1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
|
/*
* Mesa 3-D graphics library
* Version: 7.1
*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file mipmap.c mipmap generation and teximage resizing functions.
*/
#include "imports.h"
#include "mipmap.h"
#include "texcompress.h"
#include "texformat.h"
#include "teximage.h"
#include "image.h"
static GLint
bytes_per_pixel(GLenum datatype, GLuint comps)
{
GLint b = _mesa_sizeof_packed_type(datatype);
assert(b >= 0);
return b * comps;
}
/**
* Average together two rows of a source image to produce a single new
* row in the dest image. It's legal for the two source rows to point
* to the same data. The source width must be equal to either the
* dest width or two times the dest width.
* \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
* \param comps number of components per pixel (1..4)
*/
static void
do_row(GLenum datatype, GLuint comps, GLint srcWidth,
const GLvoid *srcRowA, const GLvoid *srcRowB,
GLint dstWidth, GLvoid *dstRow)
{
const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
ASSERT(comps >= 1);
ASSERT(comps <= 4);
/* This assertion is no longer valid with non-power-of-2 textures
assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
*/
if (datatype == GL_UNSIGNED_BYTE && comps == 4) {
GLuint i, j, k;
const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA;
const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB;
GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
}
}
else if (datatype == GL_UNSIGNED_BYTE && comps == 3) {
GLuint i, j, k;
const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA;
const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB;
GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
}
}
else if (datatype == GL_UNSIGNED_BYTE && comps == 2) {
GLuint i, j, k;
const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA;
const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB;
GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
}
}
else if (datatype == GL_UNSIGNED_BYTE && comps == 1) {
GLuint i, j, k;
const GLubyte *rowA = (const GLubyte *) srcRowA;
const GLubyte *rowB = (const GLubyte *) srcRowB;
GLubyte *dst = (GLubyte *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
}
}
else if (datatype == GL_UNSIGNED_SHORT && comps == 4) {
GLuint i, j, k;
const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA;
const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB;
GLushort(*dst)[4] = (GLushort(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
}
}
else if (datatype == GL_UNSIGNED_SHORT && comps == 3) {
GLuint i, j, k;
const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA;
const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB;
GLushort(*dst)[3] = (GLushort(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
}
}
else if (datatype == GL_UNSIGNED_SHORT && comps == 2) {
GLuint i, j, k;
const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA;
const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB;
GLushort(*dst)[2] = (GLushort(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
}
}
else if (datatype == GL_UNSIGNED_SHORT && comps == 1) {
GLuint i, j, k;
const GLushort *rowA = (const GLushort *) srcRowA;
const GLushort *rowB = (const GLushort *) srcRowB;
GLushort *dst = (GLushort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
}
}
else if (datatype == GL_FLOAT && comps == 4) {
GLuint i, j, k;
const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA;
const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB;
GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] +
rowB[j][0] + rowB[k][0]) * 0.25F;
dst[i][1] = (rowA[j][1] + rowA[k][1] +
rowB[j][1] + rowB[k][1]) * 0.25F;
dst[i][2] = (rowA[j][2] + rowA[k][2] +
rowB[j][2] + rowB[k][2]) * 0.25F;
dst[i][3] = (rowA[j][3] + rowA[k][3] +
rowB[j][3] + rowB[k][3]) * 0.25F;
}
}
else if (datatype == GL_FLOAT && comps == 3) {
GLuint i, j, k;
const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA;
const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB;
GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] +
rowB[j][0] + rowB[k][0]) * 0.25F;
dst[i][1] = (rowA[j][1] + rowA[k][1] +
rowB[j][1] + rowB[k][1]) * 0.25F;
dst[i][2] = (rowA[j][2] + rowA[k][2] +
rowB[j][2] + rowB[k][2]) * 0.25F;
}
}
else if (datatype == GL_FLOAT && comps == 2) {
GLuint i, j, k;
const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA;
const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB;
GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] +
rowB[j][0] + rowB[k][0]) * 0.25F;
dst[i][1] = (rowA[j][1] + rowA[k][1] +
rowB[j][1] + rowB[k][1]) * 0.25F;
}
}
else if (datatype == GL_FLOAT && comps == 1) {
GLuint i, j, k;
const GLfloat *rowA = (const GLfloat *) srcRowA;
const GLfloat *rowB = (const GLfloat *) srcRowB;
GLfloat *dst = (GLfloat *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
}
}
else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) {
GLuint i, j, k, comp;
const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA;
const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB;
GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
for (comp = 0; comp < 4; comp++) {
GLfloat aj, ak, bj, bk;
aj = _mesa_half_to_float(rowA[j][comp]);
ak = _mesa_half_to_float(rowA[k][comp]);
bj = _mesa_half_to_float(rowB[j][comp]);
bk = _mesa_half_to_float(rowB[k][comp]);
dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
}
else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) {
GLuint i, j, k, comp;
const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA;
const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB;
GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
for (comp = 0; comp < 3; comp++) {
GLfloat aj, ak, bj, bk;
aj = _mesa_half_to_float(rowA[j][comp]);
ak = _mesa_half_to_float(rowA[k][comp]);
bj = _mesa_half_to_float(rowB[j][comp]);
bk = _mesa_half_to_float(rowB[k][comp]);
dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
}
else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) {
GLuint i, j, k, comp;
const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA;
const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB;
GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
for (comp = 0; comp < 2; comp++) {
GLfloat aj, ak, bj, bk;
aj = _mesa_half_to_float(rowA[j][comp]);
ak = _mesa_half_to_float(rowA[k][comp]);
bj = _mesa_half_to_float(rowB[j][comp]);
bk = _mesa_half_to_float(rowB[k][comp]);
dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
}
else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) {
GLuint i, j, k;
const GLhalfARB *rowA = (const GLhalfARB *) srcRowA;
const GLhalfARB *rowB = (const GLhalfARB *) srcRowB;
GLhalfARB *dst = (GLhalfARB *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
GLfloat aj, ak, bj, bk;
aj = _mesa_half_to_float(rowA[j]);
ak = _mesa_half_to_float(rowA[k]);
bj = _mesa_half_to_float(rowB[j]);
bk = _mesa_half_to_float(rowB[k]);
dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
else if (datatype == GL_UNSIGNED_INT && comps == 1) {
GLuint i, j, k;
const GLuint *rowA = (const GLuint *) srcRowA;
const GLuint *rowB = (const GLuint *) srcRowB;
GLfloat *dst = (GLfloat *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
}
}
else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) {
GLuint i, j, k;
const GLushort *rowA = (const GLushort *) srcRowA;
const GLushort *rowB = (const GLushort *) srcRowB;
GLushort *dst = (GLushort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x1f;
const GLint rowAr1 = rowA[k] & 0x1f;
const GLint rowBr0 = rowB[j] & 0x1f;
const GLint rowBr1 = rowB[k] & 0x1f;
const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
dst[i] = (blue << 11) | (green << 5) | red;
}
}
else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) {
GLuint i, j, k;
const GLushort *rowA = (const GLushort *) srcRowA;
const GLushort *rowB = (const GLushort *) srcRowB;
GLushort *dst = (GLushort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0xf;
const GLint rowAr1 = rowA[k] & 0xf;
const GLint rowBr0 = rowB[j] & 0xf;
const GLint rowBr1 = rowB[k] & 0xf;
const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
}
}
else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) {
GLuint i, j, k;
const GLushort *rowA = (const GLushort *) srcRowA;
const GLushort *rowB = (const GLushort *) srcRowB;
GLushort *dst = (GLushort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x1f;
const GLint rowAr1 = rowA[k] & 0x1f;
const GLint rowBr0 = rowB[j] & 0x1f;
const GLint rowBr1 = rowB[k] & 0xf;
const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
}
}
else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) {
GLuint i, j, k;
const GLubyte *rowA = (const GLubyte *) srcRowA;
const GLubyte *rowB = (const GLubyte *) srcRowB;
GLubyte *dst = (GLubyte *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x3;
const GLint rowAr1 = rowA[k] & 0x3;
const GLint rowBr0 = rowB[j] & 0x3;
const GLint rowBr1 = rowB[k] & 0x3;
const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
dst[i] = (blue << 5) | (green << 2) | red;
}
}
else {
_mesa_problem(NULL, "bad format in do_row()");
}
}
/*
* These functions generate a 1/2-size mipmap image from a source image.
* Texture borders are handled by copying or averaging the source image's
* border texels, depending on the scale-down factor.
*/
static void
make_1d_mipmap(GLenum datatype, GLuint comps, GLint border,
GLint srcWidth, const GLubyte *srcPtr,
GLint dstWidth, GLubyte *dstPtr)
{
const GLint bpt = bytes_per_pixel(datatype, comps);
const GLubyte *src;
GLubyte *dst;
/* skip the border pixel, if any */
src = srcPtr + border * bpt;
dst = dstPtr + border * bpt;
/* we just duplicate the input row, kind of hack, saves code */
do_row(datatype, comps, srcWidth - 2 * border, src, src,
dstWidth - 2 * border, dst);
if (border) {
/* copy left-most pixel from source */
MEMCPY(dstPtr, srcPtr, bpt);
/* copy right-most pixel from source */
MEMCPY(dstPtr + (dstWidth - 1) * bpt,
srcPtr + (srcWidth - 1) * bpt,
bpt);
}
}
static void
make_2d_mipmap(GLenum datatype, GLuint comps, GLint border,
GLint srcWidth, GLint srcHeight,
const GLubyte *srcPtr, GLint srcRowStride,
GLint dstWidth, GLint dstHeight,
GLubyte *dstPtr, GLint dstRowStride)
{
const GLint bpt = bytes_per_pixel(datatype, comps);
const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
const GLint dstWidthNB = dstWidth - 2 * border;
const GLint dstHeightNB = dstHeight - 2 * border;
const GLint srcRowBytes = bpt * srcRowStride;
const GLint dstRowBytes = bpt * dstRowStride;
const GLubyte *srcA, *srcB;
GLubyte *dst;
GLint row;
/* Compute src and dst pointers, skipping any border */
srcA = srcPtr + border * ((srcWidth + 1) * bpt);
if (srcHeight > 1)
srcB = srcA + srcRowBytes;
else
srcB = srcA;
dst = dstPtr + border * ((dstWidth + 1) * bpt);
for (row = 0; row < dstHeightNB; row++) {
do_row(datatype, comps, srcWidthNB, srcA, srcB,
dstWidthNB, dst);
srcA += 2 * srcRowBytes;
srcB += 2 * srcRowBytes;
dst += dstRowBytes;
}
/* This is ugly but probably won't be used much */
if (border > 0) {
/* fill in dest border */
/* lower-left border pixel */
MEMCPY(dstPtr, srcPtr, bpt);
/* lower-right border pixel */
MEMCPY(dstPtr + (dstWidth - 1) * bpt,
srcPtr + (srcWidth - 1) * bpt, bpt);
/* upper-left border pixel */
MEMCPY(dstPtr + dstWidth * (dstHeight - 1) * bpt,
srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
/* upper-right border pixel */
MEMCPY(dstPtr + (dstWidth * dstHeight - 1) * bpt,
srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
/* lower border */
do_row(datatype, comps, srcWidthNB,
srcPtr + bpt,
srcPtr + bpt,
dstWidthNB, dstPtr + bpt);
/* upper border */
do_row(datatype, comps, srcWidthNB,
srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
dstWidthNB,
dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
/* left and right borders */
if (srcHeight == dstHeight) {
/* copy border pixel from src to dst */
for (row = 1; row < srcHeight; row++) {
MEMCPY(dstPtr + dstWidth * row * bpt,
srcPtr + srcWidth * row * bpt, bpt);
MEMCPY(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
}
}
else {
/* average two src pixels each dest pixel */
for (row = 0; row < dstHeightNB; row += 2) {
do_row(datatype, comps, 1,
srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1, dstPtr + (dstWidth * row + 1) * bpt);
do_row(datatype, comps, 1,
srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
}
}
}
}
static void
make_3d_mipmap(GLenum datatype, GLuint comps, GLint border,
GLint srcWidth, GLint srcHeight, GLint srcDepth,
const GLubyte *srcPtr, GLint srcRowStride,
GLint dstWidth, GLint dstHeight, GLint dstDepth,
GLubyte *dstPtr, GLint dstRowStride)
{
const GLint bpt = bytes_per_pixel(datatype, comps);
const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
const GLint srcDepthNB = srcDepth - 2 * border;
const GLint dstWidthNB = dstWidth - 2 * border;
const GLint dstHeightNB = dstHeight - 2 * border;
const GLint dstDepthNB = dstDepth - 2 * border;
GLvoid *tmpRowA, *tmpRowB;
GLint img, row;
GLint bytesPerSrcImage, bytesPerDstImage;
GLint bytesPerSrcRow, bytesPerDstRow;
GLint srcImageOffset, srcRowOffset;
(void) srcDepthNB; /* silence warnings */
/* Need two temporary row buffers */
tmpRowA = _mesa_malloc(srcWidth * bpt);
if (!tmpRowA)
return;
tmpRowB = _mesa_malloc(srcWidth * bpt);
if (!tmpRowB) {
_mesa_free(tmpRowA);
return;
}
bytesPerSrcImage = srcWidth * srcHeight * bpt;
bytesPerDstImage = dstWidth * dstHeight * bpt;
bytesPerSrcRow = srcWidth * bpt;
bytesPerDstRow = dstWidth * bpt;
/* Offset between adjacent src images to be averaged together */
srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
/* Offset between adjacent src rows to be averaged together */
srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
/*
* Need to average together up to 8 src pixels for each dest pixel.
* Break that down into 3 operations:
* 1. take two rows from source image and average them together.
* 2. take two rows from next source image and average them together.
* 3. take the two averaged rows and average them for the final dst row.
*/
/*
_mesa_printf("mip3d %d x %d x %d -> %d x %d x %d\n",
srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
*/
for (img = 0; img < dstDepthNB; img++) {
/* first source image pointer, skipping border */
const GLubyte *imgSrcA = srcPtr
+ (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
+ img * (bytesPerSrcImage + srcImageOffset);
/* second source image pointer, skipping border */
const GLubyte *imgSrcB = imgSrcA + srcImageOffset;
/* address of the dest image, skipping border */
GLubyte *imgDst = dstPtr
+ (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
+ img * bytesPerDstImage;
/* setup the four source row pointers and the dest row pointer */
const GLubyte *srcImgARowA = imgSrcA;
const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
const GLubyte *srcImgBRowA = imgSrcB;
const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
GLubyte *dstImgRow = imgDst;
for (row = 0; row < dstHeightNB; row++) {
/* Average together two rows from first src image */
do_row(datatype, comps, srcWidthNB, srcImgARowA, srcImgARowB,
srcWidthNB, tmpRowA);
/* Average together two rows from second src image */
do_row(datatype, comps, srcWidthNB, srcImgBRowA, srcImgBRowB,
srcWidthNB, tmpRowB);
/* Average together the temp rows to make the final row */
do_row(datatype, comps, srcWidthNB, tmpRowA, tmpRowB,
dstWidthNB, dstImgRow);
/* advance to next rows */
srcImgARowA += bytesPerSrcRow + srcRowOffset;
srcImgARowB += bytesPerSrcRow + srcRowOffset;
srcImgBRowA += bytesPerSrcRow + srcRowOffset;
srcImgBRowB += bytesPerSrcRow + srcRowOffset;
dstImgRow += bytesPerDstRow;
}
}
_mesa_free(tmpRowA);
_mesa_free(tmpRowB);
/* Luckily we can leverage the make_2d_mipmap() function here! */
if (border > 0) {
/* do front border image */
make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight, srcPtr, srcRowStride,
dstWidth, dstHeight, dstPtr, dstRowStride);
/* do back border image */
make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight,
srcPtr + bytesPerSrcImage * (srcDepth - 1), srcRowStride,
dstWidth, dstHeight,
dstPtr + bytesPerDstImage * (dstDepth - 1), dstRowStride);
/* do four remaining border edges that span the image slices */
if (srcDepth == dstDepth) {
/* just copy border pixels from src to dst */
for (img = 0; img < dstDepthNB; img++) {
const GLubyte *src;
GLubyte *dst;
/* do border along [img][row=0][col=0] */
src = srcPtr + (img + 1) * bytesPerSrcImage;
dst = dstPtr + (img + 1) * bytesPerDstImage;
MEMCPY(dst, src, bpt);
/* do border along [img][row=dstHeight-1][col=0] */
src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
+ (srcHeight - 1) * bytesPerSrcRow;
dst = dstPtr + (img + 1) * bytesPerDstImage
+ (dstHeight - 1) * bytesPerDstRow;
MEMCPY(dst, src, bpt);
/* do border along [img][row=0][col=dstWidth-1] */
src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
+ (srcWidth - 1) * bpt;
dst = dstPtr + (img + 1) * bytesPerDstImage
+ (dstWidth - 1) * bpt;
MEMCPY(dst, src, bpt);
/* do border along [img][row=dstHeight-1][col=dstWidth-1] */
src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
+ (bytesPerSrcImage - bpt);
dst = dstPtr + (img + 1) * bytesPerDstImage
+ (bytesPerDstImage - bpt);
MEMCPY(dst, src, bpt);
}
}
else {
/* average border pixels from adjacent src image pairs */
ASSERT(srcDepthNB == 2 * dstDepthNB);
for (img = 0; img < dstDepthNB; img++) {
const GLubyte *src;
GLubyte *dst;
/* do border along [img][row=0][col=0] */
src = srcPtr + (img * 2 + 1) * bytesPerSrcImage;
dst = dstPtr + (img + 1) * bytesPerDstImage;
do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
/* do border along [img][row=dstHeight-1][col=0] */
src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
+ (srcHeight - 1) * bytesPerSrcRow;
dst = dstPtr + (img + 1) * bytesPerDstImage
+ (dstHeight - 1) * bytesPerDstRow;
do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
/* do border along [img][row=0][col=dstWidth-1] */
src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
+ (srcWidth - 1) * bpt;
dst = dstPtr + (img + 1) * bytesPerDstImage
+ (dstWidth - 1) * bpt;
do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
/* do border along [img][row=dstHeight-1][col=dstWidth-1] */
src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
+ (bytesPerSrcImage - bpt);
dst = dstPtr + (img + 1) * bytesPerDstImage
+ (bytesPerDstImage - bpt);
do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
}
}
}
}
static void
make_1d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
GLint srcWidth, const GLubyte *srcPtr, GLuint srcRowStride,
GLint dstWidth, GLint dstHeight,
GLubyte *dstPtr, GLuint dstRowStride )
{
const GLint bpt = bytes_per_pixel(datatype, comps);
const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
const GLint dstWidthNB = dstWidth - 2 * border;
const GLint dstHeightNB = dstHeight - 2 * border;
const GLint srcRowBytes = bpt * srcRowStride;
const GLint dstRowBytes = bpt * dstRowStride;
const GLubyte *src;
GLubyte *dst;
GLint row;
/* Compute src and dst pointers, skipping any border */
src = srcPtr + border * ((srcWidth + 1) * bpt);
dst = dstPtr + border * ((dstWidth + 1) * bpt);
for (row = 0; row < dstHeightNB; row++) {
do_row(datatype, comps, srcWidthNB, src, src,
dstWidthNB, dst);
src += srcRowBytes;
dst += dstRowBytes;
}
if (border) {
/* copy left-most pixel from source */
MEMCPY(dstPtr, srcPtr, bpt);
/* copy right-most pixel from source */
MEMCPY(dstPtr + (dstWidth - 1) * bpt,
srcPtr + (srcWidth - 1) * bpt,
bpt);
}
}
/**
* \bugs
* There is quite a bit of refactoring that could be done with this function
* and \c make_2d_mipmap.
*/
static void
make_2d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
GLint srcWidth, GLint srcHeight,
const GLubyte *srcPtr, GLint srcRowStride,
GLint dstWidth, GLint dstHeight, GLint dstDepth,
GLubyte *dstPtr, GLint dstRowStride)
{
const GLint bpt = bytes_per_pixel(datatype, comps);
const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
const GLint dstWidthNB = dstWidth - 2 * border;
const GLint dstHeightNB = dstHeight - 2 * border;
const GLint dstDepthNB = dstDepth - 2 * border;
const GLint srcRowBytes = bpt * srcRowStride;
const GLint dstRowBytes = bpt * dstRowStride;
const GLubyte *srcA, *srcB;
GLubyte *dst;
GLint layer;
GLint row;
/* Compute src and dst pointers, skipping any border */
srcA = srcPtr + border * ((srcWidth + 1) * bpt);
if (srcHeight > 1)
srcB = srcA + srcRowBytes;
else
srcB = srcA;
dst = dstPtr + border * ((dstWidth + 1) * bpt);
for (layer = 0; layer < dstDepthNB; layer++) {
for (row = 0; row < dstHeightNB; row++) {
do_row(datatype, comps, srcWidthNB, srcA, srcB,
dstWidthNB, dst);
srcA += 2 * srcRowBytes;
srcB += 2 * srcRowBytes;
dst += dstRowBytes;
}
/* This is ugly but probably won't be used much */
if (border > 0) {
/* fill in dest border */
/* lower-left border pixel */
MEMCPY(dstPtr, srcPtr, bpt);
/* lower-right border pixel */
MEMCPY(dstPtr + (dstWidth - 1) * bpt,
srcPtr + (srcWidth - 1) * bpt, bpt);
/* upper-left border pixel */
MEMCPY(dstPtr + dstWidth * (dstHeight - 1) * bpt,
srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
/* upper-right border pixel */
MEMCPY(dstPtr + (dstWidth * dstHeight - 1) * bpt,
srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
/* lower border */
do_row(datatype, comps, srcWidthNB,
srcPtr + bpt,
srcPtr + bpt,
dstWidthNB, dstPtr + bpt);
/* upper border */
do_row(datatype, comps, srcWidthNB,
srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
dstWidthNB,
dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
/* left and right borders */
if (srcHeight == dstHeight) {
/* copy border pixel from src to dst */
for (row = 1; row < srcHeight; row++) {
MEMCPY(dstPtr + dstWidth * row * bpt,
srcPtr + srcWidth * row * bpt, bpt);
MEMCPY(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
}
}
else {
/* average two src pixels each dest pixel */
for (row = 0; row < dstHeightNB; row += 2) {
do_row(datatype, comps, 1,
srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1, dstPtr + (dstWidth * row + 1) * bpt);
do_row(datatype, comps, 1,
srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
}
}
}
}
}
/**
* For GL_SGIX_generate_mipmap:
* Generate a complete set of mipmaps from texObj's base-level image.
* Stop at texObj's MaxLevel or when we get to the 1x1 texture.
*/
void
_mesa_generate_mipmap(GLcontext *ctx, GLenum target,
struct gl_texture_object *texObj)
{
const struct gl_texture_image *srcImage;
const struct gl_texture_format *convertFormat;
const GLubyte *srcData = NULL;
GLubyte *dstData = NULL;
GLint level, maxLevels;
GLenum datatype;
GLuint comps;
ASSERT(texObj);
/* XXX choose cube map face here??? */
srcImage = texObj->Image[0][texObj->BaseLevel];
ASSERT(srcImage);
maxLevels = _mesa_max_texture_levels(ctx, texObj->Target);
ASSERT(maxLevels > 0); /* bad target */
/* Find convertFormat - the format that do_row() will process */
if (srcImage->IsCompressed) {
/* setup for compressed textures */
GLuint row;
GLint components, size;
GLchan *dst;
assert(texObj->Target == GL_TEXTURE_2D ||
texObj->Target == GL_TEXTURE_CUBE_MAP_ARB);
if (srcImage->_BaseFormat == GL_RGB) {
convertFormat = &_mesa_texformat_rgb;
components = 3;
}
else if (srcImage->_BaseFormat == GL_RGBA) {
convertFormat = &_mesa_texformat_rgba;
components = 4;
}
else {
_mesa_problem(ctx, "bad srcImage->_BaseFormat in _mesa_generate_mipmaps");
return;
}
/* allocate storage for uncompressed GL_RGB or GL_RGBA images */
size = _mesa_bytes_per_pixel(srcImage->_BaseFormat, CHAN_TYPE)
* srcImage->Width * srcImage->Height * srcImage->Depth + 20;
/* 20 extra bytes, just be safe when calling last FetchTexel */
srcData = (GLubyte *) _mesa_malloc(size);
if (!srcData) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
return;
}
dstData = (GLubyte *) _mesa_malloc(size / 2); /* 1/4 would probably be OK */
if (!dstData) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
_mesa_free((void *) srcData);
return;
}
/* decompress base image here */
dst = (GLchan *) srcData;
for (row = 0; row < srcImage->Height; row++) {
GLuint col;
for (col = 0; col < srcImage->Width; col++) {
srcImage->FetchTexelc(srcImage, col, row, 0, dst);
dst += components;
}
}
}
else {
/* uncompressed */
convertFormat = srcImage->TexFormat;
}
_mesa_format_to_type_and_comps(convertFormat, &datatype, &comps);
for (level = texObj->BaseLevel; level < texObj->MaxLevel
&& level < maxLevels - 1; level++) {
/* generate image[level+1] from image[level] */
const struct gl_texture_image *srcImage;
struct gl_texture_image *dstImage;
GLint srcWidth, srcHeight, srcDepth;
GLint dstWidth, dstHeight, dstDepth;
GLint border, bytesPerTexel;
/* get src image parameters */
srcImage = _mesa_select_tex_image(ctx, texObj, target, level);
ASSERT(srcImage);
srcWidth = srcImage->Width;
srcHeight = srcImage->Height;
srcDepth = srcImage->Depth;
border = srcImage->Border;
/* compute next (level+1) image size */
if (srcWidth - 2 * border > 1) {
dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
}
else {
dstWidth = srcWidth; /* can't go smaller */
}
if ((srcHeight - 2 * border > 1) &&
(texObj->Target != GL_TEXTURE_1D_ARRAY_EXT)) {
dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
}
else {
dstHeight = srcHeight; /* can't go smaller */
}
if ((srcDepth - 2 * border > 1) &&
(texObj->Target != GL_TEXTURE_2D_ARRAY_EXT)) {
dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
}
else {
dstDepth = srcDepth; /* can't go smaller */
}
if (dstWidth == srcWidth &&
dstHeight == srcHeight &&
dstDepth == srcDepth) {
/* all done */
if (srcImage->IsCompressed) {
_mesa_free((void *) srcData);
_mesa_free(dstData);
}
return;
}
/* get dest gl_texture_image */
dstImage = _mesa_get_tex_image(ctx, texObj, target, level + 1);
if (!dstImage) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
return;
}
if (dstImage->ImageOffsets)
_mesa_free(dstImage->ImageOffsets);
/* Free old image data */
if (dstImage->Data)
ctx->Driver.FreeTexImageData(ctx, dstImage);
/* initialize new image */
_mesa_init_teximage_fields(ctx, target, dstImage, dstWidth, dstHeight,
dstDepth, border, srcImage->InternalFormat);
dstImage->DriverData = NULL;
dstImage->TexFormat = srcImage->TexFormat;
dstImage->FetchTexelc = srcImage->FetchTexelc;
dstImage->FetchTexelf = srcImage->FetchTexelf;
dstImage->IsCompressed = srcImage->IsCompressed;
if (dstImage->IsCompressed) {
dstImage->CompressedSize
= ctx->Driver.CompressedTextureSize(ctx, dstImage->Width,
dstImage->Height,
dstImage->Depth,
dstImage->TexFormat->MesaFormat);
ASSERT(dstImage->CompressedSize > 0);
}
ASSERT(dstImage->TexFormat);
ASSERT(dstImage->FetchTexelc);
ASSERT(dstImage->FetchTexelf);
/* Alloc new teximage data buffer.
* Setup src and dest data pointers.
*/
if (dstImage->IsCompressed) {
dstImage->Data = _mesa_alloc_texmemory(dstImage->CompressedSize);
if (!dstImage->Data) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
return;
}
/* srcData and dstData are already set */
ASSERT(srcData);
ASSERT(dstData);
}
else {
bytesPerTexel = dstImage->TexFormat->TexelBytes;
ASSERT(dstWidth * dstHeight * dstDepth * bytesPerTexel > 0);
dstImage->Data = _mesa_alloc_texmemory(dstWidth * dstHeight
* dstDepth * bytesPerTexel);
if (!dstImage->Data) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
return;
}
srcData = (const GLubyte *) srcImage->Data;
dstData = (GLubyte *) dstImage->Data;
}
/*
* We use simple 2x2 averaging to compute the next mipmap level.
*/
switch (target) {
case GL_TEXTURE_1D:
make_1d_mipmap(datatype, comps, border,
srcWidth, srcData,
dstWidth, dstData);
break;
case GL_TEXTURE_2D:
case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
make_2d_mipmap(datatype, comps, border,
srcWidth, srcHeight, srcData, srcImage->RowStride,
dstWidth, dstHeight, dstData, dstImage->RowStride);
break;
case GL_TEXTURE_3D:
make_3d_mipmap(datatype, comps, border,
srcWidth, srcHeight, srcDepth,
srcData, srcImage->RowStride,
dstWidth, dstHeight, dstDepth,
dstData, dstImage->RowStride);
break;
case GL_TEXTURE_1D_ARRAY_EXT:
make_1d_stack_mipmap(datatype, comps, border,
srcWidth, srcData, srcImage->RowStride,
dstWidth, dstHeight,
dstData, dstImage->RowStride);
break;
case GL_TEXTURE_2D_ARRAY_EXT:
make_2d_stack_mipmap(datatype, comps, border,
srcWidth, srcHeight,
srcData, srcImage->RowStride,
dstWidth, dstHeight,
dstDepth, dstData, dstImage->RowStride);
break;
case GL_TEXTURE_RECTANGLE_NV:
/* no mipmaps, do nothing */
break;
default:
_mesa_problem(ctx, "bad dimensions in _mesa_generate_mipmaps");
return;
}
if (dstImage->IsCompressed) {
GLubyte *temp;
/* compress image from dstData into dstImage->Data */
const GLenum srcFormat = convertFormat->BaseFormat;
GLint dstRowStride
= _mesa_compressed_row_stride(dstImage->TexFormat->MesaFormat, dstWidth);
ASSERT(srcFormat == GL_RGB || srcFormat == GL_RGBA);
dstImage->TexFormat->StoreImage(ctx, 2, dstImage->_BaseFormat,
dstImage->TexFormat,
dstImage->Data,
0, 0, 0, /* dstX/Y/Zoffset */
dstRowStride, 0, /* strides */
dstWidth, dstHeight, 1, /* size */
srcFormat, CHAN_TYPE,
dstData, /* src data, actually */
&ctx->DefaultPacking);
/* swap src and dest pointers */
temp = (GLubyte *) srcData;
srcData = dstData;
dstData = temp;
}
} /* loop over mipmap levels */
}
/**
* Helper function for drivers which need to rescale texture images to
* certain aspect ratios.
* Nearest filtering only (for broken hardware that can't support
* all aspect ratios). This can be made a lot faster, but I don't
* really care enough...
*/
void
_mesa_rescale_teximage2d(GLuint bytesPerPixel,
GLuint srcStrideInPixels,
GLuint dstRowStride,
GLint srcWidth, GLint srcHeight,
GLint dstWidth, GLint dstHeight,
const GLvoid *srcImage, GLvoid *dstImage)
{
GLint row, col;
#define INNER_LOOP( TYPE, HOP, WOP ) \
for ( row = 0 ; row < dstHeight ; row++ ) { \
GLint srcRow = row HOP hScale; \
for ( col = 0 ; col < dstWidth ; col++ ) { \
GLint srcCol = col WOP wScale; \
dst[col] = src[srcRow * srcStrideInPixels + srcCol]; \
} \
dst = (TYPE *) ((GLubyte *) dst + dstRowStride); \
} \
#define RESCALE_IMAGE( TYPE ) \
do { \
const TYPE *src = (const TYPE *)srcImage; \
TYPE *dst = (TYPE *)dstImage; \
\
if ( srcHeight < dstHeight ) { \
const GLint hScale = dstHeight / srcHeight; \
if ( srcWidth < dstWidth ) { \
const GLint wScale = dstWidth / srcWidth; \
INNER_LOOP( TYPE, /, / ); \
} \
else { \
const GLint wScale = srcWidth / dstWidth; \
INNER_LOOP( TYPE, /, * ); \
} \
} \
else { \
const GLint hScale = srcHeight / dstHeight; \
if ( srcWidth < dstWidth ) { \
const GLint wScale = dstWidth / srcWidth; \
INNER_LOOP( TYPE, *, / ); \
} \
else { \
const GLint wScale = srcWidth / dstWidth; \
INNER_LOOP( TYPE, *, * ); \
} \
} \
} while (0)
switch ( bytesPerPixel ) {
case 4:
RESCALE_IMAGE( GLuint );
break;
case 2:
RESCALE_IMAGE( GLushort );
break;
case 1:
RESCALE_IMAGE( GLubyte );
break;
default:
_mesa_problem(NULL,"unexpected bytes/pixel in _mesa_rescale_teximage2d");
}
}
/**
* Upscale an image by replication, not (typical) stretching.
* We use this when the image width or height is less than a
* certain size (4, 8) and we need to upscale an image.
*/
void
_mesa_upscale_teximage2d(GLsizei inWidth, GLsizei inHeight,
GLsizei outWidth, GLsizei outHeight,
GLint comps, const GLchan *src, GLint srcRowStride,
GLchan *dest )
{
GLint i, j, k;
ASSERT(outWidth >= inWidth);
ASSERT(outHeight >= inHeight);
#if 0
ASSERT(inWidth == 1 || inWidth == 2 || inHeight == 1 || inHeight == 2);
ASSERT((outWidth & 3) == 0);
ASSERT((outHeight & 3) == 0);
#endif
for (i = 0; i < outHeight; i++) {
const GLint ii = i % inHeight;
for (j = 0; j < outWidth; j++) {
const GLint jj = j % inWidth;
for (k = 0; k < comps; k++) {
dest[(i * outWidth + j) * comps + k]
= src[ii * srcRowStride + jj * comps + k];
}
}
}
}
|