aboutsummaryrefslogtreecommitdiffstats
path: root/src/mesa/program/prog_statevars.c
blob: 16f9690e8659746d6428b6f7ec528481ae9754a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
/*
 * Mesa 3-D graphics library
 * Version:  7.1
 *
 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

/**
 * \file prog_statevars.c
 * Program state variable management.
 * \author Brian Paul
 */


#include "main/glheader.h"
#include "main/context.h"
#include "main/imports.h"
#include "main/macros.h"
#include "main/mtypes.h"
#include "prog_statevars.h"
#include "prog_parameter.h"


/**
 * Use the list of tokens in the state[] array to find global GL state
 * and return it in <value>.  Usually, four values are returned in <value>
 * but matrix queries may return as many as 16 values.
 * This function is used for ARB vertex/fragment programs.
 * The program parser will produce the state[] values.
 */
static void
_mesa_fetch_state(struct gl_context *ctx, const gl_state_index state[],
                  GLfloat *value)
{
   switch (state[0]) {
   case STATE_MATERIAL:
      {
         /* state[1] is either 0=front or 1=back side */
         const GLuint face = (GLuint) state[1];
         const struct gl_material *mat = &ctx->Light.Material;
         ASSERT(face == 0 || face == 1);
         /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
         ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
         /* XXX we could get rid of this switch entirely with a little
          * work in arbprogparse.c's parse_state_single_item().
          */
         /* state[2] is the material attribute */
         switch (state[2]) {
         case STATE_AMBIENT:
            COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
            return;
         case STATE_DIFFUSE:
            COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
            return;
         case STATE_SPECULAR:
            COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
            return;
         case STATE_EMISSION:
            COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
            return;
         case STATE_SHININESS:
            value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
            value[1] = 0.0F;
            value[2] = 0.0F;
            value[3] = 1.0F;
            return;
         default:
            _mesa_problem(ctx, "Invalid material state in fetch_state");
            return;
         }
      }
   case STATE_LIGHT:
      {
         /* state[1] is the light number */
         const GLuint ln = (GLuint) state[1];
         /* state[2] is the light attribute */
         switch (state[2]) {
         case STATE_AMBIENT:
            COPY_4V(value, ctx->Light.Light[ln].Ambient);
            return;
         case STATE_DIFFUSE:
            COPY_4V(value, ctx->Light.Light[ln].Diffuse);
            return;
         case STATE_SPECULAR:
            COPY_4V(value, ctx->Light.Light[ln].Specular);
            return;
         case STATE_POSITION:
            COPY_4V(value, ctx->Light.Light[ln].EyePosition);
            return;
         case STATE_ATTENUATION:
            value[0] = ctx->Light.Light[ln].ConstantAttenuation;
            value[1] = ctx->Light.Light[ln].LinearAttenuation;
            value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
            value[3] = ctx->Light.Light[ln].SpotExponent;
            return;
         case STATE_SPOT_DIRECTION:
            COPY_3V(value, ctx->Light.Light[ln].SpotDirection);
            value[3] = ctx->Light.Light[ln]._CosCutoff;
            return;
         case STATE_SPOT_CUTOFF:
            value[0] = ctx->Light.Light[ln].SpotCutoff;
            return;
         case STATE_HALF_VECTOR:
            {
               static const GLfloat eye_z[] = {0, 0, 1};
               GLfloat p[3];
               /* Compute infinite half angle vector:
                *   halfVector = normalize(normalize(lightPos) + (0, 0, 1))
		* light.EyePosition.w should be 0 for infinite lights.
                */
               COPY_3V(p, ctx->Light.Light[ln].EyePosition);
               NORMALIZE_3FV(p);
	       ADD_3V(value, p, eye_z);
	       NORMALIZE_3FV(value);
	       value[3] = 1.0;
            }
            return;
         default:
            _mesa_problem(ctx, "Invalid light state in fetch_state");
            return;
         }
      }
   case STATE_LIGHTMODEL_AMBIENT:
      COPY_4V(value, ctx->Light.Model.Ambient);
      return;
   case STATE_LIGHTMODEL_SCENECOLOR:
      if (state[1] == 0) {
         /* front */
         GLint i;
         for (i = 0; i < 3; i++) {
            value[i] = ctx->Light.Model.Ambient[i]
               * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
               + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
         }
	 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
      }
      else {
         /* back */
         GLint i;
         for (i = 0; i < 3; i++) {
            value[i] = ctx->Light.Model.Ambient[i]
               * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
               + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
         }
	 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
      }
      return;
   case STATE_LIGHTPROD:
      {
         const GLuint ln = (GLuint) state[1];
         const GLuint face = (GLuint) state[2];
         GLint i;
         ASSERT(face == 0 || face == 1);
         switch (state[3]) {
            case STATE_AMBIENT:
               for (i = 0; i < 3; i++) {
                  value[i] = ctx->Light.Light[ln].Ambient[i] *
                     ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
               }
               /* [3] = material alpha */
               value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
               return;
            case STATE_DIFFUSE:
               for (i = 0; i < 3; i++) {
                  value[i] = ctx->Light.Light[ln].Diffuse[i] *
                     ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
               }
               /* [3] = material alpha */
               value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
               return;
            case STATE_SPECULAR:
               for (i = 0; i < 3; i++) {
                  value[i] = ctx->Light.Light[ln].Specular[i] *
                     ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
               }
               /* [3] = material alpha */
               value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
               return;
            default:
               _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
               return;
         }
      }
   case STATE_TEXGEN:
      {
         /* state[1] is the texture unit */
         const GLuint unit = (GLuint) state[1];
         /* state[2] is the texgen attribute */
         switch (state[2]) {
         case STATE_TEXGEN_EYE_S:
            COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
            return;
         case STATE_TEXGEN_EYE_T:
            COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
            return;
         case STATE_TEXGEN_EYE_R:
            COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
            return;
         case STATE_TEXGEN_EYE_Q:
            COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
            return;
         case STATE_TEXGEN_OBJECT_S:
            COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
            return;
         case STATE_TEXGEN_OBJECT_T:
            COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
            return;
         case STATE_TEXGEN_OBJECT_R:
            COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
            return;
         case STATE_TEXGEN_OBJECT_Q:
            COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
            return;
         default:
            _mesa_problem(ctx, "Invalid texgen state in fetch_state");
            return;
         }
      }
   case STATE_TEXENV_COLOR:
      {
         /* state[1] is the texture unit */
         const GLuint unit = (GLuint) state[1];
         if(ctx->Color._ClampFragmentColor)
            COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
         else
            COPY_4V(value, ctx->Texture.Unit[unit].EnvColorUnclamped);
      }
      return;
   case STATE_FOG_COLOR:
      if(ctx->Color._ClampFragmentColor)
         COPY_4V(value, ctx->Fog.Color);
      else
         COPY_4V(value, ctx->Fog.ColorUnclamped);
      return;
   case STATE_FOG_PARAMS:
      value[0] = ctx->Fog.Density;
      value[1] = ctx->Fog.Start;
      value[2] = ctx->Fog.End;
      value[3] = (ctx->Fog.End == ctx->Fog.Start)
         ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
      return;
   case STATE_CLIPPLANE:
      {
         const GLuint plane = (GLuint) state[1];
         COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
      }
      return;
   case STATE_POINT_SIZE:
      value[0] = ctx->Point.Size;
      value[1] = ctx->Point.MinSize;
      value[2] = ctx->Point.MaxSize;
      value[3] = ctx->Point.Threshold;
      return;
   case STATE_POINT_ATTENUATION:
      value[0] = ctx->Point.Params[0];
      value[1] = ctx->Point.Params[1];
      value[2] = ctx->Point.Params[2];
      value[3] = 1.0F;
      return;
   case STATE_MODELVIEW_MATRIX:
   case STATE_PROJECTION_MATRIX:
   case STATE_MVP_MATRIX:
   case STATE_TEXTURE_MATRIX:
   case STATE_PROGRAM_MATRIX:
      {
         /* state[0] = modelview, projection, texture, etc. */
         /* state[1] = which texture matrix or program matrix */
         /* state[2] = first row to fetch */
         /* state[3] = last row to fetch */
         /* state[4] = transpose, inverse or invtrans */
         const GLmatrix *matrix;
         const gl_state_index mat = state[0];
         const GLuint index = (GLuint) state[1];
         const GLuint firstRow = (GLuint) state[2];
         const GLuint lastRow = (GLuint) state[3];
         const gl_state_index modifier = state[4];
         const GLfloat *m;
         GLuint row, i;
         ASSERT(firstRow >= 0);
         ASSERT(firstRow < 4);
         ASSERT(lastRow >= 0);
         ASSERT(lastRow < 4);
         if (mat == STATE_MODELVIEW_MATRIX) {
            matrix = ctx->ModelviewMatrixStack.Top;
         }
         else if (mat == STATE_PROJECTION_MATRIX) {
            matrix = ctx->ProjectionMatrixStack.Top;
         }
         else if (mat == STATE_MVP_MATRIX) {
            matrix = &ctx->_ModelProjectMatrix;
         }
         else if (mat == STATE_TEXTURE_MATRIX) {
            ASSERT(index < Elements(ctx->TextureMatrixStack));
            matrix = ctx->TextureMatrixStack[index].Top;
         }
         else if (mat == STATE_PROGRAM_MATRIX) {
            ASSERT(index < Elements(ctx->ProgramMatrixStack));
            matrix = ctx->ProgramMatrixStack[index].Top;
         }
         else {
            _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
            return;
         }
         if (modifier == STATE_MATRIX_INVERSE ||
             modifier == STATE_MATRIX_INVTRANS) {
            /* Be sure inverse is up to date:
	     */
            _math_matrix_alloc_inv( (GLmatrix *) matrix );
	    _math_matrix_analyse( (GLmatrix*) matrix );
            m = matrix->inv;
         }
         else {
            m = matrix->m;
         }
         if (modifier == STATE_MATRIX_TRANSPOSE ||
             modifier == STATE_MATRIX_INVTRANS) {
            for (i = 0, row = firstRow; row <= lastRow; row++) {
               value[i++] = m[row * 4 + 0];
               value[i++] = m[row * 4 + 1];
               value[i++] = m[row * 4 + 2];
               value[i++] = m[row * 4 + 3];
            }
         }
         else {
            for (i = 0, row = firstRow; row <= lastRow; row++) {
               value[i++] = m[row + 0];
               value[i++] = m[row + 4];
               value[i++] = m[row + 8];
               value[i++] = m[row + 12];
            }
         }
      }
      return;
   case STATE_DEPTH_RANGE:
      value[0] = ctx->Viewport.Near;                     /* near       */
      value[1] = ctx->Viewport.Far;                      /* far        */
      value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
      value[3] = 1.0;
      return;
   case STATE_FRAGMENT_PROGRAM:
      {
         /* state[1] = {STATE_ENV, STATE_LOCAL} */
         /* state[2] = parameter index          */
         const int idx = (int) state[2];
         switch (state[1]) {
            case STATE_ENV:
               COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
               return;
            case STATE_LOCAL:
               COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
               return;
            default:
               _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
               return;
         }
      }
      return;

   case STATE_VERTEX_PROGRAM:
      {
         /* state[1] = {STATE_ENV, STATE_LOCAL} */
         /* state[2] = parameter index          */
         const int idx = (int) state[2];
         switch (state[1]) {
            case STATE_ENV:
               COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
               return;
            case STATE_LOCAL:
               COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
               return;
            default:
               _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
               return;
         }
      }
      return;

   case STATE_NORMAL_SCALE:
      ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
      return;

   case STATE_INTERNAL:
      switch (state[1]) {
      case STATE_CURRENT_ATTRIB:
         {
            const GLuint idx = (GLuint) state[2];
            COPY_4V(value, ctx->Current.Attrib[idx]);
         }
         return;

      case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
         {
            const GLuint idx = (GLuint) state[2];
            if(ctx->Light._ClampVertexColor &&
               (idx == VERT_ATTRIB_COLOR0 ||
                idx == VERT_ATTRIB_COLOR1)) {
               value[0] = CLAMP(ctx->Current.Attrib[idx][0], 0.0f, 1.0f);
               value[1] = CLAMP(ctx->Current.Attrib[idx][1], 0.0f, 1.0f);
               value[2] = CLAMP(ctx->Current.Attrib[idx][2], 0.0f, 1.0f);
               value[3] = CLAMP(ctx->Current.Attrib[idx][3], 0.0f, 1.0f);
            }
            else
               COPY_4V(value, ctx->Current.Attrib[idx]);
         }
         return;

      case STATE_NORMAL_SCALE:
         ASSIGN_4V(value, 
                   ctx->_ModelViewInvScale, 
                   ctx->_ModelViewInvScale, 
                   ctx->_ModelViewInvScale, 
                   1);
         return;

      case STATE_TEXRECT_SCALE:
         /* Value = { 1/texWidth, 1/texHeight, 0, 1 }.
          * Used to convert unnormalized texcoords to normalized texcoords.
          */
         {
            const int unit = (int) state[2];
            const struct gl_texture_object *texObj
               = ctx->Texture.Unit[unit]._Current;
            if (texObj) {
               struct gl_texture_image *texImage = texObj->Image[0][0];
               ASSIGN_4V(value,
                         (GLfloat) (1.0 / texImage->Width),
                         (GLfloat) (1.0 / texImage->Height),
                         0.0f, 1.0f);
            }
         }
         return;

      case STATE_FOG_PARAMS_OPTIMIZED:
         /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
          * might be more expensive than EX2 on some hw, plus it needs
          * another constant (e) anyway. Linear fog can now be done with a
          * single MAD.
          * linear: fogcoord * -1/(end-start) + end/(end-start)
          * exp: 2^-(density/ln(2) * fogcoord)
          * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
          */
         value[0] = (ctx->Fog.End == ctx->Fog.Start)
            ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
         value[1] = ctx->Fog.End * -value[0];
         value[2] = (GLfloat)(ctx->Fog.Density * M_LOG2E); /* M_LOG2E == 1/ln(2) */
         value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
         return;

      case STATE_POINT_SIZE_CLAMPED:
         {
           /* this includes implementation dependent limits, to avoid
            * another potentially necessary clamp.
            * Note: for sprites, point smooth (point AA) is ignored
            * and we'll clamp to MinPointSizeAA and MaxPointSize, because we
            * expect drivers will want to say their minimum for AA size is 0.0
            * but for non-AA it's 1.0 (because normal points with size below 1.0
            * need to get rounded up to 1.0, hence never disappear). GL does
            * not specify max clamp size for sprites, other than it needs to be
            * at least as large as max AA size, hence use non-AA size there.
            */
            GLfloat minImplSize;
            GLfloat maxImplSize;
            if (ctx->Point.PointSprite) {
               minImplSize = ctx->Const.MinPointSizeAA;
               maxImplSize = ctx->Const.MaxPointSize;
            }
            else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) {
               minImplSize = ctx->Const.MinPointSizeAA;
               maxImplSize = ctx->Const.MaxPointSizeAA;
            }
            else {
               minImplSize = ctx->Const.MinPointSize;
               maxImplSize = ctx->Const.MaxPointSize;
            }
            value[0] = ctx->Point.Size;
            value[1] = ctx->Point.MinSize >= minImplSize ? ctx->Point.MinSize : minImplSize;
            value[2] = ctx->Point.MaxSize <= maxImplSize ? ctx->Point.MaxSize : maxImplSize;
            value[3] = ctx->Point.Threshold;
         }
         return;
      case STATE_POINT_SIZE_IMPL_CLAMP:
         {
           /* for implementation clamp only in vs */
            GLfloat minImplSize;
            GLfloat maxImplSize;
            if (ctx->Point.PointSprite) {
               minImplSize = ctx->Const.MinPointSizeAA;
               maxImplSize = ctx->Const.MaxPointSize;
            }
            else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) {
               minImplSize = ctx->Const.MinPointSizeAA;
               maxImplSize = ctx->Const.MaxPointSizeAA;
            }
            else {
               minImplSize = ctx->Const.MinPointSize;
               maxImplSize = ctx->Const.MaxPointSize;
            }
            value[0] = ctx->Point.Size;
            value[1] = minImplSize;
            value[2] = maxImplSize;
            value[3] = ctx->Point.Threshold;
         }
         return;
      case STATE_LIGHT_SPOT_DIR_NORMALIZED:
         {
            /* here, state[2] is the light number */
            /* pre-normalize spot dir */
            const GLuint ln = (GLuint) state[2];
            COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection);
            value[3] = ctx->Light.Light[ln]._CosCutoff;
         }
         return;

      case STATE_LIGHT_POSITION:
         {
            const GLuint ln = (GLuint) state[2];
            COPY_4V(value, ctx->Light.Light[ln]._Position);
         }
         return;

      case STATE_LIGHT_POSITION_NORMALIZED:
         {
            const GLuint ln = (GLuint) state[2];
            COPY_4V(value, ctx->Light.Light[ln]._Position);
            NORMALIZE_3FV( value );
         }
         return;

      case STATE_LIGHT_HALF_VECTOR:
         {
            const GLuint ln = (GLuint) state[2];
            GLfloat p[3];
            /* Compute infinite half angle vector:
             *   halfVector = normalize(normalize(lightPos) + (0, 0, 1))
             * light.EyePosition.w should be 0 for infinite lights.
             */
            COPY_3V(p, ctx->Light.Light[ln]._Position);
            NORMALIZE_3FV(p);
            ADD_3V(value, p, ctx->_EyeZDir);
            NORMALIZE_3FV(value);
            value[3] = 1.0;
         }
         return;

      case STATE_PT_SCALE:
         value[0] = ctx->Pixel.RedScale;
         value[1] = ctx->Pixel.GreenScale;
         value[2] = ctx->Pixel.BlueScale;
         value[3] = ctx->Pixel.AlphaScale;
         return;

      case STATE_PT_BIAS:
         value[0] = ctx->Pixel.RedBias;
         value[1] = ctx->Pixel.GreenBias;
         value[2] = ctx->Pixel.BlueBias;
         value[3] = ctx->Pixel.AlphaBias;
         return;

      case STATE_SHADOW_AMBIENT:
         {
            const int unit = (int) state[2];
            const struct gl_texture_object *texObj
               = ctx->Texture.Unit[unit]._Current;
            if (texObj) {
               value[0] =
               value[1] =
               value[2] =
               value[3] = texObj->Sampler.CompareFailValue;
            }
         }
         return;

      case STATE_FB_SIZE:
         value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
         value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
         value[2] = 0.0F;
         value[3] = 0.0F;
         return;

      case STATE_FB_WPOS_Y_TRANSFORM:
         /* A driver may negate this conditional by using ZW swizzle
          * instead of XY (based on e.g. some other state). */
         if (ctx->DrawBuffer->Name != 0) {
            /* Identity (XY) followed by flipping Y upside down (ZW). */
            value[0] = 1.0F;
            value[1] = 0.0F;
            value[2] = -1.0F;
            value[3] = (GLfloat) ctx->DrawBuffer->Height;
         } else {
            /* Flipping Y upside down (XY) followed by identity (ZW). */
            value[0] = -1.0F;
            value[1] = (GLfloat) ctx->DrawBuffer->Height;
            value[2] = 1.0F;
            value[3] = 0.0F;
         }
         return;

      case STATE_ROT_MATRIX_0:
         {
            const int unit = (int) state[2];
            GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
            value[0] = rotMat22[0]; 
            value[1] = rotMat22[2];
            value[2] = 0.0;
            value[3] = 0.0;
         }
         return;

      case STATE_ROT_MATRIX_1:
         {
            const int unit = (int) state[2];
            GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
            value[0] = rotMat22[1];
            value[1] = rotMat22[3];
            value[2] = 0.0;
            value[3] = 0.0;
         }
         return;

      /* XXX: make sure new tokens added here are also handled in the 
       * _mesa_program_state_flags() switch, below.
       */
      default:
         /* Unknown state indexes are silently ignored here.
          * Drivers may do something special.
          */
         return;
      }
      return;

   default:
      _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
      return;
   }
}


/**
 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
 * indicate that the given context state may have changed.
 * The bitmask is used during validation to determine if we need to update
 * vertex/fragment program parameters (like "state.material.color") when
 * some GL state has changed.
 */
GLbitfield
_mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
{
   switch (state[0]) {
   case STATE_MATERIAL:
   case STATE_LIGHT:
   case STATE_LIGHTMODEL_AMBIENT:
   case STATE_LIGHTMODEL_SCENECOLOR:
   case STATE_LIGHTPROD:
      return _NEW_LIGHT;

   case STATE_TEXGEN:
      return _NEW_TEXTURE;
   case STATE_TEXENV_COLOR:
      return _NEW_TEXTURE | _NEW_BUFFERS | _NEW_FRAG_CLAMP;

   case STATE_FOG_COLOR:
      return _NEW_FOG | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
   case STATE_FOG_PARAMS:
      return _NEW_FOG;

   case STATE_CLIPPLANE:
      return _NEW_TRANSFORM;

   case STATE_POINT_SIZE:
   case STATE_POINT_ATTENUATION:
      return _NEW_POINT;

   case STATE_MODELVIEW_MATRIX:
      return _NEW_MODELVIEW;
   case STATE_PROJECTION_MATRIX:
      return _NEW_PROJECTION;
   case STATE_MVP_MATRIX:
      return _NEW_MODELVIEW | _NEW_PROJECTION;
   case STATE_TEXTURE_MATRIX:
      return _NEW_TEXTURE_MATRIX;
   case STATE_PROGRAM_MATRIX:
      return _NEW_TRACK_MATRIX;

   case STATE_DEPTH_RANGE:
      return _NEW_VIEWPORT;

   case STATE_FRAGMENT_PROGRAM:
   case STATE_VERTEX_PROGRAM:
      return _NEW_PROGRAM;

   case STATE_NORMAL_SCALE:
      return _NEW_MODELVIEW;

   case STATE_INTERNAL:
      switch (state[1]) {
      case STATE_CURRENT_ATTRIB:
         return _NEW_CURRENT_ATTRIB;
      case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
         return _NEW_CURRENT_ATTRIB | _NEW_LIGHT | _NEW_BUFFERS;

      case STATE_NORMAL_SCALE:
         return _NEW_MODELVIEW;

      case STATE_TEXRECT_SCALE:
      case STATE_SHADOW_AMBIENT:
      case STATE_ROT_MATRIX_0:
      case STATE_ROT_MATRIX_1:
	 return _NEW_TEXTURE;
      case STATE_FOG_PARAMS_OPTIMIZED:
	 return _NEW_FOG;
      case STATE_POINT_SIZE_CLAMPED:
      case STATE_POINT_SIZE_IMPL_CLAMP:
         return _NEW_POINT | _NEW_MULTISAMPLE;
      case STATE_LIGHT_SPOT_DIR_NORMALIZED:
      case STATE_LIGHT_POSITION:
      case STATE_LIGHT_POSITION_NORMALIZED:
      case STATE_LIGHT_HALF_VECTOR:
         return _NEW_LIGHT;

      case STATE_PT_SCALE:
      case STATE_PT_BIAS:
         return _NEW_PIXEL;

      case STATE_FB_SIZE:
      case STATE_FB_WPOS_Y_TRANSFORM:
         return _NEW_BUFFERS;

      default:
         /* unknown state indexes are silently ignored and
         *  no flag set, since it is handled by the driver.
         */
	 return 0;
      }

   default:
      _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
      return 0;
   }
}


static void
append(char *dst, const char *src)
{
   while (*dst)
      dst++;
   while (*src)
     *dst++ = *src++;
   *dst = 0;
}


/**
 * Convert token 'k' to a string, append it onto 'dst' string.
 */
static void
append_token(char *dst, gl_state_index k)
{
   switch (k) {
   case STATE_MATERIAL:
      append(dst, "material");
      break;
   case STATE_LIGHT:
      append(dst, "light");
      break;
   case STATE_LIGHTMODEL_AMBIENT:
      append(dst, "lightmodel.ambient");
      break;
   case STATE_LIGHTMODEL_SCENECOLOR:
      break;
   case STATE_LIGHTPROD:
      append(dst, "lightprod");
      break;
   case STATE_TEXGEN:
      append(dst, "texgen");
      break;
   case STATE_FOG_COLOR:
      append(dst, "fog.color");
      break;
   case STATE_FOG_PARAMS:
      append(dst, "fog.params");
      break;
   case STATE_CLIPPLANE:
      append(dst, "clip");
      break;
   case STATE_POINT_SIZE:
      append(dst, "point.size");
      break;
   case STATE_POINT_ATTENUATION:
      append(dst, "point.attenuation");
      break;
   case STATE_MODELVIEW_MATRIX:
      append(dst, "matrix.modelview");
      break;
   case STATE_PROJECTION_MATRIX:
      append(dst, "matrix.projection");
      break;
   case STATE_MVP_MATRIX:
      append(dst, "matrix.mvp");
      break;
   case STATE_TEXTURE_MATRIX:
      append(dst, "matrix.texture");
      break;
   case STATE_PROGRAM_MATRIX:
      append(dst, "matrix.program");
      break;
   case STATE_MATRIX_INVERSE:
      append(dst, ".inverse");
      break;
   case STATE_MATRIX_TRANSPOSE:
      append(dst, ".transpose");
      break;
   case STATE_MATRIX_INVTRANS:
      append(dst, ".invtrans");
      break;
   case STATE_AMBIENT:
      append(dst, ".ambient");
      break;
   case STATE_DIFFUSE:
      append(dst, ".diffuse");
      break;
   case STATE_SPECULAR:
      append(dst, ".specular");
      break;
   case STATE_EMISSION:
      append(dst, ".emission");
      break;
   case STATE_SHININESS:
      append(dst, "lshininess");
      break;
   case STATE_HALF_VECTOR:
      append(dst, ".half");
      break;
   case STATE_POSITION:
      append(dst, ".position");
      break;
   case STATE_ATTENUATION:
      append(dst, ".attenuation");
      break;
   case STATE_SPOT_DIRECTION:
      append(dst, ".spot.direction");
      break;
   case STATE_SPOT_CUTOFF:
      append(dst, ".spot.cutoff");
      break;
   case STATE_TEXGEN_EYE_S:
      append(dst, ".eye.s");
      break;
   case STATE_TEXGEN_EYE_T:
      append(dst, ".eye.t");
      break;
   case STATE_TEXGEN_EYE_R:
      append(dst, ".eye.r");
      break;
   case STATE_TEXGEN_EYE_Q:
      append(dst, ".eye.q");
      break;
   case STATE_TEXGEN_OBJECT_S:
      append(dst, ".object.s");
      break;
   case STATE_TEXGEN_OBJECT_T:
      append(dst, ".object.t");
      break;
   case STATE_TEXGEN_OBJECT_R:
      append(dst, ".object.r");
      break;
   case STATE_TEXGEN_OBJECT_Q:
      append(dst, ".object.q");
      break;
   case STATE_TEXENV_COLOR:
      append(dst, "texenv");
      break;
   case STATE_DEPTH_RANGE:
      append(dst, "depth.range");
      break;
   case STATE_VERTEX_PROGRAM:
   case STATE_FRAGMENT_PROGRAM:
      break;
   case STATE_ENV:
      append(dst, "env");
      break;
   case STATE_LOCAL:
      append(dst, "local");
      break;
   /* BEGIN internal state vars */
   case STATE_INTERNAL:
      append(dst, ".internal.");
      break;
   case STATE_CURRENT_ATTRIB:
      append(dst, "current");
      break;
   case STATE_NORMAL_SCALE:
      append(dst, "normalScale");
      break;
   case STATE_TEXRECT_SCALE:
      append(dst, "texrectScale");
      break;
   case STATE_FOG_PARAMS_OPTIMIZED:
      append(dst, "fogParamsOptimized");
      break;
   case STATE_POINT_SIZE_CLAMPED:
      append(dst, "pointSizeClamped");
      break;
   case STATE_POINT_SIZE_IMPL_CLAMP:
      append(dst, "pointSizeImplClamp");
      break;
   case STATE_LIGHT_SPOT_DIR_NORMALIZED:
      append(dst, "lightSpotDirNormalized");
      break;
   case STATE_LIGHT_POSITION:
      append(dst, "lightPosition");
      break;
   case STATE_LIGHT_POSITION_NORMALIZED:
      append(dst, "light.position.normalized");
      break;
   case STATE_LIGHT_HALF_VECTOR:
      append(dst, "lightHalfVector");
      break;
   case STATE_PT_SCALE:
      append(dst, "PTscale");
      break;
   case STATE_PT_BIAS:
      append(dst, "PTbias");
      break;
   case STATE_SHADOW_AMBIENT:
      append(dst, "CompareFailValue");
      break;
   case STATE_FB_SIZE:
      append(dst, "FbSize");
      break;
   case STATE_FB_WPOS_Y_TRANSFORM:
      append(dst, "FbWposYTransform");
      break;
   case STATE_ROT_MATRIX_0:
      append(dst, "rotMatrixRow0");
      break;
   case STATE_ROT_MATRIX_1:
      append(dst, "rotMatrixRow1");
      break;
   default:
      /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
      append(dst, "driverState");
   }
}

static void
append_face(char *dst, GLint face)
{
   if (face == 0)
      append(dst, "front.");
   else
      append(dst, "back.");
}

static void
append_index(char *dst, GLint index)
{
   char s[20];
   sprintf(s, "[%d]", index);
   append(dst, s);
}

/**
 * Make a string from the given state vector.
 * For example, return "state.matrix.texture[2].inverse".
 * Use free() to deallocate the string.
 */
char *
_mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
{
   char str[1000] = "";
   char tmp[30];

   append(str, "state.");
   append_token(str, state[0]);

   switch (state[0]) {
   case STATE_MATERIAL:
      append_face(str, state[1]);
      append_token(str, state[2]);
      break;
   case STATE_LIGHT:
      append_index(str, state[1]); /* light number [i]. */
      append_token(str, state[2]); /* coefficients */
      break;
   case STATE_LIGHTMODEL_AMBIENT:
      append(str, "lightmodel.ambient");
      break;
   case STATE_LIGHTMODEL_SCENECOLOR:
      if (state[1] == 0) {
         append(str, "lightmodel.front.scenecolor");
      }
      else {
         append(str, "lightmodel.back.scenecolor");
      }
      break;
   case STATE_LIGHTPROD:
      append_index(str, state[1]); /* light number [i]. */
      append_face(str, state[2]);
      append_token(str, state[3]);
      break;
   case STATE_TEXGEN:
      append_index(str, state[1]); /* tex unit [i] */
      append_token(str, state[2]); /* plane coef */
      break;
   case STATE_TEXENV_COLOR:
      append_index(str, state[1]); /* tex unit [i] */
      append(str, "color");
      break;
   case STATE_CLIPPLANE:
      append_index(str, state[1]); /* plane [i] */
      append(str, ".plane");
      break;
   case STATE_MODELVIEW_MATRIX:
   case STATE_PROJECTION_MATRIX:
   case STATE_MVP_MATRIX:
   case STATE_TEXTURE_MATRIX:
   case STATE_PROGRAM_MATRIX:
      {
         /* state[0] = modelview, projection, texture, etc. */
         /* state[1] = which texture matrix or program matrix */
         /* state[2] = first row to fetch */
         /* state[3] = last row to fetch */
         /* state[4] = transpose, inverse or invtrans */
         const gl_state_index mat = state[0];
         const GLuint index = (GLuint) state[1];
         const GLuint firstRow = (GLuint) state[2];
         const GLuint lastRow = (GLuint) state[3];
         const gl_state_index modifier = state[4];
         if (index ||
             mat == STATE_TEXTURE_MATRIX ||
             mat == STATE_PROGRAM_MATRIX)
            append_index(str, index);
         if (modifier)
            append_token(str, modifier);
         if (firstRow == lastRow)
            sprintf(tmp, ".row[%d]", firstRow);
         else
            sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
         append(str, tmp);
      }
      break;
   case STATE_POINT_SIZE:
      break;
   case STATE_POINT_ATTENUATION:
      break;
   case STATE_FOG_PARAMS:
      break;
   case STATE_FOG_COLOR:
      break;
   case STATE_DEPTH_RANGE:
      break;
   case STATE_FRAGMENT_PROGRAM:
   case STATE_VERTEX_PROGRAM:
      /* state[1] = {STATE_ENV, STATE_LOCAL} */
      /* state[2] = parameter index          */
      append_token(str, state[1]);
      append_index(str, state[2]);
      break;
   case STATE_NORMAL_SCALE:
      break;
   case STATE_INTERNAL:
      append_token(str, state[1]);
      if (state[1] == STATE_CURRENT_ATTRIB)
         append_index(str, state[2]);
       break;
   default:
      _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
      break;
   }

   return _mesa_strdup(str);
}


/**
 * Loop over all the parameters in a parameter list.  If the parameter
 * is a GL state reference, look up the current value of that state
 * variable and put it into the parameter's Value[4] array.
 * Other parameter types never change or are explicitly set by the user
 * with glUniform() or glProgramParameter(), etc.
 * This would be called at glBegin time.
 */
void
_mesa_load_state_parameters(struct gl_context *ctx,
                            struct gl_program_parameter_list *paramList)
{
   GLuint i;

   if (!paramList)
      return;

   for (i = 0; i < paramList->NumParameters; i++) {
      if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
         _mesa_fetch_state(ctx,
			   paramList->Parameters[i].StateIndexes,
                           paramList->ParameterValues[i]);
      }
   }
}


/**
 * Copy the 16 elements of a matrix into four consecutive program
 * registers starting at 'pos'.
 */
static void
load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
{
   GLuint i;
   for (i = 0; i < 4; i++) {
      registers[pos + i][0] = mat[0 + i];
      registers[pos + i][1] = mat[4 + i];
      registers[pos + i][2] = mat[8 + i];
      registers[pos + i][3] = mat[12 + i];
   }
}


/**
 * As above, but transpose the matrix.
 */
static void
load_transpose_matrix(GLfloat registers[][4], GLuint pos,
                      const GLfloat mat[16])
{
   memcpy(registers[pos], mat, 16 * sizeof(GLfloat));
}


/**
 * Load current vertex program's parameter registers with tracked
 * matrices (if NV program).  This only needs to be done per
 * glBegin/glEnd, not per-vertex.
 */
void
_mesa_load_tracked_matrices(struct gl_context *ctx)
{
   GLuint i;

   for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
      /* point 'mat' at source matrix */
      GLmatrix *mat;
      if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
         mat = ctx->ModelviewMatrixStack.Top;
      }
      else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
         mat = ctx->ProjectionMatrixStack.Top;
      }
      else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
         GLuint unit = MIN2(ctx->Texture.CurrentUnit,
                            Elements(ctx->TextureMatrixStack) - 1);
         mat = ctx->TextureMatrixStack[unit].Top;
      }
      else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
         /* XXX verify the combined matrix is up to date */
         mat = &ctx->_ModelProjectMatrix;
      }
      else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
               ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
         GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
         ASSERT(n < Elements(ctx->ProgramMatrixStack));
         mat = ctx->ProgramMatrixStack[n].Top;
      }
      else {
         /* no matrix is tracked, but we leave the register values as-is */
         assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
         continue;
      }

      /* load the matrix values into sequential registers */
      if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
         load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
      }
      else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
         _math_matrix_analyse(mat); /* update the inverse */
         ASSERT(!_math_matrix_is_dirty(mat));
         load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
      }
      else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
         load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
      }
      else {
         assert(ctx->VertexProgram.TrackMatrixTransform[i]
                == GL_INVERSE_TRANSPOSE_NV);
         _math_matrix_analyse(mat); /* update the inverse */
         ASSERT(!_math_matrix_is_dirty(mat));
         load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
      }
   }
}