1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
|
/*
* Mesa 3-D graphics library
* Version: 6.5.1
*
* Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file imports.h
* Standard C library function wrappers.
*
* This file provides wrappers for all the standard C library functions
* like malloc(), free(), printf(), getenv(), etc.
*/
#ifndef IMPORTS_H
#define IMPORTS_H
/* XXX some of the stuff in glheader.h should be moved into this file.
*/
#include "glheader.h"
#include <GL/internal/glcore.h>
#ifdef __cplusplus
extern "C" {
#endif
/**********************************************************************/
/** \name General macros */
/*@{*/
#ifndef NULL
#define NULL 0
#endif
/*@}*/
/**********************************************************************/
/** Memory macros */
/*@{*/
/** Allocate \p BYTES bytes */
#define MALLOC(BYTES) _mesa_malloc(BYTES)
/** Allocate and zero \p BYTES bytes */
#define CALLOC(BYTES) _mesa_calloc(BYTES)
/** Allocate a structure of type \p T */
#define MALLOC_STRUCT(T) (struct T *) _mesa_malloc(sizeof(struct T))
/** Allocate and zero a structure of type \p T */
#define CALLOC_STRUCT(T) (struct T *) _mesa_calloc(sizeof(struct T))
/** Free memory */
#define FREE(PTR) _mesa_free(PTR)
/** Allocate \p BYTES aligned at \p N bytes */
#define ALIGN_MALLOC(BYTES, N) _mesa_align_malloc(BYTES, N)
/** Allocate and zero \p BYTES bytes aligned at \p N bytes */
#define ALIGN_CALLOC(BYTES, N) _mesa_align_calloc(BYTES, N)
/** Allocate a structure of type \p T aligned at \p N bytes */
#define ALIGN_MALLOC_STRUCT(T, N) (struct T *) _mesa_align_malloc(sizeof(struct T), N)
/** Allocate and zero a structure of type \p T aligned at \p N bytes */
#define ALIGN_CALLOC_STRUCT(T, N) (struct T *) _mesa_align_calloc(sizeof(struct T), N)
/** Free aligned memory */
#define ALIGN_FREE(PTR) _mesa_align_free(PTR)
/** Copy \p BYTES bytes from \p SRC into \p DST */
#define MEMCPY( DST, SRC, BYTES) _mesa_memcpy(DST, SRC, BYTES)
/** Set \p N bytes in \p DST to \p VAL */
#define MEMSET( DST, VAL, N ) _mesa_memset(DST, VAL, N)
/*@}*/
/*
* For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
* as offsets into buffer stores. Since the vertex array pointer and
* buffer store pointer are both pointers and we need to add them, we use
* this macro.
* Both pointers/offsets are expressed in bytes.
*/
#define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) )
/**
* Sometimes we treat GLfloats as GLints. On x86 systems, moving a float
* as a int (thereby using integer registers instead of FP registers) is
* a performance win. Typically, this can be done with ordinary casts.
* But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
* these casts generate warnings.
* The following union typedef is used to solve that.
*/
typedef union { GLfloat f; GLint i; } fi_type;
/**********************************************************************
* Math macros
*/
#define MAX_GLUSHORT 0xffff
#define MAX_GLUINT 0xffffffff
#ifndef M_PI
#define M_PI (3.1415926536)
#endif
#ifndef M_E
#define M_E (2.7182818284590452354)
#endif
#ifndef FLT_MAX_EXP
#define FLT_MAX_EXP 128
#endif
/* XXX this is a bit of a hack needed for compilation within XFree86 */
#ifndef FLT_MIN
#define FLT_MIN (1.0e-37)
#endif
/* Degrees to radians conversion: */
#define DEG2RAD (M_PI/180.0)
/***
*** USE_IEEE: Determine if we're using IEEE floating point
***/
#if defined(__i386__) || defined(__386__) || defined(__sparc__) || \
defined(__s390x__) || defined(__powerpc__) || \
defined(__amd64__) || \
defined(ia64) || defined(__ia64__) || \
defined(__hppa__) || defined(hpux) || \
defined(__mips) || defined(_MIPS_ARCH) || \
defined(__arm__) || \
defined(__sh__) || defined(__m32r__) || \
defined(__m68k__) || defined(__s390__) \
(defined(__alpha__) && (defined(__IEEE_FLOAT) || !defined(VMS)))
#define USE_IEEE
#define IEEE_ONE 0x3f800000
#endif
/***
*** SQRTF: single-precision square root
***/
#if 0 /* _mesa_sqrtf() not accurate enough - temporarily disabled */
# define SQRTF(X) _mesa_sqrtf(X)
#elif defined(XFree86LOADER) && defined(IN_MODULE) && !defined(NO_LIBCWRAPPER)
# define SQRTF(X) (float) xf86sqrt((float) (X))
#else
# define SQRTF(X) (float) sqrt((float) (X))
#endif
/***
*** INV_SQRTF: single-precision inverse square root
***/
#if 0
#define INV_SQRTF(X) _mesa_inv_sqrt(X)
#else
#define INV_SQRTF(X) (1.0F / SQRTF(X)) /* this is faster on a P4 */
#endif
/***
*** LOG2: Log base 2 of float
***/
#ifdef USE_IEEE
#if 0
/* This is pretty fast, but not accurate enough (only 2 fractional bits).
* Based on code from http://www.stereopsis.com/log2.html
*/
static INLINE GLfloat LOG2(GLfloat x)
{
const GLfloat y = x * x * x * x;
const GLuint ix = *((GLuint *) &y);
const GLuint exp = (ix >> 23) & 0xFF;
const GLint log2 = ((GLint) exp) - 127;
return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */
}
#endif
/* Pretty fast, and accurate.
* Based on code from http://www.flipcode.com/totd/
*/
static INLINE GLfloat LOG2(GLfloat val)
{
fi_type num;
GLint log_2;
num.f = val;
log_2 = ((num.i >> 23) & 255) - 128;
num.i &= ~(255 << 23);
num.i += 127 << 23;
num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
return num.f + log_2;
}
#elif defined(XFree86LOADER) && defined(IN_MODULE) && !defined(NO_LIBCWRAPPER)
#define LOG2(x) ((GLfloat) (xf86log(x) * 1.442695))
#else
/*
* NOTE: log_base_2(x) = log(x) / log(2)
* NOTE: 1.442695 = 1/log(2).
*/
#define LOG2(x) ((GLfloat) (log(x) * 1.442695F))
#endif
/***
*** IS_INF_OR_NAN: test if float is infinite or NaN
***/
#ifdef USE_IEEE
static INLINE int IS_INF_OR_NAN( float x )
{
fi_type tmp;
tmp.f = x;
return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
}
#elif defined(isfinite)
#define IS_INF_OR_NAN(x) (!isfinite(x))
#elif defined(finite)
#define IS_INF_OR_NAN(x) (!finite(x))
#elif defined(__VMS)
#define IS_INF_OR_NAN(x) (!finite(x))
#elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
#define IS_INF_OR_NAN(x) (!isfinite(x))
#else
#define IS_INF_OR_NAN(x) (!finite(x))
#endif
/***
*** IS_NEGATIVE: test if float is negative
***/
#if defined(USE_IEEE)
static INLINE int GET_FLOAT_BITS( float x )
{
fi_type fi;
fi.f = x;
return fi.i;
}
#define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
#else
#define IS_NEGATIVE(x) (x < 0.0F)
#endif
/***
*** DIFFERENT_SIGNS: test if two floats have opposite signs
***/
#if defined(USE_IEEE)
#define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
#else
/* Could just use (x*y<0) except for the flatshading requirements.
* Maybe there's a better way?
*/
#define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
#endif
/***
*** CEILF: ceiling of float
*** FLOORF: floor of float
*** FABSF: absolute value of float
*** LOGF: the natural logarithm (base e) of the value
*** EXPF: raise e to the value
*** LDEXPF: multiply value by an integral power of two
*** FREXPF: extract mantissa and exponent from value
***/
#if defined(XFree86LOADER) && defined(IN_MODULE) && !defined(NO_LIBCWRAPPER)
#define CEILF(x) ((GLfloat) xf86ceil(x))
#define FLOORF(x) ((GLfloat) xf86floor(x))
#define FABSF(x) ((GLfloat) xf86fabs(x))
#define LOGF(x) ((GLfloat) xf86log(x))
#define EXPF(x) ((GLfloat) xf86exp(x))
#define LDEXPF(x,y) ((GLfloat) xf86ldexp(x,y))
#define FREXPF(x,y) ((GLfloat) xf86frexp(x,y))
#elif defined(__gnu_linux__)
/* C99 functions */
#define CEILF(x) ceilf(x)
#define FLOORF(x) floorf(x)
#define FABSF(x) fabsf(x)
#define LOGF(x) logf(x)
#define EXPF(x) expf(x)
#define LDEXPF(x,y) ldexpf(x,y)
#define FREXPF(x,y) frexpf(x,y)
#else
#define CEILF(x) ((GLfloat) ceil(x))
#define FLOORF(x) ((GLfloat) floor(x))
#define FABSF(x) ((GLfloat) fabs(x))
#define LOGF(x) ((GLfloat) log(x))
#define EXPF(x) ((GLfloat) exp(x))
#define LDEXPF(x,y) ((GLfloat) ldexp(x,y))
#define FREXPF(x,y) ((GLfloat) frexp(x,y))
#endif
/***
*** IROUND: return (as an integer) float rounded to nearest integer
***/
#if defined(USE_SPARC_ASM) && defined(__GNUC__) && defined(__sparc__)
static INLINE int iround(float f)
{
int r;
__asm__ ("fstoi %1, %0" : "=f" (r) : "f" (f));
return r;
}
#define IROUND(x) iround(x)
#elif defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) && \
(!defined(__BEOS__) || (__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 95)))
static INLINE int iround(float f)
{
int r;
__asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
return r;
}
#define IROUND(x) iround(x)
#elif defined(USE_X86_ASM) && defined(__MSC__) && defined(__WIN32__)
static INLINE int iround(float f)
{
int r;
_asm {
fld f
fistp r
}
return r;
}
#define IROUND(x) iround(x)
#elif defined(__WATCOMC__) && defined(__386__)
long iround(float f);
#pragma aux iround = \
"push eax" \
"fistp dword ptr [esp]" \
"pop eax" \
parm [8087] \
value [eax] \
modify exact [eax];
#define IROUND(x) iround(x)
#else
#define IROUND(f) ((int) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
#endif
/***
*** IROUND_POS: return (as an integer) positive float rounded to nearest int
***/
#ifdef DEBUG
#define IROUND_POS(f) (assert((f) >= 0.0F), IROUND(f))
#else
#define IROUND_POS(f) (IROUND(f))
#endif
/***
*** IFLOOR: return (as an integer) floor of float
***/
#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
/*
* IEEE floor for computers that round to nearest or even.
* 'f' must be between -4194304 and 4194303.
* This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
* but uses some IEEE specific tricks for better speed.
* Contributed by Josh Vanderhoof
*/
static INLINE int ifloor(float f)
{
int ai, bi;
double af, bf;
af = (3 << 22) + 0.5 + (double)f;
bf = (3 << 22) + 0.5 - (double)f;
/* GCC generates an extra fstp/fld without this. */
__asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
__asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
return (ai - bi) >> 1;
}
#define IFLOOR(x) ifloor(x)
#elif defined(USE_IEEE)
static INLINE int ifloor(float f)
{
int ai, bi;
double af, bf;
fi_type u;
af = (3 << 22) + 0.5 + (double)f;
bf = (3 << 22) + 0.5 - (double)f;
u.f = (float) af; ai = u.i;
u.f = (float) bf; bi = u.i;
return (ai - bi) >> 1;
}
#define IFLOOR(x) ifloor(x)
#else
static INLINE int ifloor(float f)
{
int i = IROUND(f);
return (i > f) ? i - 1 : i;
}
#define IFLOOR(x) ifloor(x)
#endif
/***
*** ICEIL: return (as an integer) ceiling of float
***/
#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
/*
* IEEE ceil for computers that round to nearest or even.
* 'f' must be between -4194304 and 4194303.
* This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
* but uses some IEEE specific tricks for better speed.
* Contributed by Josh Vanderhoof
*/
static INLINE int iceil(float f)
{
int ai, bi;
double af, bf;
af = (3 << 22) + 0.5 + (double)f;
bf = (3 << 22) + 0.5 - (double)f;
/* GCC generates an extra fstp/fld without this. */
__asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
__asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
return (ai - bi + 1) >> 1;
}
#define ICEIL(x) iceil(x)
#elif defined(USE_IEEE)
static INLINE int iceil(float f)
{
int ai, bi;
double af, bf;
fi_type u;
af = (3 << 22) + 0.5 + (double)f;
bf = (3 << 22) + 0.5 - (double)f;
u.f = (float) af; ai = u.i;
u.f = (float) bf; bi = u.i;
return (ai - bi + 1) >> 1;
}
#define ICEIL(x) iceil(x)
#else
static INLINE int iceil(float f)
{
int i = IROUND(f);
return (i < f) ? i + 1 : i;
}
#define ICEIL(x) iceil(x)
#endif
/***
*** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
*** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
***/
#if defined(USE_IEEE) && !defined(DEBUG)
#define IEEE_0996 0x3f7f0000 /* 0.996 or so */
/* This function/macro is sensitive to precision. Test very carefully
* if you change it!
*/
#define UNCLAMPED_FLOAT_TO_UBYTE(UB, F) \
do { \
fi_type __tmp; \
__tmp.f = (F); \
if (__tmp.i < 0) \
UB = (GLubyte) 0; \
else if (__tmp.i >= IEEE_0996) \
UB = (GLubyte) 255; \
else { \
__tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \
UB = (GLubyte) __tmp.i; \
} \
} while (0)
#define CLAMPED_FLOAT_TO_UBYTE(UB, F) \
do { \
fi_type __tmp; \
__tmp.f = (F) * (255.0F/256.0F) + 32768.0F; \
UB = (GLubyte) __tmp.i; \
} while (0)
#else
#define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
ub = ((GLubyte) IROUND(CLAMP((f), 0.0F, 1.0F) * 255.0F))
#define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
ub = ((GLubyte) IROUND((f) * 255.0F))
#endif
/***
*** START_FAST_MATH: Set x86 FPU to faster, 32-bit precision mode (and save
*** original mode to a temporary).
*** END_FAST_MATH: Restore x86 FPU to original mode.
***/
#if defined(__GNUC__) && defined(__i386__)
/*
* Set the x86 FPU control word to guarentee only 32 bits of precision
* are stored in registers. Allowing the FPU to store more introduces
* differences between situations where numbers are pulled out of memory
* vs. situations where the compiler is able to optimize register usage.
*
* In the worst case, we force the compiler to use a memory access to
* truncate the float, by specifying the 'volatile' keyword.
*/
/* Hardware default: All exceptions masked, extended double precision,
* round to nearest (IEEE compliant):
*/
#define DEFAULT_X86_FPU 0x037f
/* All exceptions masked, single precision, round to nearest:
*/
#define FAST_X86_FPU 0x003f
/* The fldcw instruction will cause any pending FP exceptions to be
* raised prior to entering the block, and we clear any pending
* exceptions before exiting the block. Hence, asm code has free
* reign over the FPU while in the fast math block.
*/
#if defined(NO_FAST_MATH)
#define START_FAST_MATH(x) \
do { \
static GLuint mask = DEFAULT_X86_FPU; \
__asm__ ( "fnstcw %0" : "=m" (*&(x)) ); \
__asm__ ( "fldcw %0" : : "m" (mask) ); \
} while (0)
#else
#define START_FAST_MATH(x) \
do { \
static GLuint mask = FAST_X86_FPU; \
__asm__ ( "fnstcw %0" : "=m" (*&(x)) ); \
__asm__ ( "fldcw %0" : : "m" (mask) ); \
} while (0)
#endif
/* Restore original FPU mode, and clear any exceptions that may have
* occurred in the FAST_MATH block.
*/
#define END_FAST_MATH(x) \
do { \
__asm__ ( "fnclex ; fldcw %0" : : "m" (*&(x)) ); \
} while (0)
#elif defined(__WATCOMC__) && defined(__386__)
#define DEFAULT_X86_FPU 0x037f /* See GCC comments above */
#define FAST_X86_FPU 0x003f /* See GCC comments above */
void _watcom_start_fast_math(unsigned short *x,unsigned short *mask);
#pragma aux _watcom_start_fast_math = \
"fnstcw word ptr [eax]" \
"fldcw word ptr [ecx]" \
parm [eax] [ecx] \
modify exact [];
void _watcom_end_fast_math(unsigned short *x);
#pragma aux _watcom_end_fast_math = \
"fnclex" \
"fldcw word ptr [eax]" \
parm [eax] \
modify exact [];
#if defined(NO_FAST_MATH)
#define START_FAST_MATH(x) \
do { \
static GLushort mask = DEFAULT_X86_FPU; \
_watcom_start_fast_math(&x,&mask); \
} while (0)
#else
#define START_FAST_MATH(x) \
do { \
static GLushort mask = FAST_X86_FPU; \
_watcom_start_fast_math(&x,&mask); \
} while (0)
#endif
#define END_FAST_MATH(x) _watcom_end_fast_math(&x)
#elif defined(_MSC_VER) && defined(_M_IX86)
#define DEFAULT_X86_FPU 0x037f /* See GCC comments above */
#define FAST_X86_FPU 0x003f /* See GCC comments above */
#if defined(NO_FAST_MATH)
#define START_FAST_MATH(x) do {\
static GLuint mask = DEFAULT_X86_FPU;\
__asm fnstcw word ptr [x]\
__asm fldcw word ptr [mask]\
} while(0)
#else
#define START_FAST_MATH(x) do {\
static GLuint mask = FAST_X86_FPU;\
__asm fnstcw word ptr [x]\
__asm fldcw word ptr [mask]\
} while(0)
#endif
#define END_FAST_MATH(x) do {\
__asm fnclex\
__asm fldcw word ptr [x]\
} while(0)
#else
#define START_FAST_MATH(x) x = 0
#define END_FAST_MATH(x) (void)(x)
#endif
/**********************************************************************
* Functions
*/
extern void *
_mesa_malloc( size_t bytes );
extern void *
_mesa_calloc( size_t bytes );
extern void
_mesa_free( void *ptr );
extern void *
_mesa_align_malloc( size_t bytes, unsigned long alignment );
extern void *
_mesa_align_calloc( size_t bytes, unsigned long alignment );
extern void
_mesa_align_free( void *ptr );
extern void *
_mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
unsigned long alignment);
extern void *
_mesa_exec_malloc( GLuint size );
extern void
_mesa_exec_free( void *addr );
extern void *
_mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
extern void *
_mesa_memcpy( void *dest, const void *src, size_t n );
extern void
_mesa_memset( void *dst, int val, size_t n );
extern void
_mesa_memset16( unsigned short *dst, unsigned short val, size_t n );
extern void
_mesa_bzero( void *dst, size_t n );
extern int
_mesa_memcmp( const void *s1, const void *s2, size_t n );
extern double
_mesa_sin(double a);
extern float
_mesa_sinf(float a);
extern double
_mesa_cos(double a);
extern float
_mesa_asinf(float x);
extern float
_mesa_atanf(float x);
extern double
_mesa_sqrtd(double x);
extern float
_mesa_sqrtf(float x);
extern float
_mesa_inv_sqrtf(float x);
extern double
_mesa_pow(double x, double y);
extern int
_mesa_ffs(int i);
extern unsigned int
_mesa_bitcount(unsigned int n);
extern GLhalfARB
_mesa_float_to_half(float f);
extern float
_mesa_half_to_float(GLhalfARB h);
extern void *
_mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *) );
extern char *
_mesa_getenv( const char *var );
extern char *
_mesa_strstr( const char *haystack, const char *needle );
extern char *
_mesa_strncat( char *dest, const char *src, size_t n );
extern char *
_mesa_strcpy( char *dest, const char *src );
extern char *
_mesa_strncpy( char *dest, const char *src, size_t n );
extern size_t
_mesa_strlen( const char *s );
extern int
_mesa_strcmp( const char *s1, const char *s2 );
extern int
_mesa_strncmp( const char *s1, const char *s2, size_t n );
extern char *
_mesa_strdup( const char *s );
extern int
_mesa_atoi( const char *s );
extern double
_mesa_strtod( const char *s, char **end );
extern int
_mesa_sprintf( char *str, const char *fmt, ... );
extern void
_mesa_printf( const char *fmtString, ... );
extern int
_mesa_vsprintf( char *str, const char *fmt, va_list args );
extern void
_mesa_warning( __GLcontext *gc, const char *fmtString, ... );
extern void
_mesa_problem( const __GLcontext *ctx, const char *fmtString, ... );
extern void
_mesa_error( __GLcontext *ctx, GLenum error, const char *fmtString, ... );
extern void
_mesa_debug( const __GLcontext *ctx, const char *fmtString, ... );
extern void
_mesa_exit( int status );
extern void
_mesa_init_default_imports( __GLimports *imports, void *driverCtx );
#ifdef __cplusplus
}
#endif
#endif /* IMPORTS_H */
|