aboutsummaryrefslogtreecommitdiffstats
path: root/src/mesa/main/format_utils.c
blob: 5fdabd5b97f54d5523c185e74103e515e6a6779b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
/*
 * Mesa 3-D graphics library
 *
 * Copyright (C) 2014  Intel Corporation  All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include "format_utils.h"
#include "glformats.h"
#include "format_pack.h"
#include "format_unpack.h"

const mesa_array_format RGBA32_FLOAT =
   MESA_ARRAY_FORMAT(4, 1, 1, 1, 4, 0, 1, 2, 3);

const mesa_array_format RGBA8_UBYTE =
   MESA_ARRAY_FORMAT(1, 0, 0, 1, 4, 0, 1, 2, 3);

const mesa_array_format RGBA32_UINT =
   MESA_ARRAY_FORMAT(4, 0, 0, 0, 4, 0, 1, 2, 3);

const mesa_array_format RGBA32_INT =
   MESA_ARRAY_FORMAT(4, 1, 0, 0, 4, 0, 1, 2, 3);

static void
invert_swizzle(uint8_t dst[4], const uint8_t src[4])
{
   int i, j;

   dst[0] = MESA_FORMAT_SWIZZLE_NONE;
   dst[1] = MESA_FORMAT_SWIZZLE_NONE;
   dst[2] = MESA_FORMAT_SWIZZLE_NONE;
   dst[3] = MESA_FORMAT_SWIZZLE_NONE;

   for (i = 0; i < 4; ++i)
      for (j = 0; j < 4; ++j)
         if (src[j] == i && dst[i] == MESA_FORMAT_SWIZZLE_NONE)
            dst[i] = j;
}

/* Takes a src to RGBA swizzle and applies a rebase swizzle to it. This
 * is used when we need to rebase a format to match a different
 * base internal format.
 *
 * The rebase swizzle can be NULL, which means that no rebase is necessary,
 * in which case the src to RGBA swizzle is copied to the output without
 * changes.
 *
 * The resulting rebased swizzle and well as the input swizzles are
 * all 4-element swizzles, but the rebase swizzle can be NULL if no rebase
 * is necessary.
 */
static void
compute_rebased_rgba_component_mapping(uint8_t *src2rgba,
                                       uint8_t *rebase_swizzle,
                                       uint8_t *rebased_src2rgba)
{
   int i;

   if (rebase_swizzle) {
      for (i = 0; i < 4; i++) {
         if (rebase_swizzle[i] > MESA_FORMAT_SWIZZLE_W)
            rebased_src2rgba[i] = rebase_swizzle[i];
         else
            rebased_src2rgba[i] = src2rgba[rebase_swizzle[i]];
      }
   } else {
      /* No rebase needed, so src2rgba is all that we need */
      memcpy(rebased_src2rgba, src2rgba, 4 * sizeof(uint8_t));
   }
}

/* Computes the final swizzle transform to apply from src to dst in a
 * conversion that might involve a rebase swizzle.
 *
 * This is used to compute the swizzle transform to apply in conversions
 * between array formats where we have a src2rgba swizzle, a rgba2dst swizzle
 * and possibly, a rebase swizzle.
 *
 * The final swizzle transform to apply (src2dst) when a rebase swizzle is
 * involved is: src -> rgba -> base -> rgba -> dst
 */
static void
compute_src2dst_component_mapping(uint8_t *src2rgba, uint8_t *rgba2dst,
                                  uint8_t *rebase_swizzle, uint8_t *src2dst)
{
   int i;

   if (!rebase_swizzle) {
      for (i = 0; i < 4; i++) {
         if (rgba2dst[i] > MESA_FORMAT_SWIZZLE_W) {
            src2dst[i] = rgba2dst[i];
         } else {
            src2dst[i] = src2rgba[rgba2dst[i]];
         }
      }
   } else {
      for (i = 0; i < 4; i++) {
         if (rgba2dst[i] > MESA_FORMAT_SWIZZLE_W) {
            src2dst[i] = rgba2dst[i];
         } else if (rebase_swizzle[rgba2dst[i]] > MESA_FORMAT_SWIZZLE_W) {
            src2dst[i] = rebase_swizzle[rgba2dst[i]];
         } else {
            src2dst[i] = src2rgba[rebase_swizzle[rgba2dst[i]]];
         }
      }
   }
}

/**
 * This function is used by clients of _mesa_format_convert to obtain
 * the rebase swizzle to use in a format conversion based on the base
 * format involved.
 *
 * \param baseFormat  the base internal format involved in the conversion.
 * \param map  the rebase swizzle to consider
 *
 * This function computes 'map' as rgba -> baseformat -> rgba and returns true
 * if the resulting swizzle transform is not the identity transform (thus, a
 * rebase is needed). If the function returns false then a rebase swizzle
 * is not necessary and the value of 'map' is undefined. In this situation
 * clients of _mesa_format_convert should pass NULL in the 'rebase_swizzle'
 * parameter.
 */
bool
_mesa_compute_rgba2base2rgba_component_mapping(GLenum baseFormat, uint8_t *map)
{
   uint8_t rgba2base[6], base2rgba[6];
   int i;

   switch (baseFormat) {
   case GL_ALPHA:
   case GL_RED:
   case GL_GREEN:
   case GL_BLUE:
   case GL_RG:
   case GL_RGB:
   case GL_BGR:
   case GL_RGBA:
   case GL_BGRA:
   case GL_ABGR_EXT:
   case GL_LUMINANCE:
   case GL_INTENSITY:
   case GL_LUMINANCE_ALPHA:
      {
         bool needRebase = false;
         _mesa_compute_component_mapping(GL_RGBA, baseFormat, rgba2base);
         _mesa_compute_component_mapping(baseFormat, GL_RGBA, base2rgba);
         for (i = 0; i < 4; i++) {
            if (base2rgba[i] > MESA_FORMAT_SWIZZLE_W) {
               map[i] = base2rgba[i];
            } else {
               map[i] = rgba2base[base2rgba[i]];
            }
            if (map[i] != i)
               needRebase = true;
         }
         return needRebase;
      }
   default:
      unreachable("Unexpected base format");
   }
}

/**
 * This can be used to convert between most color formats.
 *
 * Limitations:
 * - This function doesn't handle GL_COLOR_INDEX or YCBCR formats.
 * - This function doesn't handle byte-swapping or transferOps, these should
 *   be handled by the caller.
 *
 * \param void_dst  The address where converted color data will be stored.
 *                  The caller must ensure that the buffer is large enough
 *                  to hold the converted pixel data.
 * \param dst_format  The destination color format. It can be a mesa_format
 *                    or a mesa_array_format represented as an uint32_t.
 * \param dst_stride  The stride of the destination format in bytes.
 * \param void_src  The address of the source color data to convert.
 * \param src_format  The source color format. It can be a mesa_format
 *                    or a mesa_array_format represented as an uint32_t.
 * \param src_stride  The stride of the source format in bytes.
 * \param width  The width, in pixels, of the source image to convert.
 * \param height  The height, in pixels, of the source image to convert.
 * \param rebase_swizzle  A swizzle transform to apply during the conversion,
 *                        typically used to match a different internal base
 *                        format involved. NULL if no rebase transform is needed
 *                        (i.e. the internal base format and the base format of
 *                        the dst or the src -depending on whether we are doing
 *                        an upload or a download respectively- are the same).
 */
void
_mesa_format_convert(void *void_dst, uint32_t dst_format, size_t dst_stride,
                     void *void_src, uint32_t src_format, size_t src_stride,
                     size_t width, size_t height, uint8_t *rebase_swizzle)
{
   uint8_t *dst = (uint8_t *)void_dst;
   uint8_t *src = (uint8_t *)void_src;
   mesa_array_format src_array_format, dst_array_format;
   bool src_format_is_mesa_array_format, dst_format_is_mesa_array_format;
   uint8_t src2dst[4], src2rgba[4], rgba2dst[4], dst2rgba[4];
   uint8_t rebased_src2rgba[4];
   enum mesa_array_format_datatype src_type = 0, dst_type = 0, common_type;
   bool normalized, dst_integer, src_integer, is_signed;
   int src_num_channels = 0, dst_num_channels = 0;
   uint8_t (*tmp_ubyte)[4];
   float (*tmp_float)[4];
   uint32_t (*tmp_uint)[4];
   int bits;
   size_t row;

   if (_mesa_format_is_mesa_array_format(src_format)) {
      src_format_is_mesa_array_format = true;
      src_array_format = src_format;
   } else {
      assert(_mesa_is_format_color_format(src_format));
      src_format_is_mesa_array_format = false;
      src_array_format = _mesa_format_to_array_format(src_format);
   }

   if (_mesa_format_is_mesa_array_format(dst_format)) {
      dst_format_is_mesa_array_format = true;
      dst_array_format = dst_format;
   } else {
      assert(_mesa_is_format_color_format(dst_format));
      dst_format_is_mesa_array_format = false;
      dst_array_format = _mesa_format_to_array_format(dst_format);
   }

   /* First we see if we can implement the conversion with a direct pack
    * or unpack.
    *
    * In this case we want to be careful when we need to apply a swizzle to
    * match an internal base format, since in these cases a simple pack/unpack
    * to the dst format from the src format may not match the requirements
    * of the internal base format. For now we decide to be safe and
    * avoid this path in these scenarios but in the future we may want to
    * enable it for specific combinations that are known to work.
    */
   if (!rebase_swizzle) {
      /* Handle the cases where we can directly unpack */
      if (!src_format_is_mesa_array_format) {
         if (dst_array_format == RGBA32_FLOAT) {
            for (row = 0; row < height; ++row) {
               _mesa_unpack_rgba_row(src_format, width,
                                     src, (float (*)[4])dst);
               src += src_stride;
               dst += dst_stride;
            }
            return;
         } else if (dst_array_format == RGBA8_UBYTE) {
            assert(!_mesa_is_format_integer_color(src_format));
            for (row = 0; row < height; ++row) {
               _mesa_unpack_ubyte_rgba_row(src_format, width,
                                           src, (uint8_t (*)[4])dst);
               src += src_stride;
               dst += dst_stride;
            }
            return;
         } else if (dst_array_format == RGBA32_UINT &&
                    _mesa_is_format_unsigned(src_format)) {
            assert(_mesa_is_format_integer_color(src_format));
            for (row = 0; row < height; ++row) {
               _mesa_unpack_uint_rgba_row(src_format, width,
                                          src, (uint32_t (*)[4])dst);
               src += src_stride;
               dst += dst_stride;
            }
            return;
         }
      }

      /* Handle the cases where we can directly pack */
      if (!dst_format_is_mesa_array_format) {
         if (src_array_format == RGBA32_FLOAT) {
            for (row = 0; row < height; ++row) {
               _mesa_pack_float_rgba_row(dst_format, width,
                                         (const float (*)[4])src, dst);
               src += src_stride;
               dst += dst_stride;
            }
            return;
         } else if (src_array_format == RGBA8_UBYTE) {
            assert(!_mesa_is_format_integer_color(dst_format));
            for (row = 0; row < height; ++row) {
               _mesa_pack_ubyte_rgba_row(dst_format, width,
                                         (const uint8_t (*)[4])src, dst);
               src += src_stride;
               dst += dst_stride;
            }
            return;
         } else if (src_array_format == RGBA32_UINT &&
                    _mesa_is_format_unsigned(dst_format)) {
            assert(_mesa_is_format_integer_color(dst_format));
            for (row = 0; row < height; ++row) {
               _mesa_pack_uint_rgba_row(dst_format, width,
                                        (const uint32_t (*)[4])src, dst);
               src += src_stride;
               dst += dst_stride;
            }
            return;
         }
      }
   }

   /* Handle conversions between array formats */
   normalized = false;
   if (src_array_format) {
      src_type = _mesa_array_format_get_datatype(src_array_format);

      src_num_channels = _mesa_array_format_get_num_channels(src_array_format);

      _mesa_array_format_get_swizzle(src_array_format, src2rgba);

      normalized = _mesa_array_format_is_normalized(src_array_format);
   }

   if (dst_array_format) {
      dst_type = _mesa_array_format_get_datatype(dst_array_format);

      dst_num_channels = _mesa_array_format_get_num_channels(dst_array_format);

      _mesa_array_format_get_swizzle(dst_array_format, dst2rgba);
      invert_swizzle(rgba2dst, dst2rgba);

      normalized |= _mesa_array_format_is_normalized(dst_array_format);
   }

   if (src_array_format && dst_array_format) {
      assert(_mesa_array_format_is_normalized(src_array_format) ==
             _mesa_array_format_is_normalized(dst_array_format));

      compute_src2dst_component_mapping(src2rgba, rgba2dst, rebase_swizzle,
                                        src2dst);

      for (row = 0; row < height; ++row) {
         _mesa_swizzle_and_convert(dst, dst_type, dst_num_channels,
                                   src, src_type, src_num_channels,
                                   src2dst, normalized, width);
         src += src_stride;
         dst += dst_stride;
      }
      return;
   }

   /* At this point, we're fresh out of fast-paths and we need to convert
    * to float, uint32, or, if we're lucky, uint8.
    */
   dst_integer = false;
   src_integer = false;

   if (src_array_format) {
      if (!_mesa_array_format_is_float(src_array_format) &&
          !_mesa_array_format_is_normalized(src_array_format))
         src_integer = true;
   } else {
      switch (_mesa_get_format_datatype(src_format)) {
      case GL_UNSIGNED_INT:
      case GL_INT:
         src_integer = true;
         break;
      }
   }

   /* If the destination format is signed but the source is unsigned, then we
    * don't loose any data by converting to a signed intermediate format above
    * and beyond the precision that we loose in the conversion itself. If the
    * destination is unsigned then, by using an unsigned intermediate format,
    * we make the conversion function that converts from the source to the
    * intermediate format take care of truncating at zero. The exception here
    * is if the intermediate format is float, in which case the first
    * conversion will leave it signed and the second conversion will truncate
    * at zero.
    */
   is_signed = false;
   if (dst_array_format) {
      if (!_mesa_array_format_is_float(dst_array_format) &&
          !_mesa_array_format_is_normalized(dst_array_format))
         dst_integer = true;
      is_signed = _mesa_array_format_is_signed(dst_array_format);
      bits = 8 * _mesa_array_format_get_type_size(dst_array_format);
   } else {
      switch (_mesa_get_format_datatype(dst_format)) {
      case GL_UNSIGNED_NORMALIZED:
         is_signed = false;
         break;
      case GL_SIGNED_NORMALIZED:
         is_signed = true;
         break;
      case GL_FLOAT:
         is_signed = true;
         break;
      case GL_UNSIGNED_INT:
         is_signed = false;
         dst_integer = true;
         break;
      case GL_INT:
         is_signed = true;
         dst_integer = true;
         break;
      }
      bits = _mesa_get_format_max_bits(dst_format);
   }

   assert(src_integer == dst_integer);

   if (src_integer && dst_integer) {
      tmp_uint = malloc(width * height * sizeof(*tmp_uint));

      /* The [un]packing functions for unsigned datatypes treat the 32-bit
       * integer array as signed for signed formats and as unsigned for
       * unsigned formats. This is a bit of a problem if we ever convert from
       * a signed to an unsigned format because the unsigned packing function
       * doesn't know that the input is signed and will treat it as unsigned
       * and not do the trunctation. The thing that saves us here is that all
       * of the packed formats are unsigned, so we can just always use
       * _mesa_swizzle_and_convert for signed formats, which is aware of the
       * truncation problem.
       */
      common_type = is_signed ? MESA_ARRAY_FORMAT_TYPE_INT :
                                MESA_ARRAY_FORMAT_TYPE_UINT;
      if (src_array_format) {
         compute_rebased_rgba_component_mapping(src2rgba, rebase_swizzle,
                                                rebased_src2rgba);
         for (row = 0; row < height; ++row) {
            _mesa_swizzle_and_convert(tmp_uint + row * width, common_type, 4,
                                      src, src_type, src_num_channels,
                                      rebased_src2rgba, normalized, width);
            src += src_stride;
         }
      } else {
         for (row = 0; row < height; ++row) {
            _mesa_unpack_uint_rgba_row(src_format, width,
                                       src, tmp_uint + row * width);
            if (rebase_swizzle)
               _mesa_swizzle_and_convert(tmp_uint + row * width, common_type, 4,
                                         tmp_uint + row * width, common_type, 4,
                                         rebase_swizzle, false, width);
            src += src_stride;
         }
      }

      /* At this point, we have already done the truncation if the source is
       * signed but the destination is unsigned, so no need to force the
       * _mesa_swizzle_and_convert path.
       */
      if (dst_format_is_mesa_array_format) {
         for (row = 0; row < height; ++row) {
            _mesa_swizzle_and_convert(dst, dst_type, dst_num_channels,
                                      tmp_uint + row * width, common_type, 4,
                                      rgba2dst, normalized, width);
            dst += dst_stride;
         }
      } else {
         for (row = 0; row < height; ++row) {
            _mesa_pack_uint_rgba_row(dst_format, width,
                                     (const uint32_t (*)[4])tmp_uint + row * width, dst);
            dst += dst_stride;
         }
      }

      free(tmp_uint);
   } else if (is_signed || bits > 8) {
      tmp_float = malloc(width * height * sizeof(*tmp_float));

      if (src_format_is_mesa_array_format) {
         compute_rebased_rgba_component_mapping(src2rgba, rebase_swizzle,
                                                rebased_src2rgba);
         for (row = 0; row < height; ++row) {
            _mesa_swizzle_and_convert(tmp_float + row * width,
                                      MESA_ARRAY_FORMAT_TYPE_FLOAT, 4,
                                      src, src_type, src_num_channels,
                                      rebased_src2rgba, normalized, width);
            src += src_stride;
         }
      } else {
         for (row = 0; row < height; ++row) {
            _mesa_unpack_rgba_row(src_format, width,
                                  src, tmp_float + row * width);
            if (rebase_swizzle)
               _mesa_swizzle_and_convert(tmp_float + row * width,
                                         MESA_ARRAY_FORMAT_TYPE_FLOAT, 4,
                                         tmp_float + row * width,
                                         MESA_ARRAY_FORMAT_TYPE_FLOAT, 4,
                                         rebase_swizzle, normalized, width);
            src += src_stride;
         }
      }

      if (dst_format_is_mesa_array_format) {
         for (row = 0; row < height; ++row) {
            _mesa_swizzle_and_convert(dst, dst_type, dst_num_channels,
                                      tmp_float + row * width,
                                      MESA_ARRAY_FORMAT_TYPE_FLOAT, 4,
                                      rgba2dst, normalized, width);
            dst += dst_stride;
         }
      } else {
         for (row = 0; row < height; ++row) {
            _mesa_pack_float_rgba_row(dst_format, width,
                                      (const float (*)[4])tmp_float + row * width, dst);
            dst += dst_stride;
         }
      }

      free(tmp_float);
   } else {
      tmp_ubyte = malloc(width * height * sizeof(*tmp_ubyte));

      if (src_format_is_mesa_array_format) {
         compute_rebased_rgba_component_mapping(src2rgba, rebase_swizzle,
                                                rebased_src2rgba);
         for (row = 0; row < height; ++row) {
            _mesa_swizzle_and_convert(tmp_ubyte + row * width,
                                      MESA_ARRAY_FORMAT_TYPE_UBYTE, 4,
                                      src, src_type, src_num_channels,
                                      rebased_src2rgba, normalized, width);
            src += src_stride;
         }
      } else {
         for (row = 0; row < height; ++row) {
            _mesa_unpack_ubyte_rgba_row(src_format, width,
                                        src, tmp_ubyte + row * width);
            if (rebase_swizzle)
               _mesa_swizzle_and_convert(tmp_ubyte + row * width,
                                         MESA_ARRAY_FORMAT_TYPE_UBYTE, 4,
                                         tmp_ubyte + row * width,
                                         MESA_ARRAY_FORMAT_TYPE_UBYTE, 4,
                                         rebase_swizzle, normalized, width);
            src += src_stride;
         }
      }

      if (dst_format_is_mesa_array_format) {
         for (row = 0; row < height; ++row) {
            _mesa_swizzle_and_convert(dst, dst_type, dst_num_channels,
                                      tmp_ubyte + row * width,
                                      MESA_ARRAY_FORMAT_TYPE_UBYTE, 4,
                                      rgba2dst, normalized, width);
            dst += dst_stride;
         }
      } else {
         for (row = 0; row < height; ++row) {
            _mesa_pack_ubyte_rgba_row(dst_format, width,
                                      (const uint8_t (*)[4])tmp_ubyte + row * width, dst);
            dst += dst_stride;
         }
      }

      free(tmp_ubyte);
   }
}

static const uint8_t map_identity[7] = { 0, 1, 2, 3, 4, 5, 6 };
static const uint8_t map_3210[7] = { 3, 2, 1, 0, 4, 5, 6 };
static const uint8_t map_1032[7] = { 1, 0, 3, 2, 4, 5, 6 };

/**
 * Describes a format as an array format, if possible
 *
 * A helper function for figuring out if a (possibly packed) format is
 * actually an array format and, if so, what the array parameters are.
 *
 * \param[in]  format         the mesa format
 * \param[out] type           the GL type of the array (GL_BYTE, etc.)
 * \param[out] num_components the number of components in the array
 * \param[out] swizzle        a swizzle describing how to get from the
 *                            given format to RGBA
 * \param[out] normalized     for integer formats, this represents whether
 *                            the format is a normalized integer or a
 *                            regular integer
 * \return  true if this format is an array format, false otherwise
 */
bool
_mesa_format_to_array(mesa_format format, GLenum *type, int *num_components,
                      uint8_t swizzle[4], bool *normalized)
{
   int i;
   GLuint format_components;
   uint8_t packed_swizzle[4];
   const uint8_t *endian;

   if (_mesa_is_format_compressed(format))
      return false;

   *normalized = !_mesa_is_format_integer(format);

   _mesa_uncompressed_format_to_type_and_comps(format, type, &format_components);

   switch (_mesa_get_format_layout(format)) {
   case MESA_FORMAT_LAYOUT_ARRAY:
      *num_components = format_components;
      _mesa_get_format_swizzle(format, swizzle);
      return true;
   case MESA_FORMAT_LAYOUT_PACKED:
      switch (*type) {
      case GL_UNSIGNED_BYTE:
      case GL_BYTE:
         if (_mesa_get_format_max_bits(format) != 8)
            return false;
         *num_components = _mesa_get_format_bytes(format);
         switch (*num_components) {
         case 1:
            endian = map_identity;
            break;
         case 2:
            endian = _mesa_little_endian() ? map_identity : map_1032;
            break;
         case 4:
            endian = _mesa_little_endian() ? map_identity : map_3210;
            break;
         default:
            endian = map_identity;
            assert(!"Invalid number of components");
         }
         break;
      case GL_UNSIGNED_SHORT:
      case GL_SHORT:
      case GL_HALF_FLOAT:
         if (_mesa_get_format_max_bits(format) != 16)
            return false;
         *num_components = _mesa_get_format_bytes(format) / 2;
         switch (*num_components) {
         case 1:
            endian = map_identity;
            break;
         case 2:
            endian = _mesa_little_endian() ? map_identity : map_1032;
            break;
         default:
            endian = map_identity;
            assert(!"Invalid number of components");
         }
         break;
      case GL_UNSIGNED_INT:
      case GL_INT:
      case GL_FLOAT:
         /* This isn't packed.  At least not really. */
         assert(format_components == 1);
         if (_mesa_get_format_max_bits(format) != 32)
            return false;
         *num_components = format_components;
         endian = map_identity;
         break;
      default:
         return false;
      }

      _mesa_get_format_swizzle(format, packed_swizzle);

      for (i = 0; i < 4; ++i)
         swizzle[i] = endian[packed_swizzle[i]];

      return true;
   case MESA_FORMAT_LAYOUT_OTHER:
   default:
      return false;
   }
}

/**
 * Attempts to perform the given swizzle-and-convert operation with memcpy
 *
 * This function determines if the given swizzle-and-convert operation can
 * be done with a simple memcpy and, if so, does the memcpy.  If not, it
 * returns false and we fall back to the standard version below.
 *
 * The arguments are exactly the same as for _mesa_swizzle_and_convert
 *
 * \return  true if it successfully performed the swizzle-and-convert
 *          operation with memcpy, false otherwise
 */
static bool
swizzle_convert_try_memcpy(void *dst,
                           enum mesa_array_format_datatype dst_type,
                           int num_dst_channels,
                           const void *src,
                           enum mesa_array_format_datatype src_type,
                           int num_src_channels,
                           const uint8_t swizzle[4], bool normalized, int count)
{
   int i;

   if (src_type != dst_type)
      return false;
   if (num_src_channels != num_dst_channels)
      return false;

   for (i = 0; i < num_dst_channels; ++i)
      if (swizzle[i] != i && swizzle[i] != MESA_FORMAT_SWIZZLE_NONE)
         return false;

   memcpy(dst, src, count * num_src_channels *
          _mesa_array_format_datatype_get_size(src_type));

   return true;
}

/**
 * Represents a single instance of the standard swizzle-and-convert loop
 *
 * Any swizzle-and-convert operation simply loops through the pixels and
 * performs the transformation operation one pixel at a time.  This macro
 * embodies one instance of the conversion loop.  This way we can do all
 * control flow outside of the loop and allow the compiler to unroll
 * everything inside the loop.
 *
 * Note: This loop is carefully crafted for performance.  Be careful when
 * changing it and run some benchmarks to ensure no performance regressions
 * if you do.
 *
 * \param   DST_TYPE    the C datatype of the destination
 * \param   DST_CHANS   the number of destination channels
 * \param   SRC_TYPE    the C datatype of the source
 * \param   SRC_CHANS   the number of source channels
 * \param   CONV        an expression for converting from the source data,
 *                      storred in the variable "src", to the destination
 *                      format
 */
#define SWIZZLE_CONVERT_LOOP(DST_TYPE, DST_CHANS, SRC_TYPE, SRC_CHANS, CONV) \
   do {                                           \
      int s, j;                                   \
      for (s = 0; s < count; ++s) {               \
         for (j = 0; j < SRC_CHANS; ++j) {        \
            SRC_TYPE src = typed_src[j];          \
            tmp[j] = CONV;                        \
         }                                        \
                                                  \
         typed_dst[0] = tmp[swizzle_x];           \
         if (DST_CHANS > 1) {                     \
            typed_dst[1] = tmp[swizzle_y];        \
            if (DST_CHANS > 2) {                  \
               typed_dst[2] = tmp[swizzle_z];     \
               if (DST_CHANS > 3) {               \
                  typed_dst[3] = tmp[swizzle_w];  \
               }                                  \
            }                                     \
         }                                        \
         typed_src += SRC_CHANS;                  \
         typed_dst += DST_CHANS;                  \
      }                                           \
   } while (0)

/**
 * Represents a single swizzle-and-convert operation
 *
 * This macro represents everything done in a single swizzle-and-convert
 * operation.  The actual work is done by the SWIZZLE_CONVERT_LOOP macro.
 * This macro acts as a wrapper that uses a nested switch to ensure that
 * all looping parameters get unrolled.
 *
 * This macro makes assumptions about variables etc. in the calling
 * function.  Changes to _mesa_swizzle_and_convert may require changes to
 * this macro.
 *
 * \param   DST_TYPE    the C datatype of the destination
 * \param   SRC_TYPE    the C datatype of the source
 * \param   CONV        an expression for converting from the source data,
 *                      storred in the variable "src", to the destination
 *                      format
 */
#define SWIZZLE_CONVERT(DST_TYPE, SRC_TYPE, CONV)                 \
   do {                                                           \
      const uint8_t swizzle_x = swizzle[0];                       \
      const uint8_t swizzle_y = swizzle[1];                       \
      const uint8_t swizzle_z = swizzle[2];                       \
      const uint8_t swizzle_w = swizzle[3];                       \
      const SRC_TYPE *typed_src = void_src;                       \
      DST_TYPE *typed_dst = void_dst;                             \
      DST_TYPE tmp[7];                                            \
      tmp[4] = 0;                                                 \
      tmp[5] = one;                                               \
      switch (num_dst_channels) {                                 \
      case 1:                                                     \
         switch (num_src_channels) {                              \
         case 1:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 1, SRC_TYPE, 1, CONV); \
            break;                                                \
         case 2:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 1, SRC_TYPE, 2, CONV); \
            break;                                                \
         case 3:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 1, SRC_TYPE, 3, CONV); \
            break;                                                \
         case 4:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 1, SRC_TYPE, 4, CONV); \
            break;                                                \
         }                                                        \
         break;                                                   \
      case 2:                                                     \
         switch (num_src_channels) {                              \
         case 1:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 2, SRC_TYPE, 1, CONV); \
            break;                                                \
         case 2:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 2, SRC_TYPE, 2, CONV); \
            break;                                                \
         case 3:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 2, SRC_TYPE, 3, CONV); \
            break;                                                \
         case 4:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 2, SRC_TYPE, 4, CONV); \
            break;                                                \
         }                                                        \
         break;                                                   \
      case 3:                                                     \
         switch (num_src_channels) {                              \
         case 1:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 3, SRC_TYPE, 1, CONV); \
            break;                                                \
         case 2:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 3, SRC_TYPE, 2, CONV); \
            break;                                                \
         case 3:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 3, SRC_TYPE, 3, CONV); \
            break;                                                \
         case 4:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 3, SRC_TYPE, 4, CONV); \
            break;                                                \
         }                                                        \
         break;                                                   \
      case 4:                                                     \
         switch (num_src_channels) {                              \
         case 1:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 4, SRC_TYPE, 1, CONV); \
            break;                                                \
         case 2:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 4, SRC_TYPE, 2, CONV); \
            break;                                                \
         case 3:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 4, SRC_TYPE, 3, CONV); \
            break;                                                \
         case 4:                                                  \
            SWIZZLE_CONVERT_LOOP(DST_TYPE, 4, SRC_TYPE, 4, CONV); \
            break;                                                \
         }                                                        \
         break;                                                   \
      }                                                           \
   } while (0)


static void
convert_float(void *void_dst, int num_dst_channels,
              const void *void_src, GLenum src_type, int num_src_channels,
              const uint8_t swizzle[4], bool normalized, int count)
{
   const float one = 1.0f;

   switch (src_type) {
   case MESA_ARRAY_FORMAT_TYPE_FLOAT:
      SWIZZLE_CONVERT(float, float, src);
      break;
   case MESA_ARRAY_FORMAT_TYPE_HALF:
      SWIZZLE_CONVERT(float, uint16_t, _mesa_half_to_float(src));
      break;
   case MESA_ARRAY_FORMAT_TYPE_UBYTE:
      if (normalized) {
         SWIZZLE_CONVERT(float, uint8_t, _mesa_unorm_to_float(src, 8));
      } else {
         SWIZZLE_CONVERT(float, uint8_t, src);
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_BYTE:
      if (normalized) {
         SWIZZLE_CONVERT(float, int8_t, _mesa_snorm_to_float(src, 8));
      } else {
         SWIZZLE_CONVERT(float, int8_t, src);
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_USHORT:
      if (normalized) {
         SWIZZLE_CONVERT(float, uint16_t, _mesa_unorm_to_float(src, 16));
      } else {
         SWIZZLE_CONVERT(float, uint16_t, src);
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_SHORT:
      if (normalized) {
         SWIZZLE_CONVERT(float, int16_t, _mesa_snorm_to_float(src, 16));
      } else {
         SWIZZLE_CONVERT(float, int16_t, src);
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_UINT:
      if (normalized) {
         SWIZZLE_CONVERT(float, uint32_t, _mesa_unorm_to_float(src, 32));
      } else {
         SWIZZLE_CONVERT(float, uint32_t, src);
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_INT:
      if (normalized) {
         SWIZZLE_CONVERT(float, int32_t, _mesa_snorm_to_float(src, 32));
      } else {
         SWIZZLE_CONVERT(float, int32_t, src);
      }
      break;
   default:
      assert(!"Invalid channel type combination");
   }
}


static void
convert_half_float(void *void_dst, int num_dst_channels,
                   const void *void_src, GLenum src_type, int num_src_channels,
                   const uint8_t swizzle[4], bool normalized, int count)
{
   const uint16_t one = _mesa_float_to_half(1.0f);

   switch (src_type) {
   case MESA_ARRAY_FORMAT_TYPE_FLOAT:
      SWIZZLE_CONVERT(uint16_t, float, _mesa_float_to_half(src));
      break;
   case MESA_ARRAY_FORMAT_TYPE_HALF:
      SWIZZLE_CONVERT(uint16_t, uint16_t, src);
      break;
   case MESA_ARRAY_FORMAT_TYPE_UBYTE:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, uint8_t, _mesa_unorm_to_half(src, 8));
      } else {
         SWIZZLE_CONVERT(uint16_t, uint8_t, _mesa_float_to_half(src));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_BYTE:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, int8_t, _mesa_snorm_to_half(src, 8));
      } else {
         SWIZZLE_CONVERT(uint16_t, int8_t, _mesa_float_to_half(src));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_USHORT:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, uint16_t, _mesa_unorm_to_half(src, 16));
      } else {
         SWIZZLE_CONVERT(uint16_t, uint16_t, _mesa_float_to_half(src));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_SHORT:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, int16_t, _mesa_snorm_to_half(src, 16));
      } else {
         SWIZZLE_CONVERT(uint16_t, int16_t, _mesa_float_to_half(src));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_UINT:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, uint32_t, _mesa_unorm_to_half(src, 32));
      } else {
         SWIZZLE_CONVERT(uint16_t, uint32_t, _mesa_float_to_half(src));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_INT:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, int32_t, _mesa_snorm_to_half(src, 32));
      } else {
         SWIZZLE_CONVERT(uint16_t, int32_t, _mesa_float_to_half(src));
      }
      break;
   default:
      assert(!"Invalid channel type combination");
   }
}

static void
convert_ubyte(void *void_dst, int num_dst_channels,
              const void *void_src, GLenum src_type, int num_src_channels,
              const uint8_t swizzle[4], bool normalized, int count)
{
   const uint8_t one = normalized ? UINT8_MAX : 1;

   switch (src_type) {
   case MESA_ARRAY_FORMAT_TYPE_FLOAT:
      if (normalized) {
         SWIZZLE_CONVERT(uint8_t, float, _mesa_float_to_unorm(src, 8));
      } else {
         SWIZZLE_CONVERT(uint8_t, float, _mesa_float_to_unsigned(src, 8));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_HALF:
      if (normalized) {
         SWIZZLE_CONVERT(uint8_t, uint16_t, _mesa_half_to_unorm(src, 8));
      } else {
         SWIZZLE_CONVERT(uint8_t, uint16_t, _mesa_half_to_unsigned(src, 8));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_UBYTE:
      SWIZZLE_CONVERT(uint8_t, uint8_t, src);
      break;
   case MESA_ARRAY_FORMAT_TYPE_BYTE:
      if (normalized) {
         SWIZZLE_CONVERT(uint8_t, int8_t, _mesa_snorm_to_unorm(src, 8, 8));
      } else {
         SWIZZLE_CONVERT(uint8_t, int8_t, _mesa_signed_to_unsigned(src, 8));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_USHORT:
      if (normalized) {
         SWIZZLE_CONVERT(uint8_t, uint16_t, _mesa_unorm_to_unorm(src, 16, 8));
      } else {
         SWIZZLE_CONVERT(uint8_t, uint16_t, _mesa_unsigned_to_unsigned(src, 8));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_SHORT:
      if (normalized) {
         SWIZZLE_CONVERT(uint8_t, int16_t, _mesa_snorm_to_unorm(src, 16, 8));
      } else {
         SWIZZLE_CONVERT(uint8_t, int16_t, _mesa_signed_to_unsigned(src, 8));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_UINT:
      if (normalized) {
         SWIZZLE_CONVERT(uint8_t, uint32_t, _mesa_unorm_to_unorm(src, 32, 8));
      } else {
         SWIZZLE_CONVERT(uint8_t, uint32_t, _mesa_unsigned_to_unsigned(src, 8));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_INT:
      if (normalized) {
         SWIZZLE_CONVERT(uint8_t, int32_t, _mesa_snorm_to_unorm(src, 32, 8));
      } else {
         SWIZZLE_CONVERT(uint8_t, int32_t, _mesa_signed_to_unsigned(src, 8));
      }
      break;
   default:
      assert(!"Invalid channel type combination");
   }
}


static void
convert_byte(void *void_dst, int num_dst_channels,
             const void *void_src, GLenum src_type, int num_src_channels,
             const uint8_t swizzle[4], bool normalized, int count)
{
   const int8_t one = normalized ? INT8_MAX : 1;

   switch (src_type) {
   case MESA_ARRAY_FORMAT_TYPE_FLOAT:
      if (normalized) {
         SWIZZLE_CONVERT(uint8_t, float, _mesa_float_to_snorm(src, 8));
      } else {
         SWIZZLE_CONVERT(uint8_t, float, _mesa_float_to_signed(src, 8));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_HALF:
      if (normalized) {
         SWIZZLE_CONVERT(uint8_t, uint16_t, _mesa_half_to_snorm(src, 8));
      } else {
         SWIZZLE_CONVERT(uint8_t, uint16_t, _mesa_half_to_signed(src, 8));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_UBYTE:
      if (normalized) {
         SWIZZLE_CONVERT(int8_t, uint8_t, _mesa_unorm_to_snorm(src, 8, 8));
      } else {
         SWIZZLE_CONVERT(int8_t, uint8_t, _mesa_unsigned_to_signed(src, 8));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_BYTE:
      SWIZZLE_CONVERT(int8_t, int8_t, src);
      break;
   case MESA_ARRAY_FORMAT_TYPE_USHORT:
      if (normalized) {
         SWIZZLE_CONVERT(int8_t, uint16_t, _mesa_unorm_to_snorm(src, 16, 8));
      } else {
         SWIZZLE_CONVERT(int8_t, uint16_t, _mesa_unsigned_to_signed(src, 8));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_SHORT:
      if (normalized) {
         SWIZZLE_CONVERT(int8_t, int16_t, _mesa_snorm_to_snorm(src, 16, 8));
      } else {
         SWIZZLE_CONVERT(int8_t, int16_t, _mesa_signed_to_signed(src, 8));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_UINT:
      if (normalized) {
         SWIZZLE_CONVERT(int8_t, uint32_t, _mesa_unorm_to_snorm(src, 32, 8));
      } else {
         SWIZZLE_CONVERT(int8_t, uint32_t, _mesa_unsigned_to_signed(src, 8));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_INT:
      if (normalized) {
         SWIZZLE_CONVERT(int8_t, int32_t, _mesa_snorm_to_snorm(src, 32, 8));
      } else {
         SWIZZLE_CONVERT(int8_t, int32_t, _mesa_signed_to_signed(src, 8));
      }
      break;
   default:
      assert(!"Invalid channel type combination");
   }
}


static void
convert_ushort(void *void_dst, int num_dst_channels,
               const void *void_src, GLenum src_type, int num_src_channels,
               const uint8_t swizzle[4], bool normalized, int count)
{
   const uint16_t one = normalized ? UINT16_MAX : 1;
   
   switch (src_type) {
   case MESA_ARRAY_FORMAT_TYPE_FLOAT:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, float, _mesa_float_to_unorm(src, 16));
      } else {
         SWIZZLE_CONVERT(uint16_t, float, _mesa_float_to_unsigned(src, 16));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_HALF:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, uint16_t, _mesa_half_to_unorm(src, 16));
      } else {
         SWIZZLE_CONVERT(uint16_t, uint16_t, _mesa_half_to_unsigned(src, 16));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_UBYTE:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, uint8_t, _mesa_unorm_to_unorm(src, 8, 16));
      } else {
         SWIZZLE_CONVERT(uint16_t, uint8_t, src);
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_BYTE:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, int8_t, _mesa_snorm_to_unorm(src, 8, 16));
      } else {
         SWIZZLE_CONVERT(uint16_t, int8_t, _mesa_signed_to_unsigned(src, 16));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_USHORT:
      SWIZZLE_CONVERT(uint16_t, uint16_t, src);
      break;
   case MESA_ARRAY_FORMAT_TYPE_SHORT:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, int16_t, _mesa_snorm_to_unorm(src, 16, 16));
      } else {
         SWIZZLE_CONVERT(uint16_t, int16_t, _mesa_signed_to_unsigned(src, 16));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_UINT:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, uint32_t, _mesa_unorm_to_unorm(src, 32, 16));
      } else {
         SWIZZLE_CONVERT(uint16_t, uint32_t, _mesa_unsigned_to_unsigned(src, 16));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_INT:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, int32_t, _mesa_snorm_to_unorm(src, 32, 16));
      } else {
         SWIZZLE_CONVERT(uint16_t, int32_t, _mesa_signed_to_unsigned(src, 16));
      }
      break;
   default:
      assert(!"Invalid channel type combination");
   }
}


static void
convert_short(void *void_dst, int num_dst_channels,
              const void *void_src, GLenum src_type, int num_src_channels,
              const uint8_t swizzle[4], bool normalized, int count)
{
   const int16_t one = normalized ? INT16_MAX : 1;

   switch (src_type) {
   case MESA_ARRAY_FORMAT_TYPE_FLOAT:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, float, _mesa_float_to_snorm(src, 16));
      } else {
         SWIZZLE_CONVERT(uint16_t, float, _mesa_float_to_signed(src, 16));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_HALF:
      if (normalized) {
         SWIZZLE_CONVERT(uint16_t, uint16_t, _mesa_half_to_snorm(src, 16));
      } else {
         SWIZZLE_CONVERT(uint16_t, uint16_t, _mesa_half_to_signed(src, 16));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_UBYTE:
      if (normalized) {
         SWIZZLE_CONVERT(int16_t, uint8_t, _mesa_unorm_to_snorm(src, 8, 16));
      } else {
         SWIZZLE_CONVERT(int16_t, uint8_t, src);
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_BYTE:
      if (normalized) {
         SWIZZLE_CONVERT(int16_t, int8_t, _mesa_snorm_to_snorm(src, 8, 16));
      } else {
         SWIZZLE_CONVERT(int16_t, int8_t, src);
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_USHORT:
      if (normalized) {
         SWIZZLE_CONVERT(int16_t, uint16_t, _mesa_unorm_to_snorm(src, 16, 16));
      } else {
         SWIZZLE_CONVERT(int16_t, uint16_t, _mesa_unsigned_to_signed(src, 16));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_SHORT:
      SWIZZLE_CONVERT(int16_t, int16_t, src);
      break;
   case MESA_ARRAY_FORMAT_TYPE_UINT:
      if (normalized) {
         SWIZZLE_CONVERT(int16_t, uint32_t, _mesa_unorm_to_snorm(src, 32, 16));
      } else {
         SWIZZLE_CONVERT(int16_t, uint32_t, _mesa_unsigned_to_signed(src, 16));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_INT:
      if (normalized) {
         SWIZZLE_CONVERT(int16_t, int32_t, _mesa_snorm_to_snorm(src, 32, 16));
      } else {
         SWIZZLE_CONVERT(int16_t, int32_t, _mesa_signed_to_signed(src, 16));
      }
      break;
   default:
      assert(!"Invalid channel type combination");
   }
}

static void
convert_uint(void *void_dst, int num_dst_channels,
             const void *void_src, GLenum src_type, int num_src_channels,
             const uint8_t swizzle[4], bool normalized, int count)
{
   const uint32_t one = normalized ? UINT32_MAX : 1;

   switch (src_type) {
   case MESA_ARRAY_FORMAT_TYPE_FLOAT:
      if (normalized) {
         SWIZZLE_CONVERT(uint32_t, float, _mesa_float_to_unorm(src, 32));
      } else {
         SWIZZLE_CONVERT(uint32_t, float, _mesa_float_to_unsigned(src, 32));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_HALF:
      if (normalized) {
         SWIZZLE_CONVERT(uint32_t, uint16_t, _mesa_half_to_unorm(src, 32));
      } else {
         SWIZZLE_CONVERT(uint32_t, uint16_t, _mesa_half_to_unsigned(src, 32));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_UBYTE:
      if (normalized) {
         SWIZZLE_CONVERT(uint32_t, uint8_t, _mesa_unorm_to_unorm(src, 8, 32));
      } else {
         SWIZZLE_CONVERT(uint32_t, uint8_t, src);
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_BYTE:
      if (normalized) {
         SWIZZLE_CONVERT(uint32_t, int8_t, _mesa_snorm_to_unorm(src, 8, 32));
      } else {
         SWIZZLE_CONVERT(uint32_t, int8_t, _mesa_signed_to_unsigned(src, 32));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_USHORT:
      if (normalized) {
         SWIZZLE_CONVERT(uint32_t, uint16_t, _mesa_unorm_to_unorm(src, 16, 32));
      } else {
         SWIZZLE_CONVERT(uint32_t, uint16_t, src);
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_SHORT:
      if (normalized) {
         SWIZZLE_CONVERT(uint32_t, int16_t, _mesa_snorm_to_unorm(src, 16, 32));
      } else {
         SWIZZLE_CONVERT(uint32_t, int16_t, _mesa_signed_to_unsigned(src, 32));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_UINT:
      SWIZZLE_CONVERT(uint32_t, uint32_t, src);
      break;
   case MESA_ARRAY_FORMAT_TYPE_INT:
      if (normalized) {
         SWIZZLE_CONVERT(uint32_t, int32_t, _mesa_snorm_to_unorm(src, 32, 32));
      } else {
         SWIZZLE_CONVERT(uint32_t, int32_t, _mesa_signed_to_unsigned(src, 32));
      }
      break;
   default:
      assert(!"Invalid channel type combination");
   }
}


static void
convert_int(void *void_dst, int num_dst_channels,
            const void *void_src, GLenum src_type, int num_src_channels,
            const uint8_t swizzle[4], bool normalized, int count)
{
   const int32_t one = normalized ? INT32_MAX : 1;

   switch (src_type) {
   case MESA_ARRAY_FORMAT_TYPE_FLOAT:
      if (normalized) {
         SWIZZLE_CONVERT(uint32_t, float, _mesa_float_to_snorm(src, 32));
      } else {
         SWIZZLE_CONVERT(uint32_t, float, _mesa_float_to_signed(src, 32));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_HALF:
      if (normalized) {
         SWIZZLE_CONVERT(uint32_t, uint16_t, _mesa_half_to_snorm(src, 32));
      } else {
         SWIZZLE_CONVERT(uint32_t, uint16_t, _mesa_half_to_signed(src, 32));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_UBYTE:
      if (normalized) {
         SWIZZLE_CONVERT(int32_t, uint8_t, _mesa_unorm_to_snorm(src, 8, 32));
      } else {
         SWIZZLE_CONVERT(int32_t, uint8_t, src);
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_BYTE:
      if (normalized) {
         SWIZZLE_CONVERT(int32_t, int8_t, _mesa_snorm_to_snorm(src, 8, 32));
      } else {
         SWIZZLE_CONVERT(int32_t, int8_t, src);
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_USHORT:
      if (normalized) {
         SWIZZLE_CONVERT(int32_t, uint16_t, _mesa_unorm_to_snorm(src, 16, 32));
      } else {
         SWIZZLE_CONVERT(int32_t, uint16_t, src);
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_SHORT:
      if (normalized) {
         SWIZZLE_CONVERT(int32_t, int16_t, _mesa_snorm_to_snorm(src, 16, 32));
      } else {
         SWIZZLE_CONVERT(int32_t, int16_t, src);
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_UINT:
      if (normalized) {
         SWIZZLE_CONVERT(int32_t, uint32_t, _mesa_unorm_to_snorm(src, 32, 32));
      } else {
         SWIZZLE_CONVERT(int32_t, uint32_t, _mesa_unsigned_to_signed(src, 32));
      }
      break;
   case MESA_ARRAY_FORMAT_TYPE_INT:
      SWIZZLE_CONVERT(int32_t, int32_t, src);
      break;
   default:
      assert(!"Invalid channel type combination");
   }
}


/**
 * Convert between array-based color formats.
 *
 * Most format conversion operations required by GL can be performed by
 * converting one channel at a time, shuffling the channels around, and
 * optionally filling missing channels with zeros and ones.  This function
 * does just that in a general, yet efficient, way.
 *
 * The swizzle parameter is an array of 4 numbers (see
 * _mesa_get_format_swizzle) that describes where each channel in the
 * destination should come from in the source.  If swizzle[i] < 4 then it
 * means that dst[i] = CONVERT(src[swizzle[i]]).  If swizzle[i] is
 * MESA_FORMAT_SWIZZLE_ZERO or MESA_FORMAT_SWIZZLE_ONE, the corresponding
 * dst[i] will be filled with the appropreate representation of zero or one
 * respectively.
 *
 * Under most circumstances, the source and destination images must be
 * different as no care is taken not to clobber one with the other.
 * However, if they have the same number of bits per pixel, it is safe to
 * do an in-place conversion.
 *
 * \param[out] dst               pointer to where the converted data should
 *                               be stored
 *
 * \param[in]  dst_type          the destination GL type of the converted
 *                               data (GL_BYTE, etc.)
 *
 * \param[in]  num_dst_channels  the number of channels in the converted
 *                               data
 *
 * \param[in]  src               pointer to the source data
 *
 * \param[in]  src_type          the GL type of the source data (GL_BYTE,
 *                               etc.)
 *
 * \param[in]  num_src_channels  the number of channels in the source data
 *                               (the number of channels total, not just
 *                               the number used)
 *
 * \param[in]  swizzle           describes how to get the destination data
 *                               from the source data.
 *
 * \param[in]  normalized        for integer types, this indicates whether
 *                               the data should be considered as integers
 *                               or as normalized integers;
 *
 * \param[in]  count             the number of pixels to convert
 */
void
_mesa_swizzle_and_convert(void *void_dst, enum mesa_array_format_datatype dst_type, int num_dst_channels,
                          const void *void_src, enum mesa_array_format_datatype src_type, int num_src_channels,
                          const uint8_t swizzle[4], bool normalized, int count)
{
   if (swizzle_convert_try_memcpy(void_dst, dst_type, num_dst_channels,
                                  void_src, src_type, num_src_channels,
                                  swizzle, normalized, count))
      return;

   switch (dst_type) {
   case MESA_ARRAY_FORMAT_TYPE_FLOAT:
      convert_float(void_dst, num_dst_channels, void_src, src_type,
                    num_src_channels, swizzle, normalized, count);
      break;
   case MESA_ARRAY_FORMAT_TYPE_HALF:
      convert_half_float(void_dst, num_dst_channels, void_src, src_type,
                    num_src_channels, swizzle, normalized, count);
      break;
   case MESA_ARRAY_FORMAT_TYPE_UBYTE:
      convert_ubyte(void_dst, num_dst_channels, void_src, src_type,
                    num_src_channels, swizzle, normalized, count);
      break;
   case MESA_ARRAY_FORMAT_TYPE_BYTE:
      convert_byte(void_dst, num_dst_channels, void_src, src_type,
                   num_src_channels, swizzle, normalized, count);
      break;
   case MESA_ARRAY_FORMAT_TYPE_USHORT:
      convert_ushort(void_dst, num_dst_channels, void_src, src_type,
                     num_src_channels, swizzle, normalized, count);
      break;
   case MESA_ARRAY_FORMAT_TYPE_SHORT:
      convert_short(void_dst, num_dst_channels, void_src, src_type,
                    num_src_channels, swizzle, normalized, count);
      break;
   case MESA_ARRAY_FORMAT_TYPE_UINT:
      convert_uint(void_dst, num_dst_channels, void_src, src_type,
                   num_src_channels, swizzle, normalized, count);
      break;
   case MESA_ARRAY_FORMAT_TYPE_INT:
      convert_int(void_dst, num_dst_channels, void_src, src_type,
                  num_src_channels, swizzle, normalized, count);
      break;
   default:
      assert(!"Invalid channel type");
   }
}