;
         GLfloat coverage = 0.0F;
         
         /* make sure we're not past the window edge */
         if (startX >= ctx->DrawBuffer->_Xmax) {
            startX = ctx->DrawBuffer->_Xmax - 1;
         }

         /* skip fragments with zero coverage */
         while (startX >= 0) {
            coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
            if (coverage > 0.0F)
               break;
            startX--;
         }
         
         /* enter interior of triangle */
         ix = startX;
         count = 0;
         while (coverage > 0.0F) {
            /* (cx,cy) = center of fragment */
            const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
            struct span_arrays *array = span.array;
#ifdef DO_INDEX
            array->coverage[ix] = (GLfloat) compute_coveragei(pMin, pMax, pMid, ix, iy);
#else
            array->coverage[ix] = coverage;
#endif
#ifdef DO_Z
            array->z[ix] = (GLdepth) solve_plane(cx, cy, zPlane);
#endif
#ifdef DO_FOG
            array->fog[ix] = solve_plane(cx, cy, fogPlane);
#endif
#ifdef DO_RGBA
            array->rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
            array->rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
            array->rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
            array->rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
#endif
#ifdef DO_INDEX
            array->index[ix] = (GLint) solve_plane(cx, cy, iPlane);
#endif
#ifdef DO_SPEC
            array->spec[ix][RCOMP] = solve_plane_chan(cx, cy, srPlane);
            array->spec[ix][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
            array->spec[ix][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
#endif
#ifdef DO_TEX
            {
               const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
               array->texcoords[0][ix][0] = solve_plane(cx, cy, sPlane) * invQ;
               array->texcoords[0][ix][1] = solve_plane(cx, cy, tPlane) * invQ;
               array->texcoords[0][ix][2] = solve_plane(cx, cy, uPlane) * invQ;
               array->lambda[0][ix] = compute_lambda(sPlane, tPlane, vPlane,
                                          cx, cy, invQ, texWidth, texHeight);
            }
#elif defined(DO_MULTITEX)
            {
               GLuint unit;
               for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
                  if (ctx->Texture.Unit[unit]._ReallyEnabled) {
                     GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
                     array->texcoords[unit][ix][0] = solve_plane(cx, cy, sPlane[unit]) * invQ;
                     array->texcoords[unit][ix][1] = solve_plane(cx, cy, tPlane[unit]) * invQ;
                     array->texcoords[unit][ix][2] = solve_plane(cx, cy, uPlane[unit]) * invQ;
                     array->lambda[unit][ix] = compute_lambda(sPlane[unit],
                                                            tPlane[unit],
                                                            vPlane[unit],
                                                            cx, cy, invQ,
                                                            texWidth[unit],
                                                            texHeight[unit]);
                  }
               }
            }
#endif
            ix--;
            count++;
            coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
         }
         
         if (startX <= ix)
            continue;

         n = (GLuint) startX - (GLuint) ix;

         left = ix + 1;

         /* shift all values to the left */
         /* XXX this is temporary */
         {
            struct span_arrays *array = span.array;
            GLint j;
            for (j = 0; j < (GLint) n; j++) {
#ifdef DO_RGBA
               COPY_CHAN4(array->rgba[j], array->rgba[j + left]);
#endif
#ifdef DO_SPEC
               COPY_CHAN4(array->spec[j], array->spec[j + left]);
#endif
#ifdef DO_INDEX
               array->index[j] = array->index[j + left];
#endif
#ifdef DO_Z
               array->z[j] = array->z[j + left];
#endif
#ifdef DO_FOG
               array->fog[j] = array->fog[j + left];
#endif
#ifdef DO_TEX
               COPY_4V(array->texcoords[0][j], array->texcoords[0][j + left]);
#endif
#if defined(DO_MULTITEX) || defined(DO_TEX)
               array->lambda[0][j] = array->lambda[0][j + left];
#endif
               array->coverage[j] = array->coverage[j + left];
            }
         }
#ifdef DO_MULTITEX
         /* shift texcoords */
         {
            struct span_arrays *array = span.array;
            GLuint unit;
            for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
               if (ctx->Texture.Unit[unit]._ReallyEnabled) {
                  GLint j;
                  for (j = 0; j < (GLint) n; j++) {
		     array->texcoords[unit][j][0] = array->texcoords[unit][j + left][0];
                     array->texcoords[unit][j][1] = array->texcoords[unit][j + left][1];
                     array->texcoords[unit][j][2] = array->texcoords[unit][j + left][2];
                     array->lambda[unit][j] = array->lambda[unit][j + left];
                  }
               }
            }
         }
#endif

         span.x = left;
         span.y = iy;
         span.end = n;
         ASSERT(span.interpMask == 0);
#if defined(DO_MULTITEX) || defined(DO_TEX)
         _mesa_write_texture_span(ctx, &span);
#elif defined(DO_RGBA)
         _mesa_write_rgba_span(ctx, &span);
#elif defined(DO_INDEX)
         _mesa_write_index_span(ctx, &span);
#endif
      }
   }
}


#ifdef DO_Z
#undef DO_Z
#endif

#ifdef DO_FOG
#undef DO_FOG
#endif

#ifdef DO_RGBA
#undef DO_RGBA
#endif

#ifdef DO_INDEX
#undef DO_INDEX
#endif

#ifdef DO_SPEC
#undef DO_SPEC
#endif

#ifdef DO_TEX
#undef DO_TEX
#endif

#ifdef DO_MULTITEX
#undef DO_MULTITEX
#endif

#ifdef DO_OCCLUSION_TEST
#undef DO_OCCLUSION_TEST
#endif