1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
|
/**
* \file hash.c
* Generic hash table.
*
* Used for display lists, texture objects, vertex/fragment programs,
* buffer objects, etc. The hash functions are thread-safe.
*
* \note key=0 is illegal.
*
* \author Brian Paul
*/
/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "glheader.h"
#include "imports.h"
#include "hash.h"
#include "util/hash_table.h"
/**
* Magic GLuint object name that gets stored outside of the struct hash_table.
*
* The hash table needs a particular pointer to be the marker for a key that
* was deleted from the table, along with NULL for the "never allocated in the
* table" marker. Legacy GL allows any GLuint to be used as a GL object name,
* and we use a 1:1 mapping from GLuints to key pointers, so we need to be
* able to track a GLuint that happens to match the deleted key outside of
* struct hash_table. We tell the hash table to use "1" as the deleted key
* value, so that we test the deleted-key-in-the-table path as best we can.
*/
#define DELETED_KEY_VALUE 1
/**
* The hash table data structure.
*/
struct _mesa_HashTable {
struct hash_table *ht;
GLuint MaxKey; /**< highest key inserted so far */
mtx_t Mutex; /**< mutual exclusion lock */
GLboolean InDeleteAll; /**< Debug check */
/** Value that would be in the table for DELETED_KEY_VALUE. */
void *deleted_key_data;
};
/** @{
* Mapping from our use of GLuint as both the key and the hash value to the
* hash_table.h API
*
* There exist many integer hash functions, designed to avoid collisions when
* the integers are spread across key space with some patterns. In GL, the
* pattern (in the case of glGen*()ed object IDs) is that the keys are unique
* contiguous integers starting from 1. Because of that, we just use the key
* as the hash value, to minimize the cost of the hash function. If objects
* are never deleted, we will never see a collision in the table, because the
* table resizes itself when it approaches full, and thus key % table_size ==
* key.
*
* The case where we could have collisions for genned objects would be
* something like: glGenBuffers(&a, 100); glDeleteBuffers(&a + 50, 50);
* glGenBuffers(&b, 100), because objects 1-50 and 101-200 are allocated at
* the end of that sequence, instead of 1-150. So far it doesn't appear to be
* a problem.
*/
static bool
uint_key_compare(const void *a, const void *b)
{
return a == b;
}
static uint32_t
uint_hash(GLuint id)
{
return id;
}
static uint32_t
uint_key_hash(const void *key)
{
return uint_hash((uintptr_t)key);
}
static void *
uint_key(GLuint id)
{
return (void *)(uintptr_t) id;
}
/** @} */
/**
* Create a new hash table.
*
* \return pointer to a new, empty hash table.
*/
struct _mesa_HashTable *
_mesa_NewHashTable(void)
{
struct _mesa_HashTable *table = CALLOC_STRUCT(_mesa_HashTable);
if (table) {
table->ht = _mesa_hash_table_create(NULL, uint_key_hash,
uint_key_compare);
if (table->ht == NULL) {
free(table);
_mesa_error_no_memory(__func__);
return NULL;
}
_mesa_hash_table_set_deleted_key(table->ht, uint_key(DELETED_KEY_VALUE));
/*
* Needs to be recursive, since the callback in _mesa_HashWalk()
* is allowed to call _mesa_HashRemove().
*/
mtx_init(&table->Mutex, mtx_recursive);
}
else {
_mesa_error_no_memory(__func__);
}
return table;
}
/**
* Delete a hash table.
* Frees each entry on the hash table and then the hash table structure itself.
* Note that the caller should have already traversed the table and deleted
* the objects in the table (i.e. We don't free the entries' data pointer).
*
* \param table the hash table to delete.
*/
void
_mesa_DeleteHashTable(struct _mesa_HashTable *table)
{
assert(table);
if (_mesa_hash_table_next_entry(table->ht, NULL) != NULL) {
_mesa_problem(NULL, "In _mesa_DeleteHashTable, found non-freed data");
}
_mesa_hash_table_destroy(table->ht, NULL);
mtx_destroy(&table->Mutex);
free(table);
}
/**
* Lookup an entry in the hash table, without locking.
* \sa _mesa_HashLookup
*/
static inline void *
_mesa_HashLookup_unlocked(struct _mesa_HashTable *table, GLuint key)
{
const struct hash_entry *entry;
assert(table);
assert(key);
if (key == DELETED_KEY_VALUE)
return table->deleted_key_data;
entry = _mesa_hash_table_search_pre_hashed(table->ht,
uint_hash(key),
uint_key(key));
if (!entry)
return NULL;
return entry->data;
}
/**
* Lookup an entry in the hash table.
*
* \param table the hash table.
* \param key the key.
*
* \return pointer to user's data or NULL if key not in table
*/
void *
_mesa_HashLookup(struct _mesa_HashTable *table, GLuint key)
{
void *res;
_mesa_HashLockMutex(table);
res = _mesa_HashLookup_unlocked(table, key);
_mesa_HashUnlockMutex(table);
return res;
}
/**
* Lookup an entry in the hash table without locking the mutex.
*
* The hash table mutex must be locked manually by calling
* _mesa_HashLockMutex() before calling this function.
*
* \param table the hash table.
* \param key the key.
*
* \return pointer to user's data or NULL if key not in table
*/
void *
_mesa_HashLookupLocked(struct _mesa_HashTable *table, GLuint key)
{
return _mesa_HashLookup_unlocked(table, key);
}
/**
* Lock the hash table mutex.
*
* This function should be used when multiple objects need
* to be looked up in the hash table, to avoid having to lock
* and unlock the mutex each time.
*
* \param table the hash table.
*/
void
_mesa_HashLockMutex(struct _mesa_HashTable *table)
{
assert(table);
mtx_lock(&table->Mutex);
}
/**
* Unlock the hash table mutex.
*
* \param table the hash table.
*/
void
_mesa_HashUnlockMutex(struct _mesa_HashTable *table)
{
assert(table);
mtx_unlock(&table->Mutex);
}
static inline void
_mesa_HashInsert_unlocked(struct _mesa_HashTable *table, GLuint key, void *data)
{
uint32_t hash = uint_hash(key);
struct hash_entry *entry;
assert(table);
assert(key);
if (key > table->MaxKey)
table->MaxKey = key;
if (key == DELETED_KEY_VALUE) {
table->deleted_key_data = data;
} else {
entry = _mesa_hash_table_search_pre_hashed(table->ht, hash, uint_key(key));
if (entry) {
entry->data = data;
} else {
_mesa_hash_table_insert_pre_hashed(table->ht, hash, uint_key(key), data);
}
}
}
/**
* Insert a key/pointer pair into the hash table without locking the mutex.
* If an entry with this key already exists we'll replace the existing entry.
*
* The hash table mutex must be locked manually by calling
* _mesa_HashLockMutex() before calling this function.
*
* \param table the hash table.
* \param key the key (not zero).
* \param data pointer to user data.
*/
void
_mesa_HashInsertLocked(struct _mesa_HashTable *table, GLuint key, void *data)
{
_mesa_HashInsert_unlocked(table, key, data);
}
/**
* Insert a key/pointer pair into the hash table.
* If an entry with this key already exists we'll replace the existing entry.
*
* \param table the hash table.
* \param key the key (not zero).
* \param data pointer to user data.
*/
void
_mesa_HashInsert(struct _mesa_HashTable *table, GLuint key, void *data)
{
_mesa_HashLockMutex(table);
_mesa_HashInsert_unlocked(table, key, data);
_mesa_HashUnlockMutex(table);
}
/**
* Remove an entry from the hash table.
*
* \param table the hash table.
* \param key key of entry to remove.
*
* While holding the hash table's lock, searches the entry with the matching
* key and unlinks it.
*/
static inline void
_mesa_HashRemove_unlocked(struct _mesa_HashTable *table, GLuint key)
{
struct hash_entry *entry;
assert(table);
assert(key);
/* assert if _mesa_HashRemove illegally called from _mesa_HashDeleteAll
* callback function. Have to check this outside of mutex lock.
*/
assert(!table->InDeleteAll);
if (key == DELETED_KEY_VALUE) {
table->deleted_key_data = NULL;
} else {
entry = _mesa_hash_table_search_pre_hashed(table->ht,
uint_hash(key),
uint_key(key));
_mesa_hash_table_remove(table->ht, entry);
}
}
void
_mesa_HashRemoveLocked(struct _mesa_HashTable *table, GLuint key)
{
_mesa_HashRemove_unlocked(table, key);
}
void
_mesa_HashRemove(struct _mesa_HashTable *table, GLuint key)
{
_mesa_HashLockMutex(table);
_mesa_HashRemove_unlocked(table, key);
_mesa_HashUnlockMutex(table);
}
/**
* Delete all entries in a hash table, but don't delete the table itself.
* Invoke the given callback function for each table entry.
*
* \param table the hash table to delete
* \param callback the callback function
* \param userData arbitrary pointer to pass along to the callback
* (this is typically a struct gl_context pointer)
*/
void
_mesa_HashDeleteAll(struct _mesa_HashTable *table,
void (*callback)(GLuint key, void *data, void *userData),
void *userData)
{
struct hash_entry *entry;
assert(callback);
_mesa_HashLockMutex(table);
table->InDeleteAll = GL_TRUE;
hash_table_foreach(table->ht, entry) {
callback((uintptr_t)entry->key, entry->data, userData);
_mesa_hash_table_remove(table->ht, entry);
}
if (table->deleted_key_data) {
callback(DELETED_KEY_VALUE, table->deleted_key_data, userData);
table->deleted_key_data = NULL;
}
table->InDeleteAll = GL_FALSE;
_mesa_HashUnlockMutex(table);
}
/**
* Walk over all entries in a hash table, calling callback function for each.
* \param table the hash table to walk
* \param callback the callback function
* \param userData arbitrary pointer to pass along to the callback
* (this is typically a struct gl_context pointer)
*/
static void
hash_walk_unlocked(const struct _mesa_HashTable *table,
void (*callback)(GLuint key, void *data, void *userData),
void *userData)
{
assert(table);
assert(callback);
struct hash_entry *entry;
hash_table_foreach(table->ht, entry) {
callback((uintptr_t)entry->key, entry->data, userData);
}
if (table->deleted_key_data)
callback(DELETED_KEY_VALUE, table->deleted_key_data, userData);
}
void
_mesa_HashWalk(const struct _mesa_HashTable *table,
void (*callback)(GLuint key, void *data, void *userData),
void *userData)
{
/* cast-away const */
struct _mesa_HashTable *table2 = (struct _mesa_HashTable *) table;
_mesa_HashLockMutex(table2);
hash_walk_unlocked(table, callback, userData);
_mesa_HashUnlockMutex(table2);
}
void
_mesa_HashWalkLocked(const struct _mesa_HashTable *table,
void (*callback)(GLuint key, void *data, void *userData),
void *userData)
{
hash_walk_unlocked(table, callback, userData);
}
static void
debug_print_entry(GLuint key, void *data, void *userData)
{
_mesa_debug(NULL, "%u %p\n", key, data);
}
/**
* Dump contents of hash table for debugging.
*
* \param table the hash table.
*/
void
_mesa_HashPrint(const struct _mesa_HashTable *table)
{
if (table->deleted_key_data)
debug_print_entry(DELETED_KEY_VALUE, table->deleted_key_data, NULL);
_mesa_HashWalk(table, debug_print_entry, NULL);
}
/**
* Find a block of adjacent unused hash keys.
*
* \param table the hash table.
* \param numKeys number of keys needed.
*
* \return Starting key of free block or 0 if failure.
*
* If there are enough free keys between the maximum key existing in the table
* (_mesa_HashTable::MaxKey) and the maximum key possible, then simply return
* the adjacent key. Otherwise do a full search for a free key block in the
* allowable key range.
*/
GLuint
_mesa_HashFindFreeKeyBlock(struct _mesa_HashTable *table, GLuint numKeys)
{
const GLuint maxKey = ~((GLuint) 0) - 1;
if (maxKey - numKeys > table->MaxKey) {
/* the quick solution */
return table->MaxKey + 1;
}
else {
/* the slow solution */
GLuint freeCount = 0;
GLuint freeStart = 1;
GLuint key;
for (key = 1; key != maxKey; key++) {
if (_mesa_HashLookup_unlocked(table, key)) {
/* darn, this key is already in use */
freeCount = 0;
freeStart = key+1;
}
else {
/* this key not in use, check if we've found enough */
freeCount++;
if (freeCount == numKeys) {
return freeStart;
}
}
}
/* cannot allocate a block of numKeys consecutive keys */
return 0;
}
}
/**
* Return the number of entries in the hash table.
*/
GLuint
_mesa_HashNumEntries(const struct _mesa_HashTable *table)
{
GLuint count = 0;
if (table->deleted_key_data)
count++;
count += _mesa_hash_table_num_entries(table->ht);
return count;
}
|