1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
|
/*
* Mesa 3-D graphics library
*
* Copyright (C) 2006 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* SimplexNoise1234
* Copyright (c) 2003-2005, Stefan Gustavson
*
* Contact: stegu@itn.liu.se
*/
/**
* \file
* \brief C implementation of Perlin Simplex Noise over 1, 2, 3 and 4 dims.
* \author Stefan Gustavson (stegu@itn.liu.se)
*
*
* This implementation is "Simplex Noise" as presented by
* Ken Perlin at a relatively obscure and not often cited course
* session "Real-Time Shading" at Siggraph 2001 (before real
* time shading actually took on), under the title "hardware noise".
* The 3D function is numerically equivalent to his Java reference
* code available in the PDF course notes, although I re-implemented
* it from scratch to get more readable code. The 1D, 2D and 4D cases
* were implemented from scratch by me from Ken Perlin's text.
*
* This file has no dependencies on any other file, not even its own
* header file. The header file is made for use by external code only.
*/
#include "prog_noise.h"
#define FASTFLOOR(x) ( ((x)>0) ? ((int)x) : (((int)x)-1) )
/*
* ---------------------------------------------------------------------
* Static data
*/
/**
* Permutation table. This is just a random jumble of all numbers 0-255,
* repeated twice to avoid wrapping the index at 255 for each lookup.
* This needs to be exactly the same for all instances on all platforms,
* so it's easiest to just keep it as static explicit data.
* This also removes the need for any initialisation of this class.
*
* Note that making this an int[] instead of a char[] might make the
* code run faster on platforms with a high penalty for unaligned single
* byte addressing. Intel x86 is generally single-byte-friendly, but
* some other CPUs are faster with 4-aligned reads.
* However, a char[] is smaller, which avoids cache trashing, and that
* is probably the most important aspect on most architectures.
* This array is accessed a *lot* by the noise functions.
* A vector-valued noise over 3D accesses it 96 times, and a
* float-valued 4D noise 64 times. We want this to fit in the cache!
*/
static const unsigned char perm[512] = { 151, 160, 137, 91, 90, 15,
131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8,
99, 37, 240, 21, 10, 23,
190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35,
11, 32, 57, 177, 33,
88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71,
134, 139, 48, 27, 166,
77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41,
55, 46, 245, 40, 244,
102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89,
18, 169, 200, 196,
135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217,
226, 250, 124, 123,
5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58,
17, 182, 189, 28, 42,
223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155,
167, 43, 172, 9,
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104,
218, 246, 97, 228,
251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235,
249, 14, 239, 107,
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45,
127, 4, 150, 254,
138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66,
215, 61, 156, 180,
151, 160, 137, 91, 90, 15,
131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8,
99, 37, 240, 21, 10, 23,
190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35,
11, 32, 57, 177, 33,
88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71,
134, 139, 48, 27, 166,
77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41,
55, 46, 245, 40, 244,
102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89,
18, 169, 200, 196,
135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217,
226, 250, 124, 123,
5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58,
17, 182, 189, 28, 42,
223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155,
167, 43, 172, 9,
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104,
218, 246, 97, 228,
251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235,
249, 14, 239, 107,
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45,
127, 4, 150, 254,
138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66,
215, 61, 156, 180
};
/*
* ---------------------------------------------------------------------
*/
/*
* Helper functions to compute gradients-dot-residualvectors (1D to 4D)
* Note that these generate gradients of more than unit length. To make
* a close match with the value range of classic Perlin noise, the final
* noise values need to be rescaled to fit nicely within [-1,1].
* (The simplex noise functions as such also have different scaling.)
* Note also that these noise functions are the most practical and useful
* signed version of Perlin noise. To return values according to the
* RenderMan specification from the SL noise() and pnoise() functions,
* the noise values need to be scaled and offset to [0,1], like this:
* float SLnoise = (SimplexNoise1234::noise(x,y,z) + 1.0) * 0.5;
*/
static float
grad1(int hash, float x)
{
int h = hash & 15;
float grad = 1.0f + (h & 7); /* Gradient value 1.0, 2.0, ..., 8.0 */
if (h & 8)
grad = -grad; /* Set a random sign for the gradient */
return (grad * x); /* Multiply the gradient with the distance */
}
static float
grad2(int hash, float x, float y)
{
int h = hash & 7; /* Convert low 3 bits of hash code */
float u = h < 4 ? x : y; /* into 8 simple gradient directions, */
float v = h < 4 ? y : x; /* and compute the dot product with (x,y). */
return ((h & 1) ? -u : u) + ((h & 2) ? -2.0f * v : 2.0f * v);
}
static float
grad3(int hash, float x, float y, float z)
{
int h = hash & 15; /* Convert low 4 bits of hash code into 12 simple */
float u = h < 8 ? x : y; /* gradient directions, and compute dot product. */
float v = h < 4 ? y : h == 12 || h == 14 ? x : z; /* Fix repeats at h = 12 to 15 */
return ((h & 1) ? -u : u) + ((h & 2) ? -v : v);
}
static float
grad4(int hash, float x, float y, float z, float t)
{
int h = hash & 31; /* Convert low 5 bits of hash code into 32 simple */
float u = h < 24 ? x : y; /* gradient directions, and compute dot product. */
float v = h < 16 ? y : z;
float w = h < 8 ? z : t;
return ((h & 1) ? -u : u) + ((h & 2) ? -v : v) + ((h & 4) ? -w : w);
}
/**
* A lookup table to traverse the simplex around a given point in 4D.
* Details can be found where this table is used, in the 4D noise method.
* TODO: This should not be required, backport it from Bill's GLSL code!
*/
static const unsigned char simplex[64][4] = {
{0, 1, 2, 3}, {0, 1, 3, 2}, {0, 0, 0, 0}, {0, 2, 3, 1},
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 2, 3, 0},
{0, 2, 1, 3}, {0, 0, 0, 0}, {0, 3, 1, 2}, {0, 3, 2, 1},
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 3, 2, 0},
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
{1, 2, 0, 3}, {0, 0, 0, 0}, {1, 3, 0, 2}, {0, 0, 0, 0},
{0, 0, 0, 0}, {0, 0, 0, 0}, {2, 3, 0, 1}, {2, 3, 1, 0},
{1, 0, 2, 3}, {1, 0, 3, 2}, {0, 0, 0, 0}, {0, 0, 0, 0},
{0, 0, 0, 0}, {2, 0, 3, 1}, {0, 0, 0, 0}, {2, 1, 3, 0},
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
{2, 0, 1, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
{3, 0, 1, 2}, {3, 0, 2, 1}, {0, 0, 0, 0}, {3, 1, 2, 0},
{2, 1, 0, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
{3, 1, 0, 2}, {0, 0, 0, 0}, {3, 2, 0, 1}, {3, 2, 1, 0}
};
/** 1D simplex noise */
GLfloat
_mesa_noise1(GLfloat x)
{
int i0 = FASTFLOOR(x);
int i1 = i0 + 1;
float x0 = x - i0;
float x1 = x0 - 1.0f;
float t1 = 1.0f - x1 * x1;
float n0, n1;
float t0 = 1.0f - x0 * x0;
/* if(t0 < 0.0f) t0 = 0.0f; // this never happens for the 1D case */
t0 *= t0;
n0 = t0 * t0 * grad1(perm[i0 & 0xff], x0);
/* if(t1 < 0.0f) t1 = 0.0f; // this never happens for the 1D case */
t1 *= t1;
n1 = t1 * t1 * grad1(perm[i1 & 0xff], x1);
/* The maximum value of this noise is 8*(3/4)^4 = 2.53125 */
/* A factor of 0.395 would scale to fit exactly within [-1,1], but */
/* we want to match PRMan's 1D noise, so we scale it down some more. */
return 0.25f * (n0 + n1);
}
/** 2D simplex noise */
GLfloat
_mesa_noise2(GLfloat x, GLfloat y)
{
#define F2 0.366025403f /* F2 = 0.5*(sqrt(3.0)-1.0) */
#define G2 0.211324865f /* G2 = (3.0-Math.sqrt(3.0))/6.0 */
float n0, n1, n2; /* Noise contributions from the three corners */
/* Skew the input space to determine which simplex cell we're in */
float s = (x + y) * F2; /* Hairy factor for 2D */
float xs = x + s;
float ys = y + s;
int i = FASTFLOOR(xs);
int j = FASTFLOOR(ys);
float t = (float) (i + j) * G2;
float X0 = i - t; /* Unskew the cell origin back to (x,y) space */
float Y0 = j - t;
float x0 = x - X0; /* The x,y distances from the cell origin */
float y0 = y - Y0;
float x1, y1, x2, y2;
unsigned int ii, jj;
float t0, t1, t2;
/* For the 2D case, the simplex shape is an equilateral triangle. */
/* Determine which simplex we are in. */
unsigned int i1, j1; /* Offsets for second (middle) corner of simplex in (i,j) coords */
if (x0 > y0) {
i1 = 1;
j1 = 0;
} /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */
else {
i1 = 0;
j1 = 1;
} /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */
/* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and */
/* a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where */
/* c = (3-sqrt(3))/6 */
x1 = x0 - i1 + G2; /* Offsets for middle corner in (x,y) unskewed coords */
y1 = y0 - j1 + G2;
x2 = x0 - 1.0f + 2.0f * G2; /* Offsets for last corner in (x,y) unskewed coords */
y2 = y0 - 1.0f + 2.0f * G2;
/* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
ii = i & 0xff;
jj = j & 0xff;
/* Calculate the contribution from the three corners */
t0 = 0.5f - x0 * x0 - y0 * y0;
if (t0 < 0.0f)
n0 = 0.0f;
else {
t0 *= t0;
n0 = t0 * t0 * grad2(perm[ii + perm[jj]], x0, y0);
}
t1 = 0.5f - x1 * x1 - y1 * y1;
if (t1 < 0.0f)
n1 = 0.0f;
else {
t1 *= t1;
n1 = t1 * t1 * grad2(perm[ii + i1 + perm[jj + j1]], x1, y1);
}
t2 = 0.5f - x2 * x2 - y2 * y2;
if (t2 < 0.0f)
n2 = 0.0f;
else {
t2 *= t2;
n2 = t2 * t2 * grad2(perm[ii + 1 + perm[jj + 1]], x2, y2);
}
/* Add contributions from each corner to get the final noise value. */
/* The result is scaled to return values in the interval [-1,1]. */
return 40.0f * (n0 + n1 + n2); /* TODO: The scale factor is preliminary! */
}
/** 3D simplex noise */
GLfloat
_mesa_noise3(GLfloat x, GLfloat y, GLfloat z)
{
/* Simple skewing factors for the 3D case */
#define F3 0.333333333f
#define G3 0.166666667f
float n0, n1, n2, n3; /* Noise contributions from the four corners */
/* Skew the input space to determine which simplex cell we're in */
float s = (x + y + z) * F3; /* Very nice and simple skew factor for 3D */
float xs = x + s;
float ys = y + s;
float zs = z + s;
int i = FASTFLOOR(xs);
int j = FASTFLOOR(ys);
int k = FASTFLOOR(zs);
float t = (float) (i + j + k) * G3;
float X0 = i - t; /* Unskew the cell origin back to (x,y,z) space */
float Y0 = j - t;
float Z0 = k - t;
float x0 = x - X0; /* The x,y,z distances from the cell origin */
float y0 = y - Y0;
float z0 = z - Z0;
float x1, y1, z1, x2, y2, z2, x3, y3, z3;
unsigned int ii, jj, kk;
float t0, t1, t2, t3;
/* For the 3D case, the simplex shape is a slightly irregular tetrahedron. */
/* Determine which simplex we are in. */
unsigned int i1, j1, k1; /* Offsets for second corner of simplex in (i,j,k) coords */
unsigned int i2, j2, k2; /* Offsets for third corner of simplex in (i,j,k) coords */
/* This code would benefit from a backport from the GLSL version! */
if (x0 >= y0) {
if (y0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} /* X Y Z order */
else if (x0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
} /* X Z Y order */
else {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
} /* Z X Y order */
}
else { /* x0<y0 */
if (y0 < z0) {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
} /* Z Y X order */
else if (x0 < z0) {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
} /* Y Z X order */
else {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} /* Y X Z order */
}
/* A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in
* (x,y,z), a step of (0,1,0) in (i,j,k) means a step of
* (-c,1-c,-c) in (x,y,z), and a step of (0,0,1) in (i,j,k) means a
* step of (-c,-c,1-c) in (x,y,z), where c = 1/6.
*/
x1 = x0 - i1 + G3; /* Offsets for second corner in (x,y,z) coords */
y1 = y0 - j1 + G3;
z1 = z0 - k1 + G3;
x2 = x0 - i2 + 2.0f * G3; /* Offsets for third corner in (x,y,z) coords */
y2 = y0 - j2 + 2.0f * G3;
z2 = z0 - k2 + 2.0f * G3;
x3 = x0 - 1.0f + 3.0f * G3;/* Offsets for last corner in (x,y,z) coords */
y3 = y0 - 1.0f + 3.0f * G3;
z3 = z0 - 1.0f + 3.0f * G3;
/* Wrap the integer indices at 256 to avoid indexing perm[] out of bounds */
ii = i & 0xff;
jj = j & 0xff;
kk = k & 0xff;
/* Calculate the contribution from the four corners */
t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0;
if (t0 < 0.0f)
n0 = 0.0f;
else {
t0 *= t0;
n0 = t0 * t0 * grad3(perm[ii + perm[jj + perm[kk]]], x0, y0, z0);
}
t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1;
if (t1 < 0.0f)
n1 = 0.0f;
else {
t1 *= t1;
n1 =
t1 * t1 * grad3(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1,
y1, z1);
}
t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2;
if (t2 < 0.0f)
n2 = 0.0f;
else {
t2 *= t2;
n2 =
t2 * t2 * grad3(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2,
y2, z2);
}
t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3;
if (t3 < 0.0f)
n3 = 0.0f;
else {
t3 *= t3;
n3 =
t3 * t3 * grad3(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3,
z3);
}
/* Add contributions from each corner to get the final noise value.
* The result is scaled to stay just inside [-1,1]
*/
return 32.0f * (n0 + n1 + n2 + n3); /* TODO: The scale factor is preliminary! */
}
/** 4D simplex noise */
GLfloat
_mesa_noise4(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
/* The skewing and unskewing factors are hairy again for the 4D case */
#define F4 0.309016994f /* F4 = (Math.sqrt(5.0)-1.0)/4.0 */
#define G4 0.138196601f /* G4 = (5.0-Math.sqrt(5.0))/20.0 */
float n0, n1, n2, n3, n4; /* Noise contributions from the five corners */
/* Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in */
float s = (x + y + z + w) * F4; /* Factor for 4D skewing */
float xs = x + s;
float ys = y + s;
float zs = z + s;
float ws = w + s;
int i = FASTFLOOR(xs);
int j = FASTFLOOR(ys);
int k = FASTFLOOR(zs);
int l = FASTFLOOR(ws);
float t = (i + j + k + l) * G4; /* Factor for 4D unskewing */
float X0 = i - t; /* Unskew the cell origin back to (x,y,z,w) space */
float Y0 = j - t;
float Z0 = k - t;
float W0 = l - t;
float x0 = x - X0; /* The x,y,z,w distances from the cell origin */
float y0 = y - Y0;
float z0 = z - Z0;
float w0 = w - W0;
/* For the 4D case, the simplex is a 4D shape I won't even try to describe.
* To find out which of the 24 possible simplices we're in, we need to
* determine the magnitude ordering of x0, y0, z0 and w0.
* The method below is a good way of finding the ordering of x,y,z,w and
* then find the correct traversal order for the simplex we're in.
* First, six pair-wise comparisons are performed between each possible pair
* of the four coordinates, and the results are used to add up binary bits
* for an integer index.
*/
int c1 = (x0 > y0) ? 32 : 0;
int c2 = (x0 > z0) ? 16 : 0;
int c3 = (y0 > z0) ? 8 : 0;
int c4 = (x0 > w0) ? 4 : 0;
int c5 = (y0 > w0) ? 2 : 0;
int c6 = (z0 > w0) ? 1 : 0;
int c = c1 + c2 + c3 + c4 + c5 + c6;
unsigned int i1, j1, k1, l1; /* The integer offsets for the second simplex corner */
unsigned int i2, j2, k2, l2; /* The integer offsets for the third simplex corner */
unsigned int i3, j3, k3, l3; /* The integer offsets for the fourth simplex corner */
float x1, y1, z1, w1, x2, y2, z2, w2, x3, y3, z3, w3, x4, y4, z4, w4;
unsigned int ii, jj, kk, ll;
float t0, t1, t2, t3, t4;
/*
* simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some
* order. Many values of c will never occur, since e.g. x>y>z>w
* makes x<z, y<w and x<w impossible. Only the 24 indices which
* have non-zero entries make any sense. We use a thresholding to
* set the coordinates in turn from the largest magnitude. The
* number 3 in the "simplex" array is at the position of the
* largest coordinate.
*/
i1 = simplex[c][0] >= 3 ? 1 : 0;
j1 = simplex[c][1] >= 3 ? 1 : 0;
k1 = simplex[c][2] >= 3 ? 1 : 0;
l1 = simplex[c][3] >= 3 ? 1 : 0;
/* The number 2 in the "simplex" array is at the second largest coordinate. */
i2 = simplex[c][0] >= 2 ? 1 : 0;
j2 = simplex[c][1] >= 2 ? 1 : 0;
k2 = simplex[c][2] >= 2 ? 1 : 0;
l2 = simplex[c][3] >= 2 ? 1 : 0;
/* The number 1 in the "simplex" array is at the second smallest coordinate. */
i3 = simplex[c][0] >= 1 ? 1 : 0;
j3 = simplex[c][1] >= 1 ? 1 : 0;
k3 = simplex[c][2] >= 1 ? 1 : 0;
l3 = simplex[c][3] >= 1 ? 1 : 0;
/* The fifth corner has all coordinate offsets = 1, so no need to look that up. */
x1 = x0 - i1 + G4; /* Offsets for second corner in (x,y,z,w) coords */
y1 = y0 - j1 + G4;
z1 = z0 - k1 + G4;
w1 = w0 - l1 + G4;
x2 = x0 - i2 + 2.0f * G4; /* Offsets for third corner in (x,y,z,w) coords */
y2 = y0 - j2 + 2.0f * G4;
z2 = z0 - k2 + 2.0f * G4;
w2 = w0 - l2 + 2.0f * G4;
x3 = x0 - i3 + 3.0f * G4; /* Offsets for fourth corner in (x,y,z,w) coords */
y3 = y0 - j3 + 3.0f * G4;
z3 = z0 - k3 + 3.0f * G4;
w3 = w0 - l3 + 3.0f * G4;
x4 = x0 - 1.0f + 4.0f * G4; /* Offsets for last corner in (x,y,z,w) coords */
y4 = y0 - 1.0f + 4.0f * G4;
z4 = z0 - 1.0f + 4.0f * G4;
w4 = w0 - 1.0f + 4.0f * G4;
/* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
ii = i & 0xff;
jj = j & 0xff;
kk = k & 0xff;
ll = l & 0xff;
/* Calculate the contribution from the five corners */
t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
if (t0 < 0.0f)
n0 = 0.0f;
else {
t0 *= t0;
n0 =
t0 * t0 * grad4(perm[ii + perm[jj + perm[kk + perm[ll]]]], x0, y0,
z0, w0);
}
t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
if (t1 < 0.0f)
n1 = 0.0f;
else {
t1 *= t1;
n1 =
t1 * t1 *
grad4(perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]],
x1, y1, z1, w1);
}
t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
if (t2 < 0.0f)
n2 = 0.0f;
else {
t2 *= t2;
n2 =
t2 * t2 *
grad4(perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]],
x2, y2, z2, w2);
}
t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
if (t3 < 0.0f)
n3 = 0.0f;
else {
t3 *= t3;
n3 =
t3 * t3 *
grad4(perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]],
x3, y3, z3, w3);
}
t4 = 0.6f - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
if (t4 < 0.0f)
n4 = 0.0f;
else {
t4 *= t4;
n4 =
t4 * t4 *
grad4(perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]], x4,
y4, z4, w4);
}
/* Sum up and scale the result to cover the range [-1,1] */
return 27.0f * (n0 + n1 + n2 + n3 + n4); /* TODO: The scale factor is preliminary! */
}
|