summaryrefslogtreecommitdiffstats
path: root/src/mesa/program/ir_to_mesa.cpp
blob: dc5f8016f3753128afc5b0c73685713f139455dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
/*
 * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
 * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

/**
 * \file ir_to_mesa.cpp
 *
 * Translate GLSL IR to Mesa's gl_program representation.
 */

#include <stdio.h>
#include "main/compiler.h"
#include "main/macros.h"
#include "main/mtypes.h"
#include "main/shaderapi.h"
#include "main/shaderobj.h"
#include "main/uniforms.h"
#include "compiler/glsl/ast.h"
#include "compiler/glsl/ir.h"
#include "compiler/glsl/ir_expression_flattening.h"
#include "compiler/glsl/ir_visitor.h"
#include "compiler/glsl/ir_optimization.h"
#include "compiler/glsl/ir_uniform.h"
#include "compiler/glsl/glsl_parser_extras.h"
#include "compiler/glsl_types.h"
#include "compiler/glsl/linker.h"
#include "compiler/glsl/program.h"
#include "program/prog_instruction.h"
#include "program/prog_optimize.h"
#include "program/prog_print.h"
#include "program/program.h"
#include "program/prog_parameter.h"
#include "util/string_to_uint_map.h"


static int swizzle_for_size(int size);

namespace {

class src_reg;
class dst_reg;

/**
 * This struct is a corresponding struct to Mesa prog_src_register, with
 * wider fields.
 */
class src_reg {
public:
   src_reg(gl_register_file file, int index, const glsl_type *type)
   {
      this->file = file;
      this->index = index;
      if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
	 this->swizzle = swizzle_for_size(type->vector_elements);
      else
	 this->swizzle = SWIZZLE_XYZW;
      this->negate = 0;
      this->reladdr = NULL;
   }

   src_reg()
   {
      this->file = PROGRAM_UNDEFINED;
      this->index = 0;
      this->swizzle = 0;
      this->negate = 0;
      this->reladdr = NULL;
   }

   explicit src_reg(dst_reg reg);

   gl_register_file file; /**< PROGRAM_* from Mesa */
   int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
   GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
   int negate; /**< NEGATE_XYZW mask from mesa */
   /** Register index should be offset by the integer in this reg. */
   src_reg *reladdr;
};

class dst_reg {
public:
   dst_reg(gl_register_file file, int writemask)
   {
      this->file = file;
      this->index = 0;
      this->writemask = writemask;
      this->reladdr = NULL;
   }

   dst_reg()
   {
      this->file = PROGRAM_UNDEFINED;
      this->index = 0;
      this->writemask = 0;
      this->reladdr = NULL;
   }

   explicit dst_reg(src_reg reg);

   gl_register_file file; /**< PROGRAM_* from Mesa */
   int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
   int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
   /** Register index should be offset by the integer in this reg. */
   src_reg *reladdr;
};

} /* anonymous namespace */

src_reg::src_reg(dst_reg reg)
{
   this->file = reg.file;
   this->index = reg.index;
   this->swizzle = SWIZZLE_XYZW;
   this->negate = 0;
   this->reladdr = reg.reladdr;
}

dst_reg::dst_reg(src_reg reg)
{
   this->file = reg.file;
   this->index = reg.index;
   this->writemask = WRITEMASK_XYZW;
   this->reladdr = reg.reladdr;
}

namespace {

class ir_to_mesa_instruction : public exec_node {
public:
   DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)

   enum prog_opcode op;
   dst_reg dst;
   src_reg src[3];
   /** Pointer to the ir source this tree came from for debugging */
   ir_instruction *ir;
   bool saturate;
   int sampler; /**< sampler index */
   int tex_target; /**< One of TEXTURE_*_INDEX */
   GLboolean tex_shadow;
};

class variable_storage : public exec_node {
public:
   variable_storage(ir_variable *var, gl_register_file file, int index)
      : file(file), index(index), var(var)
   {
      /* empty */
   }

   gl_register_file file;
   int index;
   ir_variable *var; /* variable that maps to this, if any */
};

class function_entry : public exec_node {
public:
   ir_function_signature *sig;

   /**
    * identifier of this function signature used by the program.
    *
    * At the point that Mesa instructions for function calls are
    * generated, we don't know the address of the first instruction of
    * the function body.  So we make the BranchTarget that is called a
    * small integer and rewrite them during set_branchtargets().
    */
   int sig_id;

   /**
    * Pointer to first instruction of the function body.
    *
    * Set during function body emits after main() is processed.
    */
   ir_to_mesa_instruction *bgn_inst;

   /**
    * Index of the first instruction of the function body in actual
    * Mesa IR.
    *
    * Set after convertion from ir_to_mesa_instruction to prog_instruction.
    */
   int inst;

   /** Storage for the return value. */
   src_reg return_reg;
};

class ir_to_mesa_visitor : public ir_visitor {
public:
   ir_to_mesa_visitor();
   ~ir_to_mesa_visitor();

   function_entry *current_function;

   struct gl_context *ctx;
   struct gl_program *prog;
   struct gl_shader_program *shader_program;
   struct gl_shader_compiler_options *options;

   int next_temp;

   variable_storage *find_variable_storage(const ir_variable *var);

   src_reg get_temp(const glsl_type *type);
   void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);

   src_reg src_reg_for_float(float val);

   /**
    * \name Visit methods
    *
    * As typical for the visitor pattern, there must be one \c visit method for
    * each concrete subclass of \c ir_instruction.  Virtual base classes within
    * the hierarchy should not have \c visit methods.
    */
   /*@{*/
   virtual void visit(ir_variable *);
   virtual void visit(ir_loop *);
   virtual void visit(ir_loop_jump *);
   virtual void visit(ir_function_signature *);
   virtual void visit(ir_function *);
   virtual void visit(ir_expression *);
   virtual void visit(ir_swizzle *);
   virtual void visit(ir_dereference_variable  *);
   virtual void visit(ir_dereference_array *);
   virtual void visit(ir_dereference_record *);
   virtual void visit(ir_assignment *);
   virtual void visit(ir_constant *);
   virtual void visit(ir_call *);
   virtual void visit(ir_return *);
   virtual void visit(ir_discard *);
   virtual void visit(ir_texture *);
   virtual void visit(ir_if *);
   virtual void visit(ir_emit_vertex *);
   virtual void visit(ir_end_primitive *);
   virtual void visit(ir_barrier *);
   /*@}*/

   src_reg result;

   /** List of variable_storage */
   exec_list variables;

   /** List of function_entry */
   exec_list function_signatures;
   int next_signature_id;

   /** List of ir_to_mesa_instruction */
   exec_list instructions;

   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);

   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
			        dst_reg dst, src_reg src0);

   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
			        dst_reg dst, src_reg src0, src_reg src1);

   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
			        dst_reg dst,
			        src_reg src0, src_reg src1, src_reg src2);

   /**
    * Emit the correct dot-product instruction for the type of arguments
    */
   ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
				    dst_reg dst,
				    src_reg src0,
				    src_reg src1,
				    unsigned elements);

   void emit_scalar(ir_instruction *ir, enum prog_opcode op,
		    dst_reg dst, src_reg src0);

   void emit_scalar(ir_instruction *ir, enum prog_opcode op,
		    dst_reg dst, src_reg src0, src_reg src1);

   bool try_emit_mad(ir_expression *ir,
			  int mul_operand);
   bool try_emit_mad_for_and_not(ir_expression *ir,
				 int mul_operand);

   void emit_swz(ir_expression *ir);

   void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
                                 dst_reg dst,
                                 const src_reg &src0, const src_reg &src1);

   inline void emit_sne(ir_expression *ir, dst_reg dst,
                        const src_reg &src0, const src_reg &src1)
   {
      emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
   }

   inline void emit_seq(ir_expression *ir, dst_reg dst,
                        const src_reg &src0, const src_reg &src1)
   {
      emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
   }

   bool process_move_condition(ir_rvalue *ir);

   void copy_propagate(void);

   void *mem_ctx;
};

} /* anonymous namespace */

static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);

static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);

static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);

static int
swizzle_for_size(int size)
{
   static const int size_swizzles[4] = {
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
   };

   assert((size >= 1) && (size <= 4));
   return size_swizzles[size - 1];
}

ir_to_mesa_instruction *
ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
			 dst_reg dst,
			 src_reg src0, src_reg src1, src_reg src2)
{
   ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
   int num_reladdr = 0;

   /* If we have to do relative addressing, we want to load the ARL
    * reg directly for one of the regs, and preload the other reladdr
    * sources into temps.
    */
   num_reladdr += dst.reladdr != NULL;
   num_reladdr += src0.reladdr != NULL;
   num_reladdr += src1.reladdr != NULL;
   num_reladdr += src2.reladdr != NULL;

   reladdr_to_temp(ir, &src2, &num_reladdr);
   reladdr_to_temp(ir, &src1, &num_reladdr);
   reladdr_to_temp(ir, &src0, &num_reladdr);

   if (dst.reladdr) {
      emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
      num_reladdr--;
   }
   assert(num_reladdr == 0);

   inst->op = op;
   inst->dst = dst;
   inst->src[0] = src0;
   inst->src[1] = src1;
   inst->src[2] = src2;
   inst->ir = ir;

   this->instructions.push_tail(inst);

   return inst;
}


ir_to_mesa_instruction *
ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
			 dst_reg dst, src_reg src0, src_reg src1)
{
   return emit(ir, op, dst, src0, src1, undef_src);
}

ir_to_mesa_instruction *
ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
			 dst_reg dst, src_reg src0)
{
   assert(dst.writemask != 0);
   return emit(ir, op, dst, src0, undef_src, undef_src);
}

ir_to_mesa_instruction *
ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
{
   return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
}

ir_to_mesa_instruction *
ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
			    dst_reg dst, src_reg src0, src_reg src1,
			    unsigned elements)
{
   static const enum prog_opcode dot_opcodes[] = {
      OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
   };

   return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
}

/**
 * Emits Mesa scalar opcodes to produce unique answers across channels.
 *
 * Some Mesa opcodes are scalar-only, like ARB_fp/vp.  The src X
 * channel determines the result across all channels.  So to do a vec4
 * of this operation, we want to emit a scalar per source channel used
 * to produce dest channels.
 */
void
ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
			        dst_reg dst,
				src_reg orig_src0, src_reg orig_src1)
{
   int i, j;
   int done_mask = ~dst.writemask;

   /* Mesa RCP is a scalar operation splatting results to all channels,
    * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
    * dst channels.
    */
   for (i = 0; i < 4; i++) {
      GLuint this_mask = (1 << i);
      ir_to_mesa_instruction *inst;
      src_reg src0 = orig_src0;
      src_reg src1 = orig_src1;

      if (done_mask & this_mask)
	 continue;

      GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
      GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
      for (j = i + 1; j < 4; j++) {
	 /* If there is another enabled component in the destination that is
	  * derived from the same inputs, generate its value on this pass as
	  * well.
	  */
	 if (!(done_mask & (1 << j)) &&
	     GET_SWZ(src0.swizzle, j) == src0_swiz &&
	     GET_SWZ(src1.swizzle, j) == src1_swiz) {
	    this_mask |= (1 << j);
	 }
      }
      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
				   src0_swiz, src0_swiz);
      src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
				  src1_swiz, src1_swiz);

      inst = emit(ir, op, dst, src0, src1);
      inst->dst.writemask = this_mask;
      done_mask |= this_mask;
   }
}

void
ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
			        dst_reg dst, src_reg src0)
{
   src_reg undef = undef_src;

   undef.swizzle = SWIZZLE_XXXX;

   emit_scalar(ir, op, dst, src0, undef);
}

src_reg
ir_to_mesa_visitor::src_reg_for_float(float val)
{
   src_reg src(PROGRAM_CONSTANT, -1, NULL);

   src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
					  (const gl_constant_value *)&val, 1, &src.swizzle);

   return src;
}

static int
type_size(const struct glsl_type *type)
{
   unsigned int i;
   int size;

   switch (type->base_type) {
   case GLSL_TYPE_UINT:
   case GLSL_TYPE_INT:
   case GLSL_TYPE_FLOAT:
   case GLSL_TYPE_BOOL:
      if (type->is_matrix()) {
	 return type->matrix_columns;
      } else {
	 /* Regardless of size of vector, it gets a vec4. This is bad
	  * packing for things like floats, but otherwise arrays become a
	  * mess.  Hopefully a later pass over the code can pack scalars
	  * down if appropriate.
	  */
	 return 1;
      }
      break;
   case GLSL_TYPE_DOUBLE:
      if (type->is_matrix()) {
         if (type->vector_elements > 2)
            return type->matrix_columns * 2;
         else
            return type->matrix_columns;
      } else {
         if (type->vector_elements > 2)
            return 2;
         else
            return 1;
      }
      break;
   case GLSL_TYPE_UINT64:
   case GLSL_TYPE_INT64:
      if (type->vector_elements > 2)
         return 2;
      else
         return 1;
   case GLSL_TYPE_ARRAY:
      assert(type->length > 0);
      return type_size(type->fields.array) * type->length;
   case GLSL_TYPE_STRUCT:
      size = 0;
      for (i = 0; i < type->length; i++) {
	 size += type_size(type->fields.structure[i].type);
      }
      return size;
   case GLSL_TYPE_SAMPLER:
   case GLSL_TYPE_IMAGE:
   case GLSL_TYPE_SUBROUTINE:
      /* Samplers take up one slot in UNIFORMS[], but they're baked in
       * at link time.
       */
      return 1;
   case GLSL_TYPE_ATOMIC_UINT:
   case GLSL_TYPE_VOID:
   case GLSL_TYPE_ERROR:
   case GLSL_TYPE_INTERFACE:
   case GLSL_TYPE_FUNCTION:
      assert(!"Invalid type in type_size");
      break;
   }

   return 0;
}

/**
 * In the initial pass of codegen, we assign temporary numbers to
 * intermediate results.  (not SSA -- variable assignments will reuse
 * storage).  Actual register allocation for the Mesa VM occurs in a
 * pass over the Mesa IR later.
 */
src_reg
ir_to_mesa_visitor::get_temp(const glsl_type *type)
{
   src_reg src;

   src.file = PROGRAM_TEMPORARY;
   src.index = next_temp;
   src.reladdr = NULL;
   next_temp += type_size(type);

   if (type->is_array() || type->is_record()) {
      src.swizzle = SWIZZLE_NOOP;
   } else {
      src.swizzle = swizzle_for_size(type->vector_elements);
   }
   src.negate = 0;

   return src;
}

variable_storage *
ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
{
   foreach_in_list(variable_storage, entry, &this->variables) {
      if (entry->var == var)
	 return entry;
   }

   return NULL;
}

void
ir_to_mesa_visitor::visit(ir_variable *ir)
{
   if (strcmp(ir->name, "gl_FragCoord") == 0) {
      this->prog->OriginUpperLeft = ir->data.origin_upper_left;
      this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
   }

   if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
      unsigned int i;
      const ir_state_slot *const slots = ir->get_state_slots();
      assert(slots != NULL);

      /* Check if this statevar's setup in the STATE file exactly
       * matches how we'll want to reference it as a
       * struct/array/whatever.  If not, then we need to move it into
       * temporary storage and hope that it'll get copy-propagated
       * out.
       */
      for (i = 0; i < ir->get_num_state_slots(); i++) {
	 if (slots[i].swizzle != SWIZZLE_XYZW) {
	    break;
	 }
      }

      variable_storage *storage;
      dst_reg dst;
      if (i == ir->get_num_state_slots()) {
	 /* We'll set the index later. */
	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
	 this->variables.push_tail(storage);

	 dst = undef_dst;
      } else {
	 /* The variable_storage constructor allocates slots based on the size
	  * of the type.  However, this had better match the number of state
	  * elements that we're going to copy into the new temporary.
	  */
	 assert((int) ir->get_num_state_slots() == type_size(ir->type));

	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
						 this->next_temp);
	 this->variables.push_tail(storage);
	 this->next_temp += type_size(ir->type);

	 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
      }


      for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
	 int index = _mesa_add_state_reference(this->prog->Parameters,
					       (gl_state_index *)slots[i].tokens);

	 if (storage->file == PROGRAM_STATE_VAR) {
	    if (storage->index == -1) {
	       storage->index = index;
	    } else {
	       assert(index == storage->index + (int)i);
	    }
	 } else {
	    src_reg src(PROGRAM_STATE_VAR, index, NULL);
	    src.swizzle = slots[i].swizzle;
	    emit(ir, OPCODE_MOV, dst, src);
	    /* even a float takes up a whole vec4 reg in a struct/array. */
	    dst.index++;
	 }
      }

      if (storage->file == PROGRAM_TEMPORARY &&
	  dst.index != storage->index + (int) ir->get_num_state_slots()) {
	 linker_error(this->shader_program,
		      "failed to load builtin uniform `%s' "
		      "(%d/%d regs loaded)\n",
		      ir->name, dst.index - storage->index,
		      type_size(ir->type));
      }
   }
}

void
ir_to_mesa_visitor::visit(ir_loop *ir)
{
   emit(NULL, OPCODE_BGNLOOP);

   visit_exec_list(&ir->body_instructions, this);

   emit(NULL, OPCODE_ENDLOOP);
}

void
ir_to_mesa_visitor::visit(ir_loop_jump *ir)
{
   switch (ir->mode) {
   case ir_loop_jump::jump_break:
      emit(NULL, OPCODE_BRK);
      break;
   case ir_loop_jump::jump_continue:
      emit(NULL, OPCODE_CONT);
      break;
   }
}


void
ir_to_mesa_visitor::visit(ir_function_signature *ir)
{
   assert(0);
   (void)ir;
}

void
ir_to_mesa_visitor::visit(ir_function *ir)
{
   /* Ignore function bodies other than main() -- we shouldn't see calls to
    * them since they should all be inlined before we get to ir_to_mesa.
    */
   if (strcmp(ir->name, "main") == 0) {
      const ir_function_signature *sig;
      exec_list empty;

      sig = ir->matching_signature(NULL, &empty, false);

      assert(sig);

      foreach_in_list(ir_instruction, ir, &sig->body) {
	 ir->accept(this);
      }
   }
}

bool
ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
{
   int nonmul_operand = 1 - mul_operand;
   src_reg a, b, c;

   ir_expression *expr = ir->operands[mul_operand]->as_expression();
   if (!expr || expr->operation != ir_binop_mul)
      return false;

   expr->operands[0]->accept(this);
   a = this->result;
   expr->operands[1]->accept(this);
   b = this->result;
   ir->operands[nonmul_operand]->accept(this);
   c = this->result;

   this->result = get_temp(ir->type);
   emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);

   return true;
}

/**
 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
 *
 * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
 * implemented using multiplication, and logical-or is implemented using
 * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
 * As result, the logical expression (a & !b) can be rewritten as:
 *
 *     - a * !b
 *     - a * (1 - b)
 *     - (a * 1) - (a * b)
 *     - a + -(a * b)
 *     - a + (a * -b)
 *
 * This final expression can be implemented as a single MAD(a, -b, a)
 * instruction.
 */
bool
ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
{
   const int other_operand = 1 - try_operand;
   src_reg a, b;

   ir_expression *expr = ir->operands[try_operand]->as_expression();
   if (!expr || expr->operation != ir_unop_logic_not)
      return false;

   ir->operands[other_operand]->accept(this);
   a = this->result;
   expr->operands[0]->accept(this);
   b = this->result;

   b.negate = ~b.negate;

   this->result = get_temp(ir->type);
   emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);

   return true;
}

void
ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
				    src_reg *reg, int *num_reladdr)
{
   if (!reg->reladdr)
      return;

   emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);

   if (*num_reladdr != 1) {
      src_reg temp = get_temp(glsl_type::vec4_type);

      emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
      *reg = temp;
   }

   (*num_reladdr)--;
}

void
ir_to_mesa_visitor::emit_swz(ir_expression *ir)
{
   /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
    * This means that each of the operands is either an immediate value of -1,
    * 0, or 1, or is a component from one source register (possibly with
    * negation).
    */
   uint8_t components[4] = { 0 };
   bool negate[4] = { false };
   ir_variable *var = NULL;

   for (unsigned i = 0; i < ir->type->vector_elements; i++) {
      ir_rvalue *op = ir->operands[i];

      assert(op->type->is_scalar());

      while (op != NULL) {
	 switch (op->ir_type) {
	 case ir_type_constant: {

	    assert(op->type->is_scalar());

	    const ir_constant *const c = op->as_constant();
	    if (c->is_one()) {
	       components[i] = SWIZZLE_ONE;
	    } else if (c->is_zero()) {
	       components[i] = SWIZZLE_ZERO;
	    } else if (c->is_negative_one()) {
	       components[i] = SWIZZLE_ONE;
	       negate[i] = true;
	    } else {
	       assert(!"SWZ constant must be 0.0 or 1.0.");
	    }

	    op = NULL;
	    break;
	 }

	 case ir_type_dereference_variable: {
	    ir_dereference_variable *const deref =
	       (ir_dereference_variable *) op;

	    assert((var == NULL) || (deref->var == var));
	    components[i] = SWIZZLE_X;
	    var = deref->var;
	    op = NULL;
	    break;
	 }

	 case ir_type_expression: {
	    ir_expression *const expr = (ir_expression *) op;

	    assert(expr->operation == ir_unop_neg);
	    negate[i] = true;

	    op = expr->operands[0];
	    break;
	 }

	 case ir_type_swizzle: {
	    ir_swizzle *const swiz = (ir_swizzle *) op;

	    components[i] = swiz->mask.x;
	    op = swiz->val;
	    break;
	 }

	 default:
	    assert(!"Should not get here.");
	    return;
	 }
      }
   }

   assert(var != NULL);

   ir_dereference_variable *const deref =
      new(mem_ctx) ir_dereference_variable(var);

   this->result.file = PROGRAM_UNDEFINED;
   deref->accept(this);
   if (this->result.file == PROGRAM_UNDEFINED) {
      printf("Failed to get tree for expression operand:\n");
      deref->print();
      printf("\n");
      exit(1);
   }

   src_reg src;

   src = this->result;
   src.swizzle = MAKE_SWIZZLE4(components[0],
			       components[1],
			       components[2],
			       components[3]);
   src.negate = ((unsigned(negate[0]) << 0)
		 | (unsigned(negate[1]) << 1)
		 | (unsigned(negate[2]) << 2)
		 | (unsigned(negate[3]) << 3));

   /* Storage for our result.  Ideally for an assignment we'd be using the
    * actual storage for the result here, instead.
    */
   const src_reg result_src = get_temp(ir->type);
   dst_reg result_dst = dst_reg(result_src);

   /* Limit writes to the channels that will be used by result_src later.
    * This does limit this temp's use as a temporary for multi-instruction
    * sequences.
    */
   result_dst.writemask = (1 << ir->type->vector_elements) - 1;

   emit(ir, OPCODE_SWZ, result_dst, src);
   this->result = result_src;
}

void
ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
                                             enum prog_opcode op,
                                             dst_reg dst,
                                             const src_reg &src0,
                                             const src_reg &src1)
{
   src_reg difference;
   src_reg abs_difference = get_temp(glsl_type::vec4_type);
   const src_reg zero = src_reg_for_float(0.0);

   /* x == y is equivalent to -abs(x-y) >= 0.  Since all of the code that
    * consumes the generated IR is pretty dumb, take special care when one
    * of the operands is zero.
    *
    * Similarly, x != y is equivalent to -abs(x-y) < 0.
    */
   if (src0.file == zero.file &&
       src0.index == zero.index &&
       src0.swizzle == zero.swizzle) {
      difference = src1;
   } else if (src1.file == zero.file &&
              src1.index == zero.index &&
              src1.swizzle == zero.swizzle) {
      difference = src0;
   } else {
      difference = get_temp(glsl_type::vec4_type);

      src_reg tmp_src = src0;
      tmp_src.negate = ~tmp_src.negate;

      emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
   }

   emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);

   abs_difference.negate = ~abs_difference.negate;
   emit(ir, op, dst, abs_difference, zero);
}

void
ir_to_mesa_visitor::visit(ir_expression *ir)
{
   unsigned int operand;
   src_reg op[ARRAY_SIZE(ir->operands)];
   src_reg result_src;
   dst_reg result_dst;

   /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
    */
   if (ir->operation == ir_binop_add) {
      if (try_emit_mad(ir, 1))
	 return;
      if (try_emit_mad(ir, 0))
	 return;
   }

   /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
    */
   if (ir->operation == ir_binop_logic_and) {
      if (try_emit_mad_for_and_not(ir, 1))
	 return;
      if (try_emit_mad_for_and_not(ir, 0))
	 return;
   }

   if (ir->operation == ir_quadop_vector) {
      this->emit_swz(ir);
      return;
   }

   for (operand = 0; operand < ir->get_num_operands(); operand++) {
      this->result.file = PROGRAM_UNDEFINED;
      ir->operands[operand]->accept(this);
      if (this->result.file == PROGRAM_UNDEFINED) {
	 printf("Failed to get tree for expression operand:\n");
         ir->operands[operand]->print();
         printf("\n");
	 exit(1);
      }
      op[operand] = this->result;

      /* Matrix expression operands should have been broken down to vector
       * operations already.
       */
      assert(!ir->operands[operand]->type->is_matrix());
   }

   int vector_elements = ir->operands[0]->type->vector_elements;
   if (ir->operands[1]) {
      vector_elements = MAX2(vector_elements,
			     ir->operands[1]->type->vector_elements);
   }

   this->result.file = PROGRAM_UNDEFINED;

   /* Storage for our result.  Ideally for an assignment we'd be using
    * the actual storage for the result here, instead.
    */
   result_src = get_temp(ir->type);
   /* convenience for the emit functions below. */
   result_dst = dst_reg(result_src);
   /* Limit writes to the channels that will be used by result_src later.
    * This does limit this temp's use as a temporary for multi-instruction
    * sequences.
    */
   result_dst.writemask = (1 << ir->type->vector_elements) - 1;

   switch (ir->operation) {
   case ir_unop_logic_not:
      /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
       * older GPUs implement SEQ using multiple instructions (i915 uses two
       * SGE instructions and a MUL instruction).  Since our logic values are
       * 0.0 and 1.0, 1-x also implements !x.
       */
      op[0].negate = ~op[0].negate;
      emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
      break;
   case ir_unop_neg:
      op[0].negate = ~op[0].negate;
      result_src = op[0];
      break;
   case ir_unop_abs:
      emit(ir, OPCODE_ABS, result_dst, op[0]);
      break;
   case ir_unop_sign:
      emit(ir, OPCODE_SSG, result_dst, op[0]);
      break;
   case ir_unop_rcp:
      emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
      break;

   case ir_unop_exp2:
      emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
      break;
   case ir_unop_exp:
   case ir_unop_log:
      assert(!"not reached: should be handled by ir_explog_to_explog2");
      break;
   case ir_unop_log2:
      emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
      break;
   case ir_unop_sin:
      emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
      break;
   case ir_unop_cos:
      emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
      break;

   case ir_unop_dFdx:
      emit(ir, OPCODE_DDX, result_dst, op[0]);
      break;
   case ir_unop_dFdy:
      emit(ir, OPCODE_DDY, result_dst, op[0]);
      break;

   case ir_unop_saturate: {
      ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
                                          result_dst, op[0]);
      inst->saturate = true;
      break;
   }
   case ir_unop_noise: {
      const enum prog_opcode opcode =
	 prog_opcode(OPCODE_NOISE1
		     + (ir->operands[0]->type->vector_elements) - 1);
      assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));

      emit(ir, opcode, result_dst, op[0]);
      break;
   }

   case ir_binop_add:
      emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
      break;
   case ir_binop_sub:
      emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
      break;

   case ir_binop_mul:
      emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
      break;
   case ir_binop_div:
      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
      break;
   case ir_binop_mod:
      /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
      assert(ir->type->is_integer());
      emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
      break;

   case ir_binop_less:
      emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
      break;
   case ir_binop_greater:
      /* Negating the operands (as opposed to switching the order of the
       * operands) produces the correct result when both are +/-Inf.
       */
      op[0].negate = ~op[0].negate;
      op[1].negate = ~op[1].negate;
      emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
      break;
   case ir_binop_lequal:
      /* Negating the operands (as opposed to switching the order of the
       * operands) produces the correct result when both are +/-Inf.
       */
      op[0].negate = ~op[0].negate;
      op[1].negate = ~op[1].negate;
      emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
      break;
   case ir_binop_gequal:
      emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
      break;
   case ir_binop_equal:
      emit_seq(ir, result_dst, op[0], op[1]);
      break;
   case ir_binop_nequal:
      emit_sne(ir, result_dst, op[0], op[1]);
      break;
   case ir_binop_all_equal:
      /* "==" operator producing a scalar boolean. */
      if (ir->operands[0]->type->is_vector() ||
	  ir->operands[1]->type->is_vector()) {
	 src_reg temp = get_temp(glsl_type::vec4_type);
         emit_sne(ir, dst_reg(temp), op[0], op[1]);

	 /* After the dot-product, the value will be an integer on the
	  * range [0,4].  Zero becomes 1.0, and positive values become zero.
	  */
	 emit_dp(ir, result_dst, temp, temp, vector_elements);

	 /* Negating the result of the dot-product gives values on the range
	  * [-4, 0].  Zero becomes 1.0, and negative values become zero.  This
	  * achieved using SGE.
	  */
	 src_reg sge_src = result_src;
	 sge_src.negate = ~sge_src.negate;
	 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
      } else {
         emit_seq(ir, result_dst, op[0], op[1]);
      }
      break;
   case ir_binop_any_nequal:
      /* "!=" operator producing a scalar boolean. */
      if (ir->operands[0]->type->is_vector() ||
	  ir->operands[1]->type->is_vector()) {
	 src_reg temp = get_temp(glsl_type::vec4_type);
         if (ir->operands[0]->type->is_boolean() &&
             ir->operands[1]->as_constant() &&
             ir->operands[1]->as_constant()->is_zero()) {
            temp = op[0];
         } else {
            emit_sne(ir, dst_reg(temp), op[0], op[1]);
         }

	 /* After the dot-product, the value will be an integer on the
	  * range [0,4].  Zero stays zero, and positive values become 1.0.
	  */
	 ir_to_mesa_instruction *const dp =
	    emit_dp(ir, result_dst, temp, temp, vector_elements);
	 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
	    /* The clamping to [0,1] can be done for free in the fragment
	     * shader with a saturate.
	     */
	    dp->saturate = true;
	 } else {
	    /* Negating the result of the dot-product gives values on the range
	     * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
	     * achieved using SLT.
	     */
	    src_reg slt_src = result_src;
	    slt_src.negate = ~slt_src.negate;
	    emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
	 }
      } else {
         emit_sne(ir, result_dst, op[0], op[1]);
      }
      break;

   case ir_binop_logic_xor:
      emit_sne(ir, result_dst, op[0], op[1]);
      break;

   case ir_binop_logic_or: {
      if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
         /* After the addition, the value will be an integer on the
          * range [0,2].  Zero stays zero, and positive values become 1.0.
          */
         ir_to_mesa_instruction *add =
            emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
	 add->saturate = true;
      } else {
         /* The Boolean arguments are stored as float 0.0 and 1.0.  If either
          * value is 1.0, the result of the logcal-or should be 1.0.  If both
          * values are 0.0, the result should be 0.0.  This is exactly what
          * MAX does.
          */
         emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
      }
      break;
   }

   case ir_binop_logic_and:
      /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
      emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
      break;

   case ir_binop_dot:
      assert(ir->operands[0]->type->is_vector());
      assert(ir->operands[0]->type == ir->operands[1]->type);
      emit_dp(ir, result_dst, op[0], op[1],
	      ir->operands[0]->type->vector_elements);
      break;

   case ir_unop_sqrt:
      /* sqrt(x) = x * rsq(x). */
      emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
      emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
      /* For incoming channels <= 0, set the result to 0. */
      op[0].negate = ~op[0].negate;
      emit(ir, OPCODE_CMP, result_dst,
			  op[0], result_src, src_reg_for_float(0.0));
      break;
   case ir_unop_rsq:
      emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
      break;
   case ir_unop_i2f:
   case ir_unop_u2f:
   case ir_unop_b2f:
   case ir_unop_b2i:
   case ir_unop_i2u:
   case ir_unop_u2i:
      /* Mesa IR lacks types, ints are stored as truncated floats. */
      result_src = op[0];
      break;
   case ir_unop_f2i:
   case ir_unop_f2u:
      emit(ir, OPCODE_TRUNC, result_dst, op[0]);
      break;
   case ir_unop_f2b:
   case ir_unop_i2b:
      emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
      break;
   case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
   case ir_unop_bitcast_f2u:
   case ir_unop_bitcast_i2f:
   case ir_unop_bitcast_u2f:
      break;
   case ir_unop_trunc:
      emit(ir, OPCODE_TRUNC, result_dst, op[0]);
      break;
   case ir_unop_ceil:
      op[0].negate = ~op[0].negate;
      emit(ir, OPCODE_FLR, result_dst, op[0]);
      result_src.negate = ~result_src.negate;
      break;
   case ir_unop_floor:
      emit(ir, OPCODE_FLR, result_dst, op[0]);
      break;
   case ir_unop_fract:
      emit(ir, OPCODE_FRC, result_dst, op[0]);
      break;
   case ir_unop_pack_snorm_2x16:
   case ir_unop_pack_snorm_4x8:
   case ir_unop_pack_unorm_2x16:
   case ir_unop_pack_unorm_4x8:
   case ir_unop_pack_half_2x16:
   case ir_unop_pack_double_2x32:
   case ir_unop_unpack_snorm_2x16:
   case ir_unop_unpack_snorm_4x8:
   case ir_unop_unpack_unorm_2x16:
   case ir_unop_unpack_unorm_4x8:
   case ir_unop_unpack_half_2x16:
   case ir_unop_unpack_double_2x32:
   case ir_unop_bitfield_reverse:
   case ir_unop_bit_count:
   case ir_unop_find_msb:
   case ir_unop_find_lsb:
   case ir_unop_d2f:
   case ir_unop_f2d:
   case ir_unop_d2i:
   case ir_unop_i2d:
   case ir_unop_d2u:
   case ir_unop_u2d:
   case ir_unop_d2b:
   case ir_unop_frexp_sig:
   case ir_unop_frexp_exp:
      assert(!"not supported");
      break;
   case ir_binop_min:
      emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
      break;
   case ir_binop_max:
      emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
      break;
   case ir_binop_pow:
      emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
      break;

      /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
       * hardware backends have no way to avoid Mesa IR generation
       * even if they don't use it, we need to emit "something" and
       * continue.
       */
   case ir_binop_lshift:
   case ir_binop_rshift:
   case ir_binop_bit_and:
   case ir_binop_bit_xor:
   case ir_binop_bit_or:
      emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
      break;

   case ir_unop_bit_not:
   case ir_unop_round_even:
      emit(ir, OPCODE_MOV, result_dst, op[0]);
      break;

   case ir_binop_ubo_load:
      assert(!"not supported");
      break;

   case ir_triop_lrp:
      /* ir_triop_lrp operands are (x, y, a) while
       * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
       */
      emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
      break;

   case ir_triop_csel:
      /* We assume that boolean true and false are 1.0 and 0.0.  OPCODE_CMP
       * selects src1 if src0 is < 0, src2 otherwise.
       */
      op[0].negate = ~op[0].negate;
      emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
      break;

   case ir_binop_vector_extract:
   case ir_triop_fma:
   case ir_triop_bitfield_extract:
   case ir_triop_vector_insert:
   case ir_quadop_bitfield_insert:
   case ir_binop_ldexp:
   case ir_binop_carry:
   case ir_binop_borrow:
   case ir_binop_imul_high:
   case ir_unop_interpolate_at_centroid:
   case ir_binop_interpolate_at_offset:
   case ir_binop_interpolate_at_sample:
   case ir_unop_dFdx_coarse:
   case ir_unop_dFdx_fine:
   case ir_unop_dFdy_coarse:
   case ir_unop_dFdy_fine:
   case ir_unop_subroutine_to_int:
   case ir_unop_get_buffer_size:
   case ir_unop_vote_any:
   case ir_unop_vote_all:
   case ir_unop_vote_eq:
   case ir_unop_bitcast_u642d:
   case ir_unop_bitcast_i642d:
   case ir_unop_bitcast_d2u64:
   case ir_unop_bitcast_d2i64:
   case ir_unop_i642i:
   case ir_unop_u642i:
   case ir_unop_i642u:
   case ir_unop_u642u:
   case ir_unop_i642b:
   case ir_unop_i642f:
   case ir_unop_u642f:
   case ir_unop_i642d:
   case ir_unop_u642d:
   case ir_unop_i2i64:
   case ir_unop_u2i64:
   case ir_unop_b2i64:
   case ir_unop_f2i64:
   case ir_unop_d2i64:
   case ir_unop_i2u64:
   case ir_unop_u2u64:
   case ir_unop_f2u64:
   case ir_unop_d2u64:
   case ir_unop_u642i64:
   case ir_unop_i642u64:
   case ir_unop_pack_int_2x32:
   case ir_unop_unpack_int_2x32:
   case ir_unop_pack_uint_2x32:
   case ir_unop_unpack_uint_2x32:
      assert(!"not supported");
      break;

   case ir_unop_ssbo_unsized_array_length:
   case ir_quadop_vector:
      /* This operation should have already been handled.
       */
      assert(!"Should not get here.");
      break;
   }

   this->result = result_src;
}


void
ir_to_mesa_visitor::visit(ir_swizzle *ir)
{
   src_reg src;
   int i;
   int swizzle[4];

   /* Note that this is only swizzles in expressions, not those on the left
    * hand side of an assignment, which do write masking.  See ir_assignment
    * for that.
    */

   ir->val->accept(this);
   src = this->result;
   assert(src.file != PROGRAM_UNDEFINED);
   assert(ir->type->vector_elements > 0);

   for (i = 0; i < 4; i++) {
      if (i < ir->type->vector_elements) {
	 switch (i) {
	 case 0:
	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
	    break;
	 case 1:
	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
	    break;
	 case 2:
	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
	    break;
	 case 3:
	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
	    break;
	 }
      } else {
	 /* If the type is smaller than a vec4, replicate the last
	  * channel out.
	  */
	 swizzle[i] = swizzle[ir->type->vector_elements - 1];
      }
   }

   src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);

   this->result = src;
}

void
ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
{
   variable_storage *entry = find_variable_storage(ir->var);
   ir_variable *var = ir->var;

   if (!entry) {
      switch (var->data.mode) {
      case ir_var_uniform:
	 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
					       var->data.param_index);
	 this->variables.push_tail(entry);
	 break;
      case ir_var_shader_in:
	 /* The linker assigns locations for varyings and attributes,
	  * including deprecated builtins (like gl_Color),
	  * user-assigned generic attributes (glBindVertexLocation),
	  * and user-defined varyings.
	  */
	 assert(var->data.location != -1);
         entry = new(mem_ctx) variable_storage(var,
                                               PROGRAM_INPUT,
                                               var->data.location);
         break;
      case ir_var_shader_out:
	 assert(var->data.location != -1);
         entry = new(mem_ctx) variable_storage(var,
                                               PROGRAM_OUTPUT,
                                               var->data.location);
	 break;
      case ir_var_system_value:
         entry = new(mem_ctx) variable_storage(var,
                                               PROGRAM_SYSTEM_VALUE,
                                               var->data.location);
         break;
      case ir_var_auto:
      case ir_var_temporary:
	 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
					       this->next_temp);
	 this->variables.push_tail(entry);

	 next_temp += type_size(var->type);
	 break;
      }

      if (!entry) {
	 printf("Failed to make storage for %s\n", var->name);
	 exit(1);
      }
   }

   this->result = src_reg(entry->file, entry->index, var->type);
}

void
ir_to_mesa_visitor::visit(ir_dereference_array *ir)
{
   ir_constant *index;
   src_reg src;
   int element_size = type_size(ir->type);

   index = ir->array_index->constant_expression_value();

   ir->array->accept(this);
   src = this->result;

   if (index) {
      src.index += index->value.i[0] * element_size;
   } else {
      /* Variable index array dereference.  It eats the "vec4" of the
       * base of the array and an index that offsets the Mesa register
       * index.
       */
      ir->array_index->accept(this);

      src_reg index_reg;

      if (element_size == 1) {
	 index_reg = this->result;
      } else {
	 index_reg = get_temp(glsl_type::float_type);

	 emit(ir, OPCODE_MUL, dst_reg(index_reg),
	      this->result, src_reg_for_float(element_size));
      }

      /* If there was already a relative address register involved, add the
       * new and the old together to get the new offset.
       */
      if (src.reladdr != NULL)  {
	 src_reg accum_reg = get_temp(glsl_type::float_type);

	 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
	      index_reg, *src.reladdr);

	 index_reg = accum_reg;
      }

      src.reladdr = ralloc(mem_ctx, src_reg);
      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
   }

   /* If the type is smaller than a vec4, replicate the last channel out. */
   if (ir->type->is_scalar() || ir->type->is_vector())
      src.swizzle = swizzle_for_size(ir->type->vector_elements);
   else
      src.swizzle = SWIZZLE_NOOP;

   this->result = src;
}

void
ir_to_mesa_visitor::visit(ir_dereference_record *ir)
{
   unsigned int i;
   const glsl_type *struct_type = ir->record->type;
   int offset = 0;

   ir->record->accept(this);

   for (i = 0; i < struct_type->length; i++) {
      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
	 break;
      offset += type_size(struct_type->fields.structure[i].type);
   }

   /* If the type is smaller than a vec4, replicate the last channel out. */
   if (ir->type->is_scalar() || ir->type->is_vector())
      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
   else
      this->result.swizzle = SWIZZLE_NOOP;

   this->result.index += offset;
}

/**
 * We want to be careful in assignment setup to hit the actual storage
 * instead of potentially using a temporary like we might with the
 * ir_dereference handler.
 */
static dst_reg
get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
{
   /* The LHS must be a dereference.  If the LHS is a variable indexed array
    * access of a vector, it must be separated into a series conditional moves
    * before reaching this point (see ir_vec_index_to_cond_assign).
    */
   assert(ir->as_dereference());
   ir_dereference_array *deref_array = ir->as_dereference_array();
   if (deref_array) {
      assert(!deref_array->array->type->is_vector());
   }

   /* Use the rvalue deref handler for the most part.  We'll ignore
    * swizzles in it and write swizzles using writemask, though.
    */
   ir->accept(v);
   return dst_reg(v->result);
}

/* Calculate the sampler index and also calculate the base uniform location
 * for struct members.
 */
static void
calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
                     unsigned *offset, unsigned *array_elements,
                     unsigned *location)
{
   if (deref->ir_type == ir_type_dereference_variable)
      return;

   switch (deref->ir_type) {
   case ir_type_dereference_array: {
      ir_dereference_array *deref_arr = deref->as_dereference_array();
      ir_constant *array_index =
         deref_arr->array_index->constant_expression_value();

      if (!array_index) {
	 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
	  * while GLSL 1.30 requires that the array indices be
	  * constant integer expressions.  We don't expect any driver
	  * to actually work with a really variable array index, so
	  * all that would work would be an unrolled loop counter that ends
	  * up being constant above.
	  */
         ralloc_strcat(&prog->data->InfoLog,
		       "warning: Variable sampler array index unsupported.\n"
		       "This feature of the language was removed in GLSL 1.20 "
		       "and is unlikely to be supported for 1.10 in Mesa.\n");
      } else {
         *offset += array_index->value.u[0] * *array_elements;
      }

      *array_elements *= deref_arr->array->type->length;

      calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
                           offset, array_elements, location);
      break;
   }

   case ir_type_dereference_record: {
      ir_dereference_record *deref_record = deref->as_dereference_record();
      unsigned field_index =
         deref_record->record->type->field_index(deref_record->field);
      *location +=
         deref_record->record->type->record_location_offset(field_index);
      calc_sampler_offsets(prog, deref_record->record->as_dereference(),
                           offset, array_elements, location);
      break;
   }

   default:
      unreachable("Invalid deref type");
      break;
   }
}

static int
get_sampler_uniform_value(class ir_dereference *sampler,
                          struct gl_shader_program *shader_program,
                          const struct gl_program *prog)
{
   GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
   ir_variable *var = sampler->variable_referenced();
   unsigned location = var->data.location;
   unsigned array_elements = 1;
   unsigned offset = 0;

   calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
                        &location);

   assert(shader_program->data->UniformStorage[location].opaque[shader].active);
   return shader_program->data->UniformStorage[location].opaque[shader].index +
          offset;
}

/**
 * Process the condition of a conditional assignment
 *
 * Examines the condition of a conditional assignment to generate the optimal
 * first operand of a \c CMP instruction.  If the condition is a relational
 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
 * used as the source for the \c CMP instruction.  Otherwise the comparison
 * is processed to a boolean result, and the boolean result is used as the
 * operand to the CMP instruction.
 */
bool
ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
{
   ir_rvalue *src_ir = ir;
   bool negate = true;
   bool switch_order = false;

   ir_expression *const expr = ir->as_expression();
   if ((expr != NULL) && (expr->get_num_operands() == 2)) {
      bool zero_on_left = false;

      if (expr->operands[0]->is_zero()) {
	 src_ir = expr->operands[1];
	 zero_on_left = true;
      } else if (expr->operands[1]->is_zero()) {
	 src_ir = expr->operands[0];
	 zero_on_left = false;
      }

      /*      a is -  0  +            -  0  +
       * (a <  0)  T  F  F  ( a < 0)  T  F  F
       * (0 <  a)  F  F  T  (-a < 0)  F  F  T
       * (a <= 0)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
       * (0 <= a)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
       * (a >  0)  F  F  T  (-a < 0)  F  F  T
       * (0 >  a)  T  F  F  ( a < 0)  T  F  F
       * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
       * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
       *
       * Note that exchanging the order of 0 and 'a' in the comparison simply
       * means that the value of 'a' should be negated.
       */
      if (src_ir != ir) {
	 switch (expr->operation) {
	 case ir_binop_less:
	    switch_order = false;
	    negate = zero_on_left;
	    break;

	 case ir_binop_greater:
	    switch_order = false;
	    negate = !zero_on_left;
	    break;

	 case ir_binop_lequal:
	    switch_order = true;
	    negate = !zero_on_left;
	    break;

	 case ir_binop_gequal:
	    switch_order = true;
	    negate = zero_on_left;
	    break;

	 default:
	    /* This isn't the right kind of comparison afterall, so make sure
	     * the whole condition is visited.
	     */
	    src_ir = ir;
	    break;
	 }
      }
   }

   src_ir->accept(this);

   /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
    * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
    * choose which value OPCODE_CMP produces without an extra instruction
    * computing the condition.
    */
   if (negate)
      this->result.negate = ~this->result.negate;

   return switch_order;
}

void
ir_to_mesa_visitor::visit(ir_assignment *ir)
{
   dst_reg l;
   src_reg r;
   int i;

   ir->rhs->accept(this);
   r = this->result;

   l = get_assignment_lhs(ir->lhs, this);

   /* FINISHME: This should really set to the correct maximal writemask for each
    * FINISHME: component written (in the loops below).  This case can only
    * FINISHME: occur for matrices, arrays, and structures.
    */
   if (ir->write_mask == 0) {
      assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
      l.writemask = WRITEMASK_XYZW;
   } else if (ir->lhs->type->is_scalar()) {
      /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
       * FINISHME: W component of fragment shader output zero, work correctly.
       */
      l.writemask = WRITEMASK_XYZW;
   } else {
      int swizzles[4];
      int first_enabled_chan = 0;
      int rhs_chan = 0;

      assert(ir->lhs->type->is_vector());
      l.writemask = ir->write_mask;

      for (int i = 0; i < 4; i++) {
	 if (l.writemask & (1 << i)) {
	    first_enabled_chan = GET_SWZ(r.swizzle, i);
	    break;
	 }
      }

      /* Swizzle a small RHS vector into the channels being written.
       *
       * glsl ir treats write_mask as dictating how many channels are
       * present on the RHS while Mesa IR treats write_mask as just
       * showing which channels of the vec4 RHS get written.
       */
      for (int i = 0; i < 4; i++) {
	 if (l.writemask & (1 << i))
	    swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
	 else
	    swizzles[i] = first_enabled_chan;
      }
      r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
				swizzles[2], swizzles[3]);
   }

   assert(l.file != PROGRAM_UNDEFINED);
   assert(r.file != PROGRAM_UNDEFINED);

   if (ir->condition) {
      const bool switch_order = this->process_move_condition(ir->condition);
      src_reg condition = this->result;

      for (i = 0; i < type_size(ir->lhs->type); i++) {
	 if (switch_order) {
	    emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
	 } else {
	    emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
	 }

	 l.index++;
	 r.index++;
      }
   } else {
      for (i = 0; i < type_size(ir->lhs->type); i++) {
	 emit(ir, OPCODE_MOV, l, r);
	 l.index++;
	 r.index++;
      }
   }
}


void
ir_to_mesa_visitor::visit(ir_constant *ir)
{
   src_reg src;
   GLfloat stack_vals[4] = { 0 };
   GLfloat *values = stack_vals;
   unsigned int i;

   /* Unfortunately, 4 floats is all we can get into
    * _mesa_add_unnamed_constant.  So, make a temp to store an
    * aggregate constant and move each constant value into it.  If we
    * get lucky, copy propagation will eliminate the extra moves.
    */

   if (ir->type->base_type == GLSL_TYPE_STRUCT) {
      src_reg temp_base = get_temp(ir->type);
      dst_reg temp = dst_reg(temp_base);

      foreach_in_list(ir_constant, field_value, &ir->components) {
	 int size = type_size(field_value->type);

	 assert(size > 0);

	 field_value->accept(this);
	 src = this->result;

	 for (i = 0; i < (unsigned int)size; i++) {
	    emit(ir, OPCODE_MOV, temp, src);

	    src.index++;
	    temp.index++;
	 }
      }
      this->result = temp_base;
      return;
   }

   if (ir->type->is_array()) {
      src_reg temp_base = get_temp(ir->type);
      dst_reg temp = dst_reg(temp_base);
      int size = type_size(ir->type->fields.array);

      assert(size > 0);

      for (i = 0; i < ir->type->length; i++) {
	 ir->array_elements[i]->accept(this);
	 src = this->result;
	 for (int j = 0; j < size; j++) {
	    emit(ir, OPCODE_MOV, temp, src);

	    src.index++;
	    temp.index++;
	 }
      }
      this->result = temp_base;
      return;
   }

   if (ir->type->is_matrix()) {
      src_reg mat = get_temp(ir->type);
      dst_reg mat_column = dst_reg(mat);

      for (i = 0; i < ir->type->matrix_columns; i++) {
	 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
	 values = &ir->value.f[i * ir->type->vector_elements];

	 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
	 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
						(gl_constant_value *) values,
						ir->type->vector_elements,
						&src.swizzle);
	 emit(ir, OPCODE_MOV, mat_column, src);

	 mat_column.index++;
      }

      this->result = mat;
      return;
   }

   src.file = PROGRAM_CONSTANT;
   switch (ir->type->base_type) {
   case GLSL_TYPE_FLOAT:
      values = &ir->value.f[0];
      break;
   case GLSL_TYPE_UINT:
      for (i = 0; i < ir->type->vector_elements; i++) {
	 values[i] = ir->value.u[i];
      }
      break;
   case GLSL_TYPE_INT:
      for (i = 0; i < ir->type->vector_elements; i++) {
	 values[i] = ir->value.i[i];
      }
      break;
   case GLSL_TYPE_BOOL:
      for (i = 0; i < ir->type->vector_elements; i++) {
	 values[i] = ir->value.b[i];
      }
      break;
   default:
      assert(!"Non-float/uint/int/bool constant");
   }

   this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
   this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
						   (gl_constant_value *) values,
						   ir->type->vector_elements,
						   &this->result.swizzle);
}

void
ir_to_mesa_visitor::visit(ir_call *)
{
   assert(!"ir_to_mesa: All function calls should have been inlined by now.");
}

void
ir_to_mesa_visitor::visit(ir_texture *ir)
{
   src_reg result_src, coord, lod_info, projector, dx, dy;
   dst_reg result_dst, coord_dst;
   ir_to_mesa_instruction *inst = NULL;
   prog_opcode opcode = OPCODE_NOP;

   if (ir->op == ir_txs)
      this->result = src_reg_for_float(0.0);
   else
      ir->coordinate->accept(this);

   /* Put our coords in a temp.  We'll need to modify them for shadow,
    * projection, or LOD, so the only case we'd use it as-is is if
    * we're doing plain old texturing.  Mesa IR optimization should
    * handle cleaning up our mess in that case.
    */
   coord = get_temp(glsl_type::vec4_type);
   coord_dst = dst_reg(coord);
   emit(ir, OPCODE_MOV, coord_dst, this->result);

   if (ir->projector) {
      ir->projector->accept(this);
      projector = this->result;
   }

   /* Storage for our result.  Ideally for an assignment we'd be using
    * the actual storage for the result here, instead.
    */
   result_src = get_temp(glsl_type::vec4_type);
   result_dst = dst_reg(result_src);

   switch (ir->op) {
   case ir_tex:
   case ir_txs:
      opcode = OPCODE_TEX;
      break;
   case ir_txb:
      opcode = OPCODE_TXB;
      ir->lod_info.bias->accept(this);
      lod_info = this->result;
      break;
   case ir_txf:
      /* Pretend to be TXL so the sampler, coordinate, lod are available */
   case ir_txl:
      opcode = OPCODE_TXL;
      ir->lod_info.lod->accept(this);
      lod_info = this->result;
      break;
   case ir_txd:
      opcode = OPCODE_TXD;
      ir->lod_info.grad.dPdx->accept(this);
      dx = this->result;
      ir->lod_info.grad.dPdy->accept(this);
      dy = this->result;
      break;
   case ir_txf_ms:
      assert(!"Unexpected ir_txf_ms opcode");
      break;
   case ir_lod:
      assert(!"Unexpected ir_lod opcode");
      break;
   case ir_tg4:
      assert(!"Unexpected ir_tg4 opcode");
      break;
   case ir_query_levels:
      assert(!"Unexpected ir_query_levels opcode");
      break;
   case ir_samples_identical:
      unreachable("Unexpected ir_samples_identical opcode");
   case ir_texture_samples:
      unreachable("Unexpected ir_texture_samples opcode");
   }

   const glsl_type *sampler_type = ir->sampler->type;

   if (ir->projector) {
      if (opcode == OPCODE_TEX) {
	 /* Slot the projector in as the last component of the coord. */
	 coord_dst.writemask = WRITEMASK_W;
	 emit(ir, OPCODE_MOV, coord_dst, projector);
	 coord_dst.writemask = WRITEMASK_XYZW;
	 opcode = OPCODE_TXP;
      } else {
	 src_reg coord_w = coord;
	 coord_w.swizzle = SWIZZLE_WWWW;

	 /* For the other TEX opcodes there's no projective version
	  * since the last slot is taken up by lod info.  Do the
	  * projective divide now.
	  */
	 coord_dst.writemask = WRITEMASK_W;
	 emit(ir, OPCODE_RCP, coord_dst, projector);

	 /* In the case where we have to project the coordinates "by hand,"
	  * the shadow comparator value must also be projected.
	  */
	 src_reg tmp_src = coord;
	 if (ir->shadow_comparator) {
	    /* Slot the shadow value in as the second to last component of the
	     * coord.
	     */
	    ir->shadow_comparator->accept(this);

	    tmp_src = get_temp(glsl_type::vec4_type);
	    dst_reg tmp_dst = dst_reg(tmp_src);

	    /* Projective division not allowed for array samplers. */
	    assert(!sampler_type->sampler_array);

	    tmp_dst.writemask = WRITEMASK_Z;
	    emit(ir, OPCODE_MOV, tmp_dst, this->result);

	    tmp_dst.writemask = WRITEMASK_XY;
	    emit(ir, OPCODE_MOV, tmp_dst, coord);
	 }

	 coord_dst.writemask = WRITEMASK_XYZ;
	 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);

	 coord_dst.writemask = WRITEMASK_XYZW;
	 coord.swizzle = SWIZZLE_XYZW;
      }
   }

   /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
    * comparator was put in the correct place (and projected) by the code,
    * above, that handles by-hand projection.
    */
   if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
      /* Slot the shadow value in as the second to last component of the
       * coord.
       */
      ir->shadow_comparator->accept(this);

      /* XXX This will need to be updated for cubemap array samplers. */
      if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
          sampler_type->sampler_array) {
         coord_dst.writemask = WRITEMASK_W;
      } else {
         coord_dst.writemask = WRITEMASK_Z;
      }

      emit(ir, OPCODE_MOV, coord_dst, this->result);
      coord_dst.writemask = WRITEMASK_XYZW;
   }

   if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
      /* Mesa IR stores lod or lod bias in the last channel of the coords. */
      coord_dst.writemask = WRITEMASK_W;
      emit(ir, OPCODE_MOV, coord_dst, lod_info);
      coord_dst.writemask = WRITEMASK_XYZW;
   }

   if (opcode == OPCODE_TXD)
      inst = emit(ir, opcode, result_dst, coord, dx, dy);
   else
      inst = emit(ir, opcode, result_dst, coord);

   if (ir->shadow_comparator)
      inst->tex_shadow = GL_TRUE;

   inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
                                             prog);

   switch (sampler_type->sampler_dimensionality) {
   case GLSL_SAMPLER_DIM_1D:
      inst->tex_target = (sampler_type->sampler_array)
	 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
      break;
   case GLSL_SAMPLER_DIM_2D:
      inst->tex_target = (sampler_type->sampler_array)
	 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
      break;
   case GLSL_SAMPLER_DIM_3D:
      inst->tex_target = TEXTURE_3D_INDEX;
      break;
   case GLSL_SAMPLER_DIM_CUBE:
      inst->tex_target = TEXTURE_CUBE_INDEX;
      break;
   case GLSL_SAMPLER_DIM_RECT:
      inst->tex_target = TEXTURE_RECT_INDEX;
      break;
   case GLSL_SAMPLER_DIM_BUF:
      assert(!"FINISHME: Implement ARB_texture_buffer_object");
      break;
   case GLSL_SAMPLER_DIM_EXTERNAL:
      inst->tex_target = TEXTURE_EXTERNAL_INDEX;
      break;
   default:
      assert(!"Should not get here.");
   }

   this->result = result_src;
}

void
ir_to_mesa_visitor::visit(ir_return *ir)
{
   /* Non-void functions should have been inlined.  We may still emit RETs
    * from main() unless the EmitNoMainReturn option is set.
    */
   assert(!ir->get_value());
   emit(ir, OPCODE_RET);
}

void
ir_to_mesa_visitor::visit(ir_discard *ir)
{
   if (!ir->condition)
      ir->condition = new(mem_ctx) ir_constant(true);

   ir->condition->accept(this);
   this->result.negate = ~this->result.negate;
   emit(ir, OPCODE_KIL, undef_dst, this->result);
}

void
ir_to_mesa_visitor::visit(ir_if *ir)
{
   ir_to_mesa_instruction *if_inst;

   ir->condition->accept(this);
   assert(this->result.file != PROGRAM_UNDEFINED);

   if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);

   this->instructions.push_tail(if_inst);

   visit_exec_list(&ir->then_instructions, this);

   if (!ir->else_instructions.is_empty()) {
      emit(ir->condition, OPCODE_ELSE);
      visit_exec_list(&ir->else_instructions, this);
   }

   emit(ir->condition, OPCODE_ENDIF);
}

void
ir_to_mesa_visitor::visit(ir_emit_vertex *)
{
   assert(!"Geometry shaders not supported.");
}

void
ir_to_mesa_visitor::visit(ir_end_primitive *)
{
   assert(!"Geometry shaders not supported.");
}

void
ir_to_mesa_visitor::visit(ir_barrier *)
{
   unreachable("GLSL barrier() not supported.");
}

ir_to_mesa_visitor::ir_to_mesa_visitor()
{
   result.file = PROGRAM_UNDEFINED;
   next_temp = 1;
   next_signature_id = 1;
   current_function = NULL;
   mem_ctx = ralloc_context(NULL);
}

ir_to_mesa_visitor::~ir_to_mesa_visitor()
{
   ralloc_free(mem_ctx);
}

static struct prog_src_register
mesa_src_reg_from_ir_src_reg(src_reg reg)
{
   struct prog_src_register mesa_reg;

   mesa_reg.File = reg.file;
   assert(reg.index < (1 << INST_INDEX_BITS));
   mesa_reg.Index = reg.index;
   mesa_reg.Swizzle = reg.swizzle;
   mesa_reg.RelAddr = reg.reladdr != NULL;
   mesa_reg.Negate = reg.negate;

   return mesa_reg;
}

static void
set_branchtargets(ir_to_mesa_visitor *v,
		  struct prog_instruction *mesa_instructions,
		  int num_instructions)
{
   int if_count = 0, loop_count = 0;
   int *if_stack, *loop_stack;
   int if_stack_pos = 0, loop_stack_pos = 0;
   int i, j;

   for (i = 0; i < num_instructions; i++) {
      switch (mesa_instructions[i].Opcode) {
      case OPCODE_IF:
	 if_count++;
	 break;
      case OPCODE_BGNLOOP:
	 loop_count++;
	 break;
      case OPCODE_BRK:
      case OPCODE_CONT:
	 mesa_instructions[i].BranchTarget = -1;
	 break;
      default:
	 break;
      }
   }

   if_stack = rzalloc_array(v->mem_ctx, int, if_count);
   loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);

   for (i = 0; i < num_instructions; i++) {
      switch (mesa_instructions[i].Opcode) {
      case OPCODE_IF:
	 if_stack[if_stack_pos] = i;
	 if_stack_pos++;
	 break;
      case OPCODE_ELSE:
	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
	 if_stack[if_stack_pos - 1] = i;
	 break;
      case OPCODE_ENDIF:
	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
	 if_stack_pos--;
	 break;
      case OPCODE_BGNLOOP:
	 loop_stack[loop_stack_pos] = i;
	 loop_stack_pos++;
	 break;
      case OPCODE_ENDLOOP:
	 loop_stack_pos--;
	 /* Rewrite any breaks/conts at this nesting level (haven't
	  * already had a BranchTarget assigned) to point to the end
	  * of the loop.
	  */
	 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
	    if (mesa_instructions[j].Opcode == OPCODE_BRK ||
		mesa_instructions[j].Opcode == OPCODE_CONT) {
	       if (mesa_instructions[j].BranchTarget == -1) {
		  mesa_instructions[j].BranchTarget = i;
	       }
	    }
	 }
	 /* The loop ends point at each other. */
	 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
	 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
	 break;
      case OPCODE_CAL:
	 foreach_in_list(function_entry, entry, &v->function_signatures) {
	    if (entry->sig_id == mesa_instructions[i].BranchTarget) {
	       mesa_instructions[i].BranchTarget = entry->inst;
	       break;
	    }
	 }
	 break;
      default:
	 break;
      }
   }
}

static void
print_program(struct prog_instruction *mesa_instructions,
	      ir_instruction **mesa_instruction_annotation,
	      int num_instructions)
{
   ir_instruction *last_ir = NULL;
   int i;
   int indent = 0;

   for (i = 0; i < num_instructions; i++) {
      struct prog_instruction *mesa_inst = mesa_instructions + i;
      ir_instruction *ir = mesa_instruction_annotation[i];

      fprintf(stdout, "%3d: ", i);

      if (last_ir != ir && ir) {
	 int j;

	 for (j = 0; j < indent; j++) {
	    fprintf(stdout, " ");
	 }
	 ir->print();
	 printf("\n");
	 last_ir = ir;

	 fprintf(stdout, "     "); /* line number spacing. */
      }

      indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
					    PROG_PRINT_DEBUG, NULL);
   }
}

namespace {

class add_uniform_to_shader : public program_resource_visitor {
public:
   add_uniform_to_shader(struct gl_shader_program *shader_program,
			 struct gl_program_parameter_list *params,
                         gl_shader_stage shader_type)
      : shader_program(shader_program), params(params), idx(-1),
        shader_type(shader_type)
   {
      /* empty */
   }

   void process(ir_variable *var)
   {
      this->idx = -1;
      this->program_resource_visitor::process(var);
      var->data.param_index = this->idx;
   }

private:
   virtual void visit_field(const glsl_type *type, const char *name,
                            bool row_major, const glsl_type *record_type,
                            const enum glsl_interface_packing packing,
                            bool last_field);

   struct gl_shader_program *shader_program;
   struct gl_program_parameter_list *params;
   int idx;
   gl_shader_stage shader_type;
};

} /* anonymous namespace */

void
add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
                                   bool /* row_major */,
                                   const glsl_type * /* record_type */,
                                   const enum glsl_interface_packing,
                                   bool /* last_field */)
{
   unsigned int size;

   /* atomics don't get real storage */
   if (type->contains_atomic())
      return;

   if (type->is_vector() || type->is_scalar()) {
      size = type->vector_elements;
      if (type->is_64bit())
         size *= 2;
   } else {
      size = type_size(type) * 4;
   }

   gl_register_file file;
   if (type->without_array()->is_sampler()) {
      file = PROGRAM_SAMPLER;
   } else {
      file = PROGRAM_UNIFORM;
   }

   int index = _mesa_lookup_parameter_index(params, name);
   if (index < 0) {
      index = _mesa_add_parameter(params, file, name, size, type->gl_type,
				  NULL, NULL);

      /* Sampler uniform values are stored in prog->SamplerUnits,
       * and the entry in that array is selected by this index we
       * store in ParameterValues[].
       */
      if (file == PROGRAM_SAMPLER) {
	 unsigned location;
	 const bool found =
	    this->shader_program->UniformHash->get(location,
						   params->Parameters[index].Name);
	 assert(found);

	 if (!found)
	    return;

	 struct gl_uniform_storage *storage =
            &this->shader_program->data->UniformStorage[location];

         assert(storage->type->is_sampler() &&
                storage->opaque[shader_type].active);

	 for (unsigned int j = 0; j < size / 4; j++)
            params->ParameterValues[index + j][0].f =
               storage->opaque[shader_type].index + j;
      }
   }

   /* The first part of the uniform that's processed determines the base
    * location of the whole uniform (for structures).
    */
   if (this->idx < 0)
      this->idx = index;
}

/**
 * Generate the program parameters list for the user uniforms in a shader
 *
 * \param shader_program Linked shader program.  This is only used to
 *                       emit possible link errors to the info log.
 * \param sh             Shader whose uniforms are to be processed.
 * \param params         Parameter list to be filled in.
 */
void
_mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
					    *shader_program,
					    struct gl_linked_shader *sh,
					    struct gl_program_parameter_list
					    *params)
{
   add_uniform_to_shader add(shader_program, params, sh->Stage);

   foreach_in_list(ir_instruction, node, sh->ir) {
      ir_variable *var = node->as_variable();

      if ((var == NULL) || (var->data.mode != ir_var_uniform)
	  || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
	 continue;

      add.process(var);
   }
}

void
_mesa_associate_uniform_storage(struct gl_context *ctx,
				struct gl_shader_program *shader_program,
				struct gl_program_parameter_list *params)
{
   /* After adding each uniform to the parameter list, connect the storage for
    * the parameter with the tracking structure used by the API for the
    * uniform.
    */
   unsigned last_location = unsigned(~0);
   for (unsigned i = 0; i < params->NumParameters; i++) {
      if (params->Parameters[i].Type != PROGRAM_UNIFORM)
	 continue;

      unsigned location;
      const bool found =
	 shader_program->UniformHash->get(location, params->Parameters[i].Name);
      assert(found);

      if (!found)
	 continue;

      struct gl_uniform_storage *storage =
         &shader_program->data->UniformStorage[location];

      /* Do not associate any uniform storage to built-in uniforms */
      if (storage->builtin)
         continue;

      if (location != last_location) {
	 enum gl_uniform_driver_format format = uniform_native;

	 unsigned columns = 0;
	 int dmul = 4 * sizeof(float);
	 switch (storage->type->base_type) {
         case GLSL_TYPE_UINT64:
	    if (storage->type->vector_elements > 2)
               dmul *= 2;
	    /* fallthrough */
	 case GLSL_TYPE_UINT:
	    assert(ctx->Const.NativeIntegers);
	    format = uniform_native;
	    columns = 1;
	    break;
         case GLSL_TYPE_INT64:
	    if (storage->type->vector_elements > 2)
               dmul *= 2;
	    /* fallthrough */
	 case GLSL_TYPE_INT:
	    format =
	       (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
	    columns = 1;
	    break;

	 case GLSL_TYPE_DOUBLE:
	    if (storage->type->vector_elements > 2)
               dmul *= 2;
	    /* fallthrough */
	 case GLSL_TYPE_FLOAT:
	    format = uniform_native;
	    columns = storage->type->matrix_columns;
	    break;
	 case GLSL_TYPE_BOOL:
	    format = uniform_native;
	    columns = 1;
	    break;
	 case GLSL_TYPE_SAMPLER:
	 case GLSL_TYPE_IMAGE:
         case GLSL_TYPE_SUBROUTINE:
	    format = uniform_native;
	    columns = 1;
	    break;
         case GLSL_TYPE_ATOMIC_UINT:
         case GLSL_TYPE_ARRAY:
         case GLSL_TYPE_VOID:
         case GLSL_TYPE_STRUCT:
         case GLSL_TYPE_ERROR:
         case GLSL_TYPE_INTERFACE:
         case GLSL_TYPE_FUNCTION:
	    assert(!"Should not get here.");
	    break;
	 }

	 _mesa_uniform_attach_driver_storage(storage,
					     dmul * columns,
					     dmul,
					     format,
					     &params->ParameterValues[i]);

	 /* After attaching the driver's storage to the uniform, propagate any
	  * data from the linker's backing store.  This will cause values from
	  * initializers in the source code to be copied over.
	  */
	 _mesa_propagate_uniforms_to_driver_storage(storage,
						    0,
						    MAX2(1, storage->array_elements));

	 last_location = location;
      }
   }
}

/*
 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
 * channels for copy propagation and updates following instructions to
 * use the original versions.
 *
 * The ir_to_mesa_visitor lazily produces code assuming that this pass
 * will occur.  As an example, a TXP production before this pass:
 *
 * 0: MOV TEMP[1], INPUT[4].xyyy;
 * 1: MOV TEMP[1].w, INPUT[4].wwww;
 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
 *
 * and after:
 *
 * 0: MOV TEMP[1], INPUT[4].xyyy;
 * 1: MOV TEMP[1].w, INPUT[4].wwww;
 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
 *
 * which allows for dead code elimination on TEMP[1]'s writes.
 */
void
ir_to_mesa_visitor::copy_propagate(void)
{
   ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
						    ir_to_mesa_instruction *,
						    this->next_temp * 4);
   int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
   int level = 0;

   foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
      assert(inst->dst.file != PROGRAM_TEMPORARY
	     || inst->dst.index < this->next_temp);

      /* First, do any copy propagation possible into the src regs. */
      for (int r = 0; r < 3; r++) {
	 ir_to_mesa_instruction *first = NULL;
	 bool good = true;
	 int acp_base = inst->src[r].index * 4;

	 if (inst->src[r].file != PROGRAM_TEMPORARY ||
	     inst->src[r].reladdr)
	    continue;

	 /* See if we can find entries in the ACP consisting of MOVs
	  * from the same src register for all the swizzled channels
	  * of this src register reference.
	  */
	 for (int i = 0; i < 4; i++) {
	    int src_chan = GET_SWZ(inst->src[r].swizzle, i);
	    ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];

	    if (!copy_chan) {
	       good = false;
	       break;
	    }

	    assert(acp_level[acp_base + src_chan] <= level);

	    if (!first) {
	       first = copy_chan;
	    } else {
	       if (first->src[0].file != copy_chan->src[0].file ||
		   first->src[0].index != copy_chan->src[0].index) {
		  good = false;
		  break;
	       }
	    }
	 }

	 if (good) {
	    /* We've now validated that we can copy-propagate to
	     * replace this src register reference.  Do it.
	     */
	    inst->src[r].file = first->src[0].file;
	    inst->src[r].index = first->src[0].index;

	    int swizzle = 0;
	    for (int i = 0; i < 4; i++) {
	       int src_chan = GET_SWZ(inst->src[r].swizzle, i);
	       ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
	       swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
			   (3 * i));
	    }
	    inst->src[r].swizzle = swizzle;
	 }
      }

      switch (inst->op) {
      case OPCODE_BGNLOOP:
      case OPCODE_ENDLOOP:
	 /* End of a basic block, clear the ACP entirely. */
	 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
	 break;

      case OPCODE_IF:
	 ++level;
	 break;

      case OPCODE_ENDIF:
      case OPCODE_ELSE:
	 /* Clear all channels written inside the block from the ACP, but
	  * leaving those that were not touched.
	  */
	 for (int r = 0; r < this->next_temp; r++) {
	    for (int c = 0; c < 4; c++) {
	       if (!acp[4 * r + c])
		  continue;

	       if (acp_level[4 * r + c] >= level)
		  acp[4 * r + c] = NULL;
	    }
	 }
	 if (inst->op == OPCODE_ENDIF)
	    --level;
	 break;

      default:
	 /* Continuing the block, clear any written channels from
	  * the ACP.
	  */
	 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
	    /* Any temporary might be written, so no copy propagation
	     * across this instruction.
	     */
	    memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
	 } else if (inst->dst.file == PROGRAM_OUTPUT &&
		    inst->dst.reladdr) {
	    /* Any output might be written, so no copy propagation
	     * from outputs across this instruction.
	     */
	    for (int r = 0; r < this->next_temp; r++) {
	       for (int c = 0; c < 4; c++) {
		  if (!acp[4 * r + c])
		     continue;

		  if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
		     acp[4 * r + c] = NULL;
	       }
	    }
	 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
		    inst->dst.file == PROGRAM_OUTPUT) {
	    /* Clear where it's used as dst. */
	    if (inst->dst.file == PROGRAM_TEMPORARY) {
	       for (int c = 0; c < 4; c++) {
		  if (inst->dst.writemask & (1 << c)) {
		     acp[4 * inst->dst.index + c] = NULL;
		  }
	       }
	    }

	    /* Clear where it's used as src. */
	    for (int r = 0; r < this->next_temp; r++) {
	       for (int c = 0; c < 4; c++) {
		  if (!acp[4 * r + c])
		     continue;

		  int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);

		  if (acp[4 * r + c]->src[0].file == inst->dst.file &&
		      acp[4 * r + c]->src[0].index == inst->dst.index &&
		      inst->dst.writemask & (1 << src_chan))
		  {
		     acp[4 * r + c] = NULL;
		  }
	       }
	    }
	 }
	 break;
      }

      /* If this is a copy, add it to the ACP. */
      if (inst->op == OPCODE_MOV &&
	  inst->dst.file == PROGRAM_TEMPORARY &&
	  !(inst->dst.file == inst->src[0].file &&
	    inst->dst.index == inst->src[0].index) &&
	  !inst->dst.reladdr &&
	  !inst->saturate &&
	  !inst->src[0].reladdr &&
	  !inst->src[0].negate) {
	 for (int i = 0; i < 4; i++) {
	    if (inst->dst.writemask & (1 << i)) {
	       acp[4 * inst->dst.index + i] = inst;
	       acp_level[4 * inst->dst.index + i] = level;
	    }
	 }
      }
   }

   ralloc_free(acp_level);
   ralloc_free(acp);
}


/**
 * Convert a shader's GLSL IR into a Mesa gl_program.
 */
static struct gl_program *
get_mesa_program(struct gl_context *ctx,
                 struct gl_shader_program *shader_program,
		 struct gl_linked_shader *shader)
{
   ir_to_mesa_visitor v;
   struct prog_instruction *mesa_instructions, *mesa_inst;
   ir_instruction **mesa_instruction_annotation;
   int i;
   struct gl_program *prog;
   GLenum target = _mesa_shader_stage_to_program(shader->Stage);
   const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
   struct gl_shader_compiler_options *options =
         &ctx->Const.ShaderCompilerOptions[shader->Stage];

   validate_ir_tree(shader->ir);

   prog = shader->Program;
   prog->Parameters = _mesa_new_parameter_list();
   v.ctx = ctx;
   v.prog = prog;
   v.shader_program = shader_program;
   v.options = options;

   _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
					       prog->Parameters);

   /* Emit Mesa IR for main(). */
   visit_exec_list(shader->ir, &v);
   v.emit(NULL, OPCODE_END);

   prog->arb.NumTemporaries = v.next_temp;

   unsigned num_instructions = v.instructions.length();

   mesa_instructions = rzalloc_array(prog, struct prog_instruction,
                                     num_instructions);
   mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
					      num_instructions);

   v.copy_propagate();

   /* Convert ir_mesa_instructions into prog_instructions.
    */
   mesa_inst = mesa_instructions;
   i = 0;
   foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
      mesa_inst->Opcode = inst->op;
      if (inst->saturate)
	 mesa_inst->Saturate = GL_TRUE;
      mesa_inst->DstReg.File = inst->dst.file;
      mesa_inst->DstReg.Index = inst->dst.index;
      mesa_inst->DstReg.WriteMask = inst->dst.writemask;
      mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
      mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
      mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
      mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
      mesa_inst->TexSrcUnit = inst->sampler;
      mesa_inst->TexSrcTarget = inst->tex_target;
      mesa_inst->TexShadow = inst->tex_shadow;
      mesa_instruction_annotation[i] = inst->ir;

      /* Set IndirectRegisterFiles. */
      if (mesa_inst->DstReg.RelAddr)
         prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;

      /* Update program's bitmask of indirectly accessed register files */
      for (unsigned src = 0; src < 3; src++)
         if (mesa_inst->SrcReg[src].RelAddr)
            prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;

      switch (mesa_inst->Opcode) {
      case OPCODE_IF:
	 if (options->MaxIfDepth == 0) {
	    linker_warning(shader_program,
			   "Couldn't flatten if-statement.  "
			   "This will likely result in software "
			   "rasterization.\n");
	 }
	 break;
      case OPCODE_BGNLOOP:
	 if (options->EmitNoLoops) {
	    linker_warning(shader_program,
			   "Couldn't unroll loop.  "
			   "This will likely result in software "
			   "rasterization.\n");
	 }
	 break;
      case OPCODE_CONT:
	 if (options->EmitNoCont) {
	    linker_warning(shader_program,
			   "Couldn't lower continue-statement.  "
			   "This will likely result in software "
			   "rasterization.\n");
	 }
	 break;
      case OPCODE_ARL:
         prog->arb.NumAddressRegs = 1;
	 break;
      default:
	 break;
      }

      mesa_inst++;
      i++;

      if (!shader_program->data->LinkStatus)
         break;
   }

   if (!shader_program->data->LinkStatus) {
      goto fail_exit;
   }

   set_branchtargets(&v, mesa_instructions, num_instructions);

   if (ctx->_Shader->Flags & GLSL_DUMP) {
      fprintf(stderr, "\n");
      fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
	      shader_program->Name);
      _mesa_print_ir(stderr, shader->ir, NULL);
      fprintf(stderr, "\n");
      fprintf(stderr, "\n");
      fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
	      shader_program->Name);
      print_program(mesa_instructions, mesa_instruction_annotation,
		    num_instructions);
      fflush(stderr);
   }

   prog->arb.Instructions = mesa_instructions;
   prog->arb.NumInstructions = num_instructions;

   /* Setting this to NULL prevents a possible double free in the fail_exit
    * path (far below).
    */
   mesa_instructions = NULL;

   do_set_program_inouts(shader->ir, prog, shader->Stage);

   prog->ShadowSamplers = shader->shadow_samplers;
   prog->ExternalSamplersUsed = gl_external_samplers(prog);
   _mesa_update_shader_textures_used(shader_program, prog);

   /* Set the gl_FragDepth layout. */
   if (target == GL_FRAGMENT_PROGRAM_ARB) {
      prog->info.fs.depth_layout = shader_program->FragDepthLayout;
   }

   if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
      _mesa_optimize_program(ctx, prog, prog);
   }

   /* This has to be done last.  Any operation that can cause
    * prog->ParameterValues to get reallocated (e.g., anything that adds a
    * program constant) has to happen before creating this linkage.
    */
   _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
   if (!shader_program->data->LinkStatus) {
      goto fail_exit;
   }

   return prog;

fail_exit:
   ralloc_free(mesa_instructions);
   _mesa_reference_program(ctx, &shader->Program, NULL);
   return NULL;
}

extern "C" {

/**
 * Link a shader.
 * Called via ctx->Driver.LinkShader()
 * This actually involves converting GLSL IR into Mesa gl_programs with
 * code lowering and other optimizations.
 */
GLboolean
_mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
{
   assert(prog->data->LinkStatus);

   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
      if (prog->_LinkedShaders[i] == NULL)
	 continue;

      bool progress;
      exec_list *ir = prog->_LinkedShaders[i]->ir;
      const struct gl_shader_compiler_options *options =
            &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];

      do {
	 progress = false;

	 /* Lowering */
	 do_mat_op_to_vec(ir);
	 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
				 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
				 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));

	 progress = do_common_optimization(ir, true, true,
                                           options, ctx->Const.NativeIntegers)
	   || progress;

	 progress = lower_quadop_vector(ir, true) || progress;

	 if (options->MaxIfDepth == 0)
	    progress = lower_discard(ir) || progress;

	 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
                                            options->MaxIfDepth) || progress;

         progress = lower_noise(ir) || progress;

	 /* If there are forms of indirect addressing that the driver
	  * cannot handle, perform the lowering pass.
	  */
	 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
	     || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
	   progress =
	     lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
						 options->EmitNoIndirectInput,
						 options->EmitNoIndirectOutput,
						 options->EmitNoIndirectTemp,
						 options->EmitNoIndirectUniform)
	     || progress;

	 progress = do_vec_index_to_cond_assign(ir) || progress;
         progress = lower_vector_insert(ir, true) || progress;
      } while (progress);

      validate_ir_tree(ir);
   }

   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
      struct gl_program *linked_prog;

      if (prog->_LinkedShaders[i] == NULL)
	 continue;

      linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);

      if (linked_prog) {
         _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);

         if (!ctx->Driver.ProgramStringNotify(ctx,
                                              _mesa_shader_stage_to_program(i),
                                              linked_prog)) {
            _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
                                    NULL);
            return GL_FALSE;
         }
      }
   }

   build_program_resource_list(ctx, prog);
   return prog->data->LinkStatus;
}

/**
 * Link a GLSL shader program.  Called via glLinkProgram().
 */
void
_mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
{
   unsigned int i;

   _mesa_clear_shader_program_data(ctx, prog);

   prog->data->LinkStatus = GL_TRUE;

   for (i = 0; i < prog->NumShaders; i++) {
      if (!prog->Shaders[i]->CompileStatus) {
	 linker_error(prog, "linking with uncompiled shader");
      }
   }

   if (prog->data->LinkStatus) {
      link_shaders(ctx, prog);
   }

   if (prog->data->LinkStatus) {
      if (!ctx->Driver.LinkShader(ctx, prog)) {
         prog->data->LinkStatus = GL_FALSE;
      }
   }

   if (ctx->_Shader->Flags & GLSL_DUMP) {
      if (!prog->data->LinkStatus) {
	 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
      }

      if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
	 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
         fprintf(stderr, "%s\n", prog->data->InfoLog);
      }
   }
}

} /* extern "C" */