1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
|
/*
* Mesa 3-D graphics library
* Version: 5.1
*
* Copyright (C) 1999-2003 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file nvvertexec.c
* Code to execute vertex programs.
* \author Brian Paul
*/
#include "glheader.h"
#include "context.h"
#include "imports.h"
#include "macros.h"
#include "mtypes.h"
#include "nvvertexec.h"
#include "nvvertprog.h"
#include "math/m_matrix.h"
static const GLfloat zeroVec[4] = { 0, 0, 0, 0 };
/**
* Load/initialize the vertex program registers.
* This needs to be done per vertex.
*/
void
_mesa_init_vp_registers(GLcontext *ctx)
{
struct vp_machine *machine = &(ctx->VertexProgram.Machine);
GLuint i;
/* Input registers get initialized from the current vertex attribs */
MEMCPY(machine->Registers[VP_INPUT_REG_START],
ctx->Current.Attrib,
16 * 4 * sizeof(GLfloat));
/* Output and temp regs are initialized to [0,0,0,1] */
for (i = VP_OUTPUT_REG_START; i <= VP_OUTPUT_REG_END; i++) {
machine->Registers[i][0] = 0.0F;
machine->Registers[i][1] = 0.0F;
machine->Registers[i][2] = 0.0F;
machine->Registers[i][3] = 1.0F;
}
for (i = VP_TEMP_REG_START; i <= VP_TEMP_REG_END; i++) {
machine->Registers[i][0] = 0.0F;
machine->Registers[i][1] = 0.0F;
machine->Registers[i][2] = 0.0F;
machine->Registers[i][3] = 1.0F;
}
/* The program regs aren't touched */
}
/**
* Copy the 16 elements of a matrix into four consecutive program
* registers starting at 'pos'.
*/
static void
load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
{
GLuint i;
pos += VP_PROG_REG_START;
for (i = 0; i < 4; i++) {
registers[pos + i][0] = mat[0 + i];
registers[pos + i][1] = mat[4 + i];
registers[pos + i][2] = mat[8 + i];
registers[pos + i][3] = mat[12 + i];
}
}
/**
* As above, but transpose the matrix.
*/
static void
load_transpose_matrix(GLfloat registers[][4], GLuint pos,
const GLfloat mat[16])
{
pos += VP_PROG_REG_START;
MEMCPY(registers[pos], mat, 16 * sizeof(GLfloat));
}
/**
* Load all currently tracked matrices into the program registers.
* This needs to be done per glBegin/glEnd.
*/
void
_mesa_init_tracked_matrices(GLcontext *ctx)
{
GLuint i;
for (i = 0; i < VP_NUM_PROG_REGS / 4; i++) {
/* point 'mat' at source matrix */
GLmatrix *mat;
if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
mat = ctx->ModelviewMatrixStack.Top;
}
else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
mat = ctx->ProjectionMatrixStack.Top;
}
else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
mat = ctx->TextureMatrixStack[ctx->Texture.CurrentUnit].Top;
}
else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) {
mat = ctx->ColorMatrixStack.Top;
}
else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
/* XXX verify the combined matrix is up to date */
mat = &ctx->_ModelProjectMatrix;
}
else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
ASSERT(n < MAX_PROGRAM_MATRICES);
mat = ctx->ProgramMatrixStack[n].Top;
}
else {
/* no matrix is tracked, but we leave the register values as-is */
assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
continue;
}
/* load the matrix */
if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
load_matrix(ctx->VertexProgram.Machine.Registers, i*4, mat->m);
}
else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
_math_matrix_analyse(mat); /* update the inverse */
assert((mat->flags & MAT_DIRTY_INVERSE) == 0);
load_matrix(ctx->VertexProgram.Machine.Registers, i*4, mat->inv);
}
else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
load_transpose_matrix(ctx->VertexProgram.Machine.Registers, i*4, mat->m);
}
else {
assert(ctx->VertexProgram.TrackMatrixTransform[i]
== GL_INVERSE_TRANSPOSE_NV);
_math_matrix_analyse(mat); /* update the inverse */
assert((mat->flags & MAT_DIRTY_INVERSE) == 0);
load_transpose_matrix(ctx->VertexProgram.Machine.Registers,
i*4, mat->inv);
}
}
}
/**
* For debugging. Dump the current vertex program machine registers.
*/
void
_mesa_dump_vp_machine( const struct vp_machine *machine )
{
int i;
_mesa_printf("VertexIn:\n");
for (i = 0; i < VP_NUM_INPUT_REGS; i++) {
_mesa_printf("%d: %f %f %f %f ", i,
machine->Registers[i + VP_INPUT_REG_START][0],
machine->Registers[i + VP_INPUT_REG_START][1],
machine->Registers[i + VP_INPUT_REG_START][2],
machine->Registers[i + VP_INPUT_REG_START][3]);
}
_mesa_printf("\n");
_mesa_printf("VertexOut:\n");
for (i = 0; i < VP_NUM_OUTPUT_REGS; i++) {
_mesa_printf("%d: %f %f %f %f ", i,
machine->Registers[i + VP_OUTPUT_REG_START][0],
machine->Registers[i + VP_OUTPUT_REG_START][1],
machine->Registers[i + VP_OUTPUT_REG_START][2],
machine->Registers[i + VP_OUTPUT_REG_START][3]);
}
_mesa_printf("\n");
_mesa_printf("Registers:\n");
for (i = 0; i < VP_NUM_TEMP_REGS; i++) {
_mesa_printf("%d: %f %f %f %f ", i,
machine->Registers[i + VP_TEMP_REG_START][0],
machine->Registers[i + VP_TEMP_REG_START][1],
machine->Registers[i + VP_TEMP_REG_START][2],
machine->Registers[i + VP_TEMP_REG_START][3]);
}
_mesa_printf("\n");
_mesa_printf("Parameters:\n");
for (i = 0; i < VP_NUM_PROG_REGS; i++) {
_mesa_printf("%d: %f %f %f %f ", i,
machine->Registers[i + VP_PROG_REG_START][0],
machine->Registers[i + VP_PROG_REG_START][1],
machine->Registers[i + VP_PROG_REG_START][2],
machine->Registers[i + VP_PROG_REG_START][3]);
}
_mesa_printf("\n");
}
/**
* Fetch a 4-element float vector from the given source register.
* Apply swizzling and negating as needed.
*/
static void
fetch_vector4( const struct vp_src_register *source,
const struct vp_machine *machine,
GLfloat result[4] )
{
const GLfloat *src;
if (source->RelAddr) {
const GLint reg = source->Register + machine->AddressReg;
if (reg < 0 || reg > MAX_NV_VERTEX_PROGRAM_PARAMS)
src = zeroVec;
else
src = machine->Registers[VP_PROG_REG_START + reg];
}
else {
src = machine->Registers[source->Register];
}
if (source->Negate) {
result[0] = -src[source->Swizzle[0]];
result[1] = -src[source->Swizzle[1]];
result[2] = -src[source->Swizzle[2]];
result[3] = -src[source->Swizzle[3]];
}
else {
result[0] = src[source->Swizzle[0]];
result[1] = src[source->Swizzle[1]];
result[2] = src[source->Swizzle[2]];
result[3] = src[source->Swizzle[3]];
}
}
/**
* As above, but only return result[0] element.
*/
static void
fetch_vector1( const struct vp_src_register *source,
const struct vp_machine *machine,
GLfloat result[4] )
{
const GLfloat *src;
if (source->RelAddr) {
const GLint reg = source->Register + machine->AddressReg;
if (reg < 0 || reg > MAX_NV_VERTEX_PROGRAM_PARAMS)
src = zeroVec;
else
src = machine->Registers[VP_PROG_REG_START + reg];
}
else {
src = machine->Registers[source->Register];
}
if (source->Negate) {
result[0] = -src[source->Swizzle[0]];
}
else {
result[0] = src[source->Swizzle[0]];
}
}
/**
* Store 4 floats into a register.
*/
static void
store_vector4( const struct vp_dst_register *dest, struct vp_machine *machine,
const GLfloat value[4] )
{
GLfloat *dst = machine->Registers[dest->Register];
if (dest->WriteMask[0])
dst[0] = value[0];
if (dest->WriteMask[1])
dst[1] = value[1];
if (dest->WriteMask[2])
dst[2] = value[2];
if (dest->WriteMask[3])
dst[3] = value[3];
}
/**
* Set x to positive or negative infinity.
*/
#if defined(USE_IEEE) || defined(_WIN32)
#define SET_POS_INFINITY(x) ( *((GLuint *) &x) = 0x7F800000 )
#define SET_NEG_INFINITY(x) ( *((GLuint *) &x) = 0xFF800000 )
#elif defined(VMS)
#define SET_POS_INFINITY(x) x = __MAXFLOAT
#define SET_NEG_INFINITY(x) x = -__MAXFLOAT
#else
#define SET_POS_INFINITY(x) x = (GLfloat) HUGE_VAL
#define SET_NEG_INFINITY(x) x = (GLfloat) -HUGE_VAL
#endif
#define SET_FLOAT_BITS(x, bits) ((fi_type *) &(x))->i = bits
/**
* Execute the given vertex program
*/
void
_mesa_exec_vertex_program(GLcontext *ctx, const struct vertex_program *program)
{
struct vp_machine *machine = &ctx->VertexProgram.Machine;
const struct vp_instruction *inst;
ctx->_CurrentProgram = GL_VERTEX_PROGRAM_ARB; /* or NV, doesn't matter */
for (inst = program->Instructions; inst->Opcode != VP_OPCODE_END; inst++) {
if (ctx->VertexProgram.CallbackEnabled &&
ctx->VertexProgram.Callback) {
ctx->VertexProgram.CurrentPosition = inst->StringPos;
ctx->VertexProgram.Callback(program->Base.Target,
ctx->VertexProgram.CallbackData);
}
switch (inst->Opcode) {
case VP_OPCODE_MOV:
{
GLfloat t[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
store_vector4( &inst->DstReg, machine, t );
}
break;
case VP_OPCODE_LIT:
{
const GLfloat epsilon = 1.0e-5F; /* XXX fix? */
GLfloat t[4], lit[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
if (t[3] < -(128.0F - epsilon))
t[3] = - (128.0F - epsilon);
else if (t[3] > 128.0F - epsilon)
t[3] = 128.0F - epsilon;
if (t[0] < 0.0)
t[0] = 0.0;
if (t[1] < 0.0)
t[1] = 0.0;
lit[0] = 1.0;
lit[1] = t[0];
lit[2] = (t[0] > 0.0) ? (GLfloat) exp(t[3] * log(t[1])) : 0.0F;
lit[3] = 1.0;
store_vector4( &inst->DstReg, machine, lit );
}
break;
case VP_OPCODE_RCP:
{
GLfloat t[4];
fetch_vector1( &inst->SrcReg[0], machine, t );
if (t[0] != 1.0F)
t[0] = 1.0F / t[0]; /* div by zero is infinity! */
t[1] = t[2] = t[3] = t[0];
store_vector4( &inst->DstReg, machine, t );
}
break;
case VP_OPCODE_RSQ:
{
GLfloat t[4];
fetch_vector1( &inst->SrcReg[0], machine, t );
t[0] = INV_SQRTF(FABSF(t[0]));
t[1] = t[2] = t[3] = t[0];
store_vector4( &inst->DstReg, machine, t );
}
break;
case VP_OPCODE_EXP:
{
GLfloat t[4], q[4], floor_t0;
fetch_vector1( &inst->SrcReg[0], machine, t );
floor_t0 = (float) floor(t[0]);
if (floor_t0 > FLT_MAX_EXP) {
SET_POS_INFINITY(q[0]);
SET_POS_INFINITY(q[2]);
}
else if (floor_t0 < FLT_MIN_EXP) {
q[0] = 0.0F;
q[2] = 0.0F;
}
else {
#ifdef USE_IEEE
GLint ii = (GLint) floor_t0;
ii = (ii < 23) + 0x3f800000;
SET_FLOAT_BITS(q[0], ii);
q[0] = *((GLfloat *) &ii);
#else
q[0] = (GLfloat) pow(2.0, floor_t0);
#endif
q[2] = (GLfloat) (q[0] * LOG2(q[1]));
}
q[1] = t[0] - floor_t0;
q[3] = 1.0F;
store_vector4( &inst->DstReg, machine, q );
}
break;
case VP_OPCODE_LOG:
{
GLfloat t[4], q[4], abs_t0;
fetch_vector1( &inst->SrcReg[0], machine, t );
abs_t0 = (GLfloat) fabs(t[0]);
if (abs_t0 != 0.0F) {
/* Since we really can't handle infinite values on VMS
* like other OSes we'll use __MAXFLOAT to represent
* infinity. This may need some tweaking.
*/
#ifdef VMS
if (abs_t0 == __MAXFLOAT)
#else
if (IS_INF_OR_NAN(abs_t0))
#endif
{
SET_POS_INFINITY(q[0]);
q[1] = 1.0F;
SET_POS_INFINITY(q[2]);
}
else {
int exponent;
double mantissa = frexp(t[0], &exponent);
q[0] = (GLfloat) (exponent - 1);
q[1] = (GLfloat) (2.0 * mantissa); /* map [.5, 1) -> [1, 2) */
q[2] = (GLfloat) (q[0] + LOG2(q[1]));
}
}
else {
SET_NEG_INFINITY(q[0]);
q[1] = 1.0F;
SET_NEG_INFINITY(q[2]);
}
q[3] = 1.0;
store_vector4( &inst->DstReg, machine, q );
}
break;
case VP_OPCODE_MUL:
{
GLfloat t[4], u[4], prod[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
fetch_vector4( &inst->SrcReg[1], machine, u );
prod[0] = t[0] * u[0];
prod[1] = t[1] * u[1];
prod[2] = t[2] * u[2];
prod[3] = t[3] * u[3];
store_vector4( &inst->DstReg, machine, prod );
}
break;
case VP_OPCODE_ADD:
{
GLfloat t[4], u[4], sum[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
fetch_vector4( &inst->SrcReg[1], machine, u );
sum[0] = t[0] + u[0];
sum[1] = t[1] + u[1];
sum[2] = t[2] + u[2];
sum[3] = t[3] + u[3];
store_vector4( &inst->DstReg, machine, sum );
}
break;
case VP_OPCODE_DP3:
{
GLfloat t[4], u[4], dot[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
fetch_vector4( &inst->SrcReg[1], machine, u );
dot[0] = t[0] * u[0] + t[1] * u[1] + t[2] * u[2];
dot[1] = dot[2] = dot[3] = dot[0];
store_vector4( &inst->DstReg, machine, dot );
}
break;
case VP_OPCODE_DP4:
{
GLfloat t[4], u[4], dot[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
fetch_vector4( &inst->SrcReg[1], machine, u );
dot[0] = t[0] * u[0] + t[1] * u[1] + t[2] * u[2] + t[3] * u[3];
dot[1] = dot[2] = dot[3] = dot[0];
store_vector4( &inst->DstReg, machine, dot );
}
break;
case VP_OPCODE_DST:
{
GLfloat t[4], u[4], dst[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
fetch_vector4( &inst->SrcReg[1], machine, u );
dst[0] = 1.0F;
dst[1] = t[1] * u[1];
dst[2] = t[2];
dst[3] = u[3];
store_vector4( &inst->DstReg, machine, dst );
}
break;
case VP_OPCODE_MIN:
{
GLfloat t[4], u[4], min[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
fetch_vector4( &inst->SrcReg[1], machine, u );
min[0] = (t[0] < u[0]) ? t[0] : u[0];
min[1] = (t[1] < u[1]) ? t[1] : u[1];
min[2] = (t[2] < u[2]) ? t[2] : u[2];
min[3] = (t[3] < u[3]) ? t[3] : u[3];
store_vector4( &inst->DstReg, machine, min );
}
break;
case VP_OPCODE_MAX:
{
GLfloat t[4], u[4], max[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
fetch_vector4( &inst->SrcReg[1], machine, u );
max[0] = (t[0] > u[0]) ? t[0] : u[0];
max[1] = (t[1] > u[1]) ? t[1] : u[1];
max[2] = (t[2] > u[2]) ? t[2] : u[2];
max[3] = (t[3] > u[3]) ? t[3] : u[3];
store_vector4( &inst->DstReg, machine, max );
}
break;
case VP_OPCODE_SLT:
{
GLfloat t[4], u[4], slt[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
fetch_vector4( &inst->SrcReg[1], machine, u );
slt[0] = (t[0] < u[0]) ? 1.0F : 0.0F;
slt[1] = (t[1] < u[1]) ? 1.0F : 0.0F;
slt[2] = (t[2] < u[2]) ? 1.0F : 0.0F;
slt[3] = (t[3] < u[3]) ? 1.0F : 0.0F;
store_vector4( &inst->DstReg, machine, slt );
}
break;
case VP_OPCODE_SGE:
{
GLfloat t[4], u[4], sge[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
fetch_vector4( &inst->SrcReg[1], machine, u );
sge[0] = (t[0] >= u[0]) ? 1.0F : 0.0F;
sge[1] = (t[1] >= u[1]) ? 1.0F : 0.0F;
sge[2] = (t[2] >= u[2]) ? 1.0F : 0.0F;
sge[3] = (t[3] >= u[3]) ? 1.0F : 0.0F;
store_vector4( &inst->DstReg, machine, sge );
}
break;
case VP_OPCODE_MAD:
{
GLfloat t[4], u[4], v[4], sum[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
fetch_vector4( &inst->SrcReg[1], machine, u );
fetch_vector4( &inst->SrcReg[2], machine, v );
sum[0] = t[0] * u[0] + v[0];
sum[1] = t[1] * u[1] + v[1];
sum[2] = t[2] * u[2] + v[2];
sum[3] = t[3] * u[3] + v[3];
store_vector4( &inst->DstReg, machine, sum );
}
break;
case VP_OPCODE_ARL:
{
GLfloat t[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
machine->AddressReg = (GLint) floor(t[0]);
}
break;
case VP_OPCODE_DPH:
{
GLfloat t[4], u[4], dot[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
fetch_vector4( &inst->SrcReg[1], machine, u );
dot[0] = t[0] * u[0] + t[1] * u[1] + t[2] * u[2] + u[3];
dot[1] = dot[2] = dot[3] = dot[0];
store_vector4( &inst->DstReg, machine, dot );
}
break;
case VP_OPCODE_RCC:
{
GLfloat t[4], u;
fetch_vector1( &inst->SrcReg[0], machine, t );
if (t[0] == 1.0F)
u = 1.0F;
else
u = 1.0F / t[0];
if (u > 0.0F) {
if (u > 1.884467e+019F) {
u = 1.884467e+019F; /* IEEE 32-bit binary value 0x5F800000 */
}
else if (u < 5.42101e-020F) {
u = 5.42101e-020F; /* IEEE 32-bit binary value 0x1F800000 */
}
}
else {
if (u < -1.884467e+019F) {
u = -1.884467e+019F; /* IEEE 32-bit binary value 0xDF800000 */
}
else if (u > -5.42101e-020F) {
u = -5.42101e-020F; /* IEEE 32-bit binary value 0x9F800000 */
}
}
t[0] = t[1] = t[2] = t[3] = u;
store_vector4( &inst->DstReg, machine, t );
}
break;
case VP_OPCODE_SUB: /* GL_NV_vertex_program1_1 */
{
GLfloat t[4], u[4], sum[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
fetch_vector4( &inst->SrcReg[1], machine, u );
sum[0] = t[0] - u[0];
sum[1] = t[1] - u[1];
sum[2] = t[2] - u[2];
sum[3] = t[3] - u[3];
store_vector4( &inst->DstReg, machine, sum );
}
break;
case VP_OPCODE_ABS: /* GL_NV_vertex_program1_1 */
{
GLfloat t[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
if (t[0] < 0.0) t[0] = -t[0];
if (t[1] < 0.0) t[1] = -t[1];
if (t[2] < 0.0) t[2] = -t[2];
if (t[3] < 0.0) t[3] = -t[3];
store_vector4( &inst->DstReg, machine, t );
}
break;
case VP_OPCODE_FLR: /* GL_ARB_vertex_program */
{
GLfloat t[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
t[0] = FLOORF(t[0]);
t[1] = FLOORF(t[1]);
t[2] = FLOORF(t[2]);
t[3] = FLOORF(t[3]);
store_vector4( &inst->DstReg, machine, t );
}
break;
case VP_OPCODE_FRC: /* GL_ARB_vertex_program */
{
GLfloat t[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
t[0] = t[0] - FLOORF(t[0]);
t[1] = t[1] - FLOORF(t[1]);
t[2] = t[2] - FLOORF(t[2]);
t[3] = t[3] - FLOORF(t[3]);
store_vector4( &inst->DstReg, machine, t );
}
break;
case VP_OPCODE_EX2: /* GL_ARB_vertex_program */
{
GLfloat t[4];
fetch_vector1( &inst->SrcReg[0], machine, t );
t[0] = t[1] = t[2] = t[3] = _mesa_pow(2.0, t[0]);
store_vector4( &inst->DstReg, machine, t );
}
break;
case VP_OPCODE_LG2: /* GL_ARB_vertex_program */
{
GLfloat t[4];
fetch_vector1( &inst->SrcReg[0], machine, t );
t[0] = t[1] = t[2] = t[3] = LOG2(t[0]);
store_vector4( &inst->DstReg, machine, t );
}
break;
case VP_OPCODE_POW: /* GL_ARB_vertex_program */
{
GLfloat t[4], u[4];
fetch_vector1( &inst->SrcReg[0], machine, t );
fetch_vector1( &inst->SrcReg[1], machine, u );
t[0] = t[1] = t[2] = t[3] = _mesa_pow(t[0], u[0]);
store_vector4( &inst->DstReg, machine, t );
}
break;
case VP_OPCODE_XPD: /* GL_ARB_vertex_program */
{
GLfloat t[4], u[4], cross[4];
fetch_vector4( &inst->SrcReg[0], machine, t );
fetch_vector4( &inst->SrcReg[1], machine, u );
cross[0] = t[1] * u[2] - t[2] * u[1];
cross[1] = t[2] * u[0] - t[0] * u[2];
cross[2] = t[0] * u[1] - t[1] * u[0];
store_vector4( &inst->DstReg, machine, cross );
}
break;
case VP_OPCODE_SWZ: /* GL_ARB_vertex_program */
{
const struct vp_src_register *source = &inst->SrcReg[0];
const GLfloat *src;
GLfloat result[4];
GLuint i;
/* Code similar to fetch_vector4() */
if (source->RelAddr) {
const GLint reg = source->Register + machine->AddressReg;
if (reg < 0 || reg > MAX_NV_VERTEX_PROGRAM_PARAMS)
src = zeroVec;
else
src = machine->Registers[VP_PROG_REG_START + reg];
}
else {
src = machine->Registers[source->Register];
}
/* extended swizzling here */
for (i = 0; i < 3; i++) {
if (source->Swizzle[i] == SWIZZLE_ZERO)
result[i] = 0.0;
else if (source->Swizzle[i] == SWIZZLE_ONE)
result[i] = -1.0;
else
result[i] = -src[source->Swizzle[i]];
if (source->Negate)
result[i] = -result[i];
}
store_vector4( &inst->DstReg, machine, result );
}
break;
case VP_OPCODE_END:
ctx->_CurrentProgram = 0;
return;
default:
/* bad instruction opcode */
_mesa_problem(ctx, "Bad VP Opcode in _mesa_exec_vertex_program");
ctx->_CurrentProgram = 0;
return;
} /* switch */
} /* for */
ctx->_CurrentProgram = 0;
}
/**
Thoughts on vertex program optimization:
The obvious thing to do is to compile the vertex program into X86/SSE/3DNow!
assembly code. That will probably be a lot of work.
Another approach might be to replace the vp_instruction->Opcode field with
a pointer to a specialized C function which executes the instruction.
In particular we can write functions which skip swizzling, negating,
masking, relative addressing, etc. when they're not needed.
For example:
void simple_add( struct vp_instruction *inst )
{
GLfloat *sum = machine->Registers[inst->DstReg.Register];
GLfloat *a = machine->Registers[inst->SrcReg[0].Register];
GLfloat *b = machine->Registers[inst->SrcReg[1].Register];
sum[0] = a[0] + b[0];
sum[1] = a[1] + b[1];
sum[2] = a[2] + b[2];
sum[3] = a[3] + b[3];
}
*/
/*
KW:
A first step would be to 'vectorize' the programs in the same way as
the normal transformation code in the tnl module. Thus each opcode
takes zero or more input vectors (registers) and produces one or more
output vectors.
These operations would intially be coded in C, with machine-specific
assembly following, as is currently the case for matrix
transformations in the math/ directory. The preprocessing scheme for
selecting simpler operations Brian describes above would also work
here.
This should give reasonable performance without excessive effort.
*/
|