1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
|
/*
* Mesa 3-D graphics library
*
* Copyright 2012 Intel Corporation
* Copyright 2013 Google
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Chad Versace <chad.versace@linux.intel.com>
* Frank Henigman <fjhenigman@google.com>
*/
#include <string.h>
#include "util/macros.h"
#include "brw_context.h"
#include "intel_tiled_memcpy.h"
#if defined(__SSSE3__)
#include <tmmintrin.h>
#elif defined(__SSE2__)
#include <emmintrin.h>
#endif
#define FILE_DEBUG_FLAG DEBUG_TEXTURE
#define ALIGN_DOWN(a, b) ROUND_DOWN_TO(a, b)
#define ALIGN_UP(a, b) ALIGN(a, b)
/* Tile dimensions. Width and span are in bytes, height is in pixels (i.e.
* unitless). A "span" is the most number of bytes we can copy from linear
* to tiled without needing to calculate a new destination address.
*/
static const uint32_t xtile_width = 512;
static const uint32_t xtile_height = 8;
static const uint32_t xtile_span = 64;
static const uint32_t ytile_width = 128;
static const uint32_t ytile_height = 32;
static const uint32_t ytile_span = 16;
static inline uint32_t
ror(uint32_t n, uint32_t d)
{
return (n >> d) | (n << (32 - d));
}
static inline uint32_t
bswap32(uint32_t n)
{
#if defined(HAVE___BUILTIN_BSWAP32)
return __builtin_bswap32(n);
#else
return (n >> 24) |
((n >> 8) & 0x0000ff00) |
((n << 8) & 0x00ff0000) |
(n << 24);
#endif
}
/**
* Copy RGBA to BGRA - swap R and B.
*/
static inline void *
rgba8_copy(void *dst, const void *src, size_t bytes)
{
uint32_t *d = dst;
uint32_t const *s = src;
assert(bytes % 4 == 0);
while (bytes >= 4) {
*d = ror(bswap32(*s), 8);
d += 1;
s += 1;
bytes -= 4;
}
return dst;
}
#ifdef __SSSE3__
static const uint8_t rgba8_permutation[16] =
{ 2,1,0,3, 6,5,4,7, 10,9,8,11, 14,13,12,15 };
static inline void
rgba8_copy_16_aligned_dst(void *dst, const void *src)
{
_mm_store_si128(dst,
_mm_shuffle_epi8(_mm_loadu_si128(src),
*(__m128i *)rgba8_permutation));
}
static inline void
rgba8_copy_16_aligned_src(void *dst, const void *src)
{
_mm_storeu_si128(dst,
_mm_shuffle_epi8(_mm_load_si128(src),
*(__m128i *)rgba8_permutation));
}
#elif defined(__SSE2__)
static inline void
rgba8_copy_16_aligned_dst(void *dst, const void *src)
{
__m128i srcreg, dstreg, agmask, ag, rb, br;
agmask = _mm_set1_epi32(0xFF00FF00);
srcreg = _mm_loadu_si128((__m128i *)src);
rb = _mm_andnot_si128(agmask, srcreg);
ag = _mm_and_si128(agmask, srcreg);
br = _mm_shufflehi_epi16(_mm_shufflelo_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1)),
_MM_SHUFFLE(2, 3, 0, 1));
dstreg = _mm_or_si128(ag, br);
_mm_store_si128((__m128i *)dst, dstreg);
}
static inline void
rgba8_copy_16_aligned_src(void *dst, const void *src)
{
__m128i srcreg, dstreg, agmask, ag, rb, br;
agmask = _mm_set1_epi32(0xFF00FF00);
srcreg = _mm_load_si128((__m128i *)src);
rb = _mm_andnot_si128(agmask, srcreg);
ag = _mm_and_si128(agmask, srcreg);
br = _mm_shufflehi_epi16(_mm_shufflelo_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1)),
_MM_SHUFFLE(2, 3, 0, 1));
dstreg = _mm_or_si128(ag, br);
_mm_storeu_si128((__m128i *)dst, dstreg);
}
#endif
/**
* Copy RGBA to BGRA - swap R and B, with the destination 16-byte aligned.
*/
static inline void *
rgba8_copy_aligned_dst(void *dst, const void *src, size_t bytes)
{
assert(bytes == 0 || !(((uintptr_t)dst) & 0xf));
#if defined(__SSSE3__) || defined(__SSE2__)
if (bytes == 64) {
rgba8_copy_16_aligned_dst(dst + 0, src + 0);
rgba8_copy_16_aligned_dst(dst + 16, src + 16);
rgba8_copy_16_aligned_dst(dst + 32, src + 32);
rgba8_copy_16_aligned_dst(dst + 48, src + 48);
return dst;
}
while (bytes >= 16) {
rgba8_copy_16_aligned_dst(dst, src);
src += 16;
dst += 16;
bytes -= 16;
}
#endif
rgba8_copy(dst, src, bytes);
return dst;
}
/**
* Copy RGBA to BGRA - swap R and B, with the source 16-byte aligned.
*/
static inline void *
rgba8_copy_aligned_src(void *dst, const void *src, size_t bytes)
{
assert(bytes == 0 || !(((uintptr_t)src) & 0xf));
#if defined(__SSSE3__) || defined(__SSE2__)
if (bytes == 64) {
rgba8_copy_16_aligned_src(dst + 0, src + 0);
rgba8_copy_16_aligned_src(dst + 16, src + 16);
rgba8_copy_16_aligned_src(dst + 32, src + 32);
rgba8_copy_16_aligned_src(dst + 48, src + 48);
return dst;
}
while (bytes >= 16) {
rgba8_copy_16_aligned_src(dst, src);
src += 16;
dst += 16;
bytes -= 16;
}
#endif
rgba8_copy(dst, src, bytes);
return dst;
}
/**
* Each row from y0 to y1 is copied in three parts: [x0,x1), [x1,x2), [x2,x3).
* These ranges are in bytes, i.e. pixels * bytes-per-pixel.
* The first and last ranges must be shorter than a "span" (the longest linear
* stretch within a tile) and the middle must equal a whole number of spans.
* Ranges may be empty. The region copied must land entirely within one tile.
* 'dst' is the start of the tile and 'src' is the corresponding
* address to copy from, though copying begins at (x0, y0).
* To enable swizzling 'swizzle_bit' must be 1<<6, otherwise zero.
* Swizzling flips bit 6 in the copy destination offset, when certain other
* bits are set in it.
*/
typedef void (*tile_copy_fn)(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t linear_pitch,
uint32_t swizzle_bit,
mem_copy_fn_type copy_type);
/**
* Copy texture data from linear to X tile layout.
*
* \copydoc tile_copy_fn
*
* The mem_copy parameters allow the user to specify an alternative mem_copy
* function that, for instance, may do RGBA -> BGRA swizzling. The first
* function must handle any memory alignment while the second function must
* only handle 16-byte alignment in whichever side (source or destination) is
* tiled.
*/
static inline void
linear_to_xtiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t src_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy,
mem_copy_fn mem_copy_align16)
{
/* The copy destination offset for each range copied is the sum of
* an X offset 'x0' or 'xo' and a Y offset 'yo.'
*/
uint32_t xo, yo;
src += (ptrdiff_t)y0 * src_pitch;
for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) {
/* Bits 9 and 10 of the copy destination offset control swizzling.
* Only 'yo' contributes to those bits in the total offset,
* so calculate 'swizzle' just once per row.
* Move bits 9 and 10 three and four places respectively down
* to bit 6 and xor them.
*/
uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit;
mem_copy(dst + ((x0 + yo) ^ swizzle), src + x0, x1 - x0);
for (xo = x1; xo < x2; xo += xtile_span) {
mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + xo, xtile_span);
}
mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
src += src_pitch;
}
}
/**
* Copy texture data from linear to Y tile layout.
*
* \copydoc tile_copy_fn
*/
static inline void
linear_to_ytiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y3,
char *dst, const char *src,
int32_t src_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy,
mem_copy_fn mem_copy_align16)
{
/* Y tiles consist of columns that are 'ytile_span' wide (and the same height
* as the tile). Thus the destination offset for (x,y) is the sum of:
* (x % column_width) // position within column
* (x / column_width) * bytes_per_column // column number * bytes per column
* y * column_width
*
* The copy destination offset for each range copied is the sum of
* an X offset 'xo0' or 'xo' and a Y offset 'yo.'
*/
const uint32_t column_width = ytile_span;
const uint32_t bytes_per_column = column_width * ytile_height;
uint32_t y1 = MIN2(y3, ALIGN_UP(y0, 4));
uint32_t y2 = MAX2(y1, ALIGN_DOWN(y3, 4));
uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column;
uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column;
/* Bit 9 of the destination offset control swizzling.
* Only the X offset contributes to bit 9 of the total offset,
* so swizzle can be calculated in advance for these X positions.
* Move bit 9 three places down to bit 6.
*/
uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit;
uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit;
uint32_t x, yo;
src += (ptrdiff_t)y0 * src_pitch;
if (y0 != y1) {
for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) {
uint32_t xo = xo1;
uint32_t swizzle = swizzle1;
mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0);
/* Step by spans/columns. As it happens, the swizzle bit flips
* at each step so we don't need to calculate it explicitly.
*/
for (x = x1; x < x2; x += ytile_span) {
mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x, ytile_span);
xo += bytes_per_column;
swizzle ^= swizzle_bit;
}
mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
src += src_pitch;
}
}
for (yo = y1 * column_width; yo < y2 * column_width; yo += 4 * column_width) {
uint32_t xo = xo1;
uint32_t swizzle = swizzle1;
if (x0 != x1) {
mem_copy(dst + ((xo0 + yo + 0 * column_width) ^ swizzle0), src + x0 + 0 * src_pitch, x1 - x0);
mem_copy(dst + ((xo0 + yo + 1 * column_width) ^ swizzle0), src + x0 + 1 * src_pitch, x1 - x0);
mem_copy(dst + ((xo0 + yo + 2 * column_width) ^ swizzle0), src + x0 + 2 * src_pitch, x1 - x0);
mem_copy(dst + ((xo0 + yo + 3 * column_width) ^ swizzle0), src + x0 + 3 * src_pitch, x1 - x0);
}
/* Step by spans/columns. As it happens, the swizzle bit flips
* at each step so we don't need to calculate it explicitly.
*/
for (x = x1; x < x2; x += ytile_span) {
mem_copy_align16(dst + ((xo + yo + 0 * column_width) ^ swizzle), src + x + 0 * src_pitch, ytile_span);
mem_copy_align16(dst + ((xo + yo + 1 * column_width) ^ swizzle), src + x + 1 * src_pitch, ytile_span);
mem_copy_align16(dst + ((xo + yo + 2 * column_width) ^ swizzle), src + x + 2 * src_pitch, ytile_span);
mem_copy_align16(dst + ((xo + yo + 3 * column_width) ^ swizzle), src + x + 3 * src_pitch, ytile_span);
xo += bytes_per_column;
swizzle ^= swizzle_bit;
}
if (x2 != x3) {
mem_copy_align16(dst + ((xo + yo + 0 * column_width) ^ swizzle), src + x2 + 0 * src_pitch, x3 - x2);
mem_copy_align16(dst + ((xo + yo + 1 * column_width) ^ swizzle), src + x2 + 1 * src_pitch, x3 - x2);
mem_copy_align16(dst + ((xo + yo + 2 * column_width) ^ swizzle), src + x2 + 2 * src_pitch, x3 - x2);
mem_copy_align16(dst + ((xo + yo + 3 * column_width) ^ swizzle), src + x2 + 3 * src_pitch, x3 - x2);
}
src += 4 * src_pitch;
}
if (y2 != y3) {
for (yo = y2 * column_width; yo < y3 * column_width; yo += column_width) {
uint32_t xo = xo1;
uint32_t swizzle = swizzle1;
mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0);
/* Step by spans/columns. As it happens, the swizzle bit flips
* at each step so we don't need to calculate it explicitly.
*/
for (x = x1; x < x2; x += ytile_span) {
mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x, ytile_span);
xo += bytes_per_column;
swizzle ^= swizzle_bit;
}
mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
src += src_pitch;
}
}
}
/**
* Copy texture data from X tile layout to linear.
*
* \copydoc tile_copy_fn
*/
static inline void
xtiled_to_linear(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t dst_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy,
mem_copy_fn mem_copy_align16)
{
/* The copy destination offset for each range copied is the sum of
* an X offset 'x0' or 'xo' and a Y offset 'yo.'
*/
uint32_t xo, yo;
dst += (ptrdiff_t)y0 * dst_pitch;
for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) {
/* Bits 9 and 10 of the copy destination offset control swizzling.
* Only 'yo' contributes to those bits in the total offset,
* so calculate 'swizzle' just once per row.
* Move bits 9 and 10 three and four places respectively down
* to bit 6 and xor them.
*/
uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit;
mem_copy(dst + x0, src + ((x0 + yo) ^ swizzle), x1 - x0);
for (xo = x1; xo < x2; xo += xtile_span) {
mem_copy_align16(dst + xo, src + ((xo + yo) ^ swizzle), xtile_span);
}
mem_copy_align16(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2);
dst += dst_pitch;
}
}
/**
* Copy texture data from Y tile layout to linear.
*
* \copydoc tile_copy_fn
*/
static inline void
ytiled_to_linear(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y3,
char *dst, const char *src,
int32_t dst_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy,
mem_copy_fn mem_copy_align16)
{
/* Y tiles consist of columns that are 'ytile_span' wide (and the same height
* as the tile). Thus the destination offset for (x,y) is the sum of:
* (x % column_width) // position within column
* (x / column_width) * bytes_per_column // column number * bytes per column
* y * column_width
*
* The copy destination offset for each range copied is the sum of
* an X offset 'xo0' or 'xo' and a Y offset 'yo.'
*/
const uint32_t column_width = ytile_span;
const uint32_t bytes_per_column = column_width * ytile_height;
uint32_t y1 = MIN2(y3, ALIGN_UP(y0, 4));
uint32_t y2 = MAX2(y1, ALIGN_DOWN(y3, 4));
uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column;
uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column;
/* Bit 9 of the destination offset control swizzling.
* Only the X offset contributes to bit 9 of the total offset,
* so swizzle can be calculated in advance for these X positions.
* Move bit 9 three places down to bit 6.
*/
uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit;
uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit;
uint32_t x, yo;
dst += (ptrdiff_t)y0 * dst_pitch;
if (y0 != y1) {
for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) {
uint32_t xo = xo1;
uint32_t swizzle = swizzle1;
mem_copy(dst + x0, src + ((xo0 + yo) ^ swizzle0), x1 - x0);
/* Step by spans/columns. As it happens, the swizzle bit flips
* at each step so we don't need to calculate it explicitly.
*/
for (x = x1; x < x2; x += ytile_span) {
mem_copy_align16(dst + x, src + ((xo + yo) ^ swizzle), ytile_span);
xo += bytes_per_column;
swizzle ^= swizzle_bit;
}
mem_copy_align16(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2);
dst += dst_pitch;
}
}
for (yo = y1 * column_width; yo < y2 * column_width; yo += 4 * column_width) {
uint32_t xo = xo1;
uint32_t swizzle = swizzle1;
if (x0 != x1) {
mem_copy(dst + x0 + 0 * dst_pitch, src + ((xo0 + yo + 0 * column_width) ^ swizzle0), x1 - x0);
mem_copy(dst + x0 + 1 * dst_pitch, src + ((xo0 + yo + 1 * column_width) ^ swizzle0), x1 - x0);
mem_copy(dst + x0 + 2 * dst_pitch, src + ((xo0 + yo + 2 * column_width) ^ swizzle0), x1 - x0);
mem_copy(dst + x0 + 3 * dst_pitch, src + ((xo0 + yo + 3 * column_width) ^ swizzle0), x1 - x0);
}
/* Step by spans/columns. As it happens, the swizzle bit flips
* at each step so we don't need to calculate it explicitly.
*/
for (x = x1; x < x2; x += ytile_span) {
mem_copy_align16(dst + x + 0 * dst_pitch, src + ((xo + yo + 0 * column_width) ^ swizzle), ytile_span);
mem_copy_align16(dst + x + 1 * dst_pitch, src + ((xo + yo + 1 * column_width) ^ swizzle), ytile_span);
mem_copy_align16(dst + x + 2 * dst_pitch, src + ((xo + yo + 2 * column_width) ^ swizzle), ytile_span);
mem_copy_align16(dst + x + 3 * dst_pitch, src + ((xo + yo + 3 * column_width) ^ swizzle), ytile_span);
xo += bytes_per_column;
swizzle ^= swizzle_bit;
}
if (x2 != x3) {
mem_copy_align16(dst + x2 + 0 * dst_pitch, src + ((xo + yo + 0 * column_width) ^ swizzle), x3 - x2);
mem_copy_align16(dst + x2 + 1 * dst_pitch, src + ((xo + yo + 1 * column_width) ^ swizzle), x3 - x2);
mem_copy_align16(dst + x2 + 2 * dst_pitch, src + ((xo + yo + 2 * column_width) ^ swizzle), x3 - x2);
mem_copy_align16(dst + x2 + 3 * dst_pitch, src + ((xo + yo + 3 * column_width) ^ swizzle), x3 - x2);
}
dst += 4 * dst_pitch;
}
if (y2 != y3) {
for (yo = y2 * column_width; yo < y3 * column_width; yo += column_width) {
uint32_t xo = xo1;
uint32_t swizzle = swizzle1;
mem_copy(dst + x0, src + ((xo0 + yo) ^ swizzle0), x1 - x0);
/* Step by spans/columns. As it happens, the swizzle bit flips
* at each step so we don't need to calculate it explicitly.
*/
for (x = x1; x < x2; x += ytile_span) {
mem_copy_align16(dst + x, src + ((xo + yo) ^ swizzle), ytile_span);
xo += bytes_per_column;
swizzle ^= swizzle_bit;
}
mem_copy_align16(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2);
dst += dst_pitch;
}
}
}
#if defined(INLINE_SSE41)
static ALWAYS_INLINE void *
_memcpy_streaming_load(void *dest, const void *src, size_t count)
{
if (count == 16) {
__m128i val = _mm_stream_load_si128((__m128i *)src);
_mm_storeu_si128((__m128i *)dest, val);
return dest;
} else if (count == 64) {
__m128i val0 = _mm_stream_load_si128(((__m128i *)src) + 0);
__m128i val1 = _mm_stream_load_si128(((__m128i *)src) + 1);
__m128i val2 = _mm_stream_load_si128(((__m128i *)src) + 2);
__m128i val3 = _mm_stream_load_si128(((__m128i *)src) + 3);
_mm_storeu_si128(((__m128i *)dest) + 0, val0);
_mm_storeu_si128(((__m128i *)dest) + 1, val1);
_mm_storeu_si128(((__m128i *)dest) + 2, val2);
_mm_storeu_si128(((__m128i *)dest) + 3, val3);
return dest;
} else {
assert(count < 64); /* and (count < 16) for ytiled */
return memcpy(dest, src, count);
}
}
#endif
static mem_copy_fn
choose_copy_function(mem_copy_fn_type copy_type)
{
switch(copy_type) {
case INTEL_COPY_MEMCPY:
return memcpy;
case INTEL_COPY_RGBA8:
return rgba8_copy;
#if defined(INLINE_SSE41)
case INTEL_COPY_STREAMING_LOAD:
return _memcpy_streaming_load;
#endif
default:
assert(!"unreachable");
}
return NULL;
}
/**
* Copy texture data from linear to X tile layout, faster.
*
* Same as \ref linear_to_xtiled but faster, because it passes constant
* parameters for common cases, allowing the compiler to inline code
* optimized for those cases.
*
* \copydoc tile_copy_fn
*/
static FLATTEN void
linear_to_xtiled_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t src_pitch,
uint32_t swizzle_bit,
mem_copy_fn_type copy_type)
{
mem_copy_fn mem_copy = choose_copy_function(copy_type);
if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) {
if (mem_copy == memcpy)
return linear_to_xtiled(0, 0, xtile_width, xtile_width, 0, xtile_height,
dst, src, src_pitch, swizzle_bit, memcpy, memcpy);
else if (mem_copy == rgba8_copy)
return linear_to_xtiled(0, 0, xtile_width, xtile_width, 0, xtile_height,
dst, src, src_pitch, swizzle_bit,
rgba8_copy, rgba8_copy_aligned_dst);
else
unreachable("not reached");
} else {
if (mem_copy == memcpy)
return linear_to_xtiled(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit,
memcpy, memcpy);
else if (mem_copy == rgba8_copy)
return linear_to_xtiled(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit,
rgba8_copy, rgba8_copy_aligned_dst);
else
unreachable("not reached");
}
linear_to_xtiled(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit, mem_copy, mem_copy);
}
/**
* Copy texture data from linear to Y tile layout, faster.
*
* Same as \ref linear_to_ytiled but faster, because it passes constant
* parameters for common cases, allowing the compiler to inline code
* optimized for those cases.
*
* \copydoc tile_copy_fn
*/
static FLATTEN void
linear_to_ytiled_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t src_pitch,
uint32_t swizzle_bit,
mem_copy_fn_type copy_type)
{
mem_copy_fn mem_copy = choose_copy_function(copy_type);
if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) {
if (mem_copy == memcpy)
return linear_to_ytiled(0, 0, ytile_width, ytile_width, 0, ytile_height,
dst, src, src_pitch, swizzle_bit, memcpy, memcpy);
else if (mem_copy == rgba8_copy)
return linear_to_ytiled(0, 0, ytile_width, ytile_width, 0, ytile_height,
dst, src, src_pitch, swizzle_bit,
rgba8_copy, rgba8_copy_aligned_dst);
else
unreachable("not reached");
} else {
if (mem_copy == memcpy)
return linear_to_ytiled(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit, memcpy, memcpy);
else if (mem_copy == rgba8_copy)
return linear_to_ytiled(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit,
rgba8_copy, rgba8_copy_aligned_dst);
else
unreachable("not reached");
}
linear_to_ytiled(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit, mem_copy, mem_copy);
}
/**
* Copy texture data from X tile layout to linear, faster.
*
* Same as \ref xtile_to_linear but faster, because it passes constant
* parameters for common cases, allowing the compiler to inline code
* optimized for those cases.
*
* \copydoc tile_copy_fn
*/
static FLATTEN void
xtiled_to_linear_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t dst_pitch,
uint32_t swizzle_bit,
mem_copy_fn_type copy_type)
{
mem_copy_fn mem_copy = choose_copy_function(copy_type);
if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) {
if (mem_copy == memcpy)
return xtiled_to_linear(0, 0, xtile_width, xtile_width, 0, xtile_height,
dst, src, dst_pitch, swizzle_bit, memcpy, memcpy);
else if (mem_copy == rgba8_copy)
return xtiled_to_linear(0, 0, xtile_width, xtile_width, 0, xtile_height,
dst, src, dst_pitch, swizzle_bit,
rgba8_copy, rgba8_copy_aligned_src);
#if defined(INLINE_SSE41)
else if (mem_copy == _memcpy_streaming_load)
return xtiled_to_linear(0, 0, xtile_width, xtile_width, 0, xtile_height,
dst, src, dst_pitch, swizzle_bit,
memcpy, _memcpy_streaming_load);
#endif
else
unreachable("not reached");
} else {
if (mem_copy == memcpy)
return xtiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit, memcpy, memcpy);
else if (mem_copy == rgba8_copy)
return xtiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit,
rgba8_copy, rgba8_copy_aligned_src);
#if defined(INLINE_SSE41)
else if (mem_copy == _memcpy_streaming_load)
return xtiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit,
memcpy, _memcpy_streaming_load);
#endif
else
unreachable("not reached");
}
xtiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit, mem_copy, mem_copy);
}
/**
* Copy texture data from Y tile layout to linear, faster.
*
* Same as \ref ytile_to_linear but faster, because it passes constant
* parameters for common cases, allowing the compiler to inline code
* optimized for those cases.
*
* \copydoc tile_copy_fn
*/
static FLATTEN void
ytiled_to_linear_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t dst_pitch,
uint32_t swizzle_bit,
mem_copy_fn_type copy_type)
{
mem_copy_fn mem_copy = choose_copy_function(copy_type);
if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) {
if (mem_copy == memcpy)
return ytiled_to_linear(0, 0, ytile_width, ytile_width, 0, ytile_height,
dst, src, dst_pitch, swizzle_bit, memcpy, memcpy);
else if (mem_copy == rgba8_copy)
return ytiled_to_linear(0, 0, ytile_width, ytile_width, 0, ytile_height,
dst, src, dst_pitch, swizzle_bit,
rgba8_copy, rgba8_copy_aligned_src);
#if defined(INLINE_SSE41)
else if (copy_type == INTEL_COPY_STREAMING_LOAD)
return ytiled_to_linear(0, 0, ytile_width, ytile_width, 0, ytile_height,
dst, src, dst_pitch, swizzle_bit,
memcpy, _memcpy_streaming_load);
#endif
else
unreachable("not reached");
} else {
if (mem_copy == memcpy)
return ytiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit, memcpy, memcpy);
else if (mem_copy == rgba8_copy)
return ytiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit,
rgba8_copy, rgba8_copy_aligned_src);
#if defined(INLINE_SSE41)
else if (copy_type == INTEL_COPY_STREAMING_LOAD)
return ytiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit,
memcpy, _memcpy_streaming_load);
#endif
else
unreachable("not reached");
}
ytiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit, mem_copy, mem_copy);
}
/**
* Copy from linear to tiled texture.
*
* Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into
* pieces that do not cross tile boundaries and copy each piece with a tile
* copy function (\ref tile_copy_fn).
* The X range is in bytes, i.e. pixels * bytes-per-pixel.
* The Y range is in pixels (i.e. unitless).
* 'dst' is the address of (0, 0) in the destination tiled texture.
* 'src' is the address of (xt1, yt1) in the source linear texture.
*/
static void
intel_linear_to_tiled(uint32_t xt1, uint32_t xt2,
uint32_t yt1, uint32_t yt2,
char *dst, const char *src,
uint32_t dst_pitch, int32_t src_pitch,
bool has_swizzling,
enum isl_tiling tiling,
mem_copy_fn_type copy_type)
{
tile_copy_fn tile_copy;
uint32_t xt0, xt3;
uint32_t yt0, yt3;
uint32_t xt, yt;
uint32_t tw, th, span;
uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0;
if (tiling == ISL_TILING_X) {
tw = xtile_width;
th = xtile_height;
span = xtile_span;
tile_copy = linear_to_xtiled_faster;
} else if (tiling == ISL_TILING_Y0) {
tw = ytile_width;
th = ytile_height;
span = ytile_span;
tile_copy = linear_to_ytiled_faster;
} else {
unreachable("unsupported tiling");
}
/* Round out to tile boundaries. */
xt0 = ALIGN_DOWN(xt1, tw);
xt3 = ALIGN_UP (xt2, tw);
yt0 = ALIGN_DOWN(yt1, th);
yt3 = ALIGN_UP (yt2, th);
/* Loop over all tiles to which we have something to copy.
* 'xt' and 'yt' are the origin of the destination tile, whether copying
* copying a full or partial tile.
* tile_copy() copies one tile or partial tile.
* Looping x inside y is the faster memory access pattern.
*/
for (yt = yt0; yt < yt3; yt += th) {
for (xt = xt0; xt < xt3; xt += tw) {
/* The area to update is [x0,x3) x [y0,y1).
* May not want the whole tile, hence the min and max.
*/
uint32_t x0 = MAX2(xt1, xt);
uint32_t y0 = MAX2(yt1, yt);
uint32_t x3 = MIN2(xt2, xt + tw);
uint32_t y1 = MIN2(yt2, yt + th);
/* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that
* the middle interval is the longest span-aligned part.
* The sub-ranges could be empty.
*/
uint32_t x1, x2;
x1 = ALIGN_UP(x0, span);
if (x1 > x3)
x1 = x2 = x3;
else
x2 = ALIGN_DOWN(x3, span);
assert(x0 <= x1 && x1 <= x2 && x2 <= x3);
assert(x1 - x0 < span && x3 - x2 < span);
assert(x3 - x0 <= tw);
assert((x2 - x1) % span == 0);
/* Translate by (xt,yt) for single-tile copier. */
tile_copy(x0-xt, x1-xt, x2-xt, x3-xt,
y0-yt, y1-yt,
dst + (ptrdiff_t)xt * th + (ptrdiff_t)yt * dst_pitch,
src + (ptrdiff_t)xt - xt1 + ((ptrdiff_t)yt - yt1) * src_pitch,
src_pitch,
swizzle_bit,
copy_type);
}
}
}
/**
* Copy from tiled to linear texture.
*
* Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into
* pieces that do not cross tile boundaries and copy each piece with a tile
* copy function (\ref tile_copy_fn).
* The X range is in bytes, i.e. pixels * bytes-per-pixel.
* The Y range is in pixels (i.e. unitless).
* 'dst' is the address of (xt1, yt1) in the destination linear texture.
* 'src' is the address of (0, 0) in the source tiled texture.
*/
static void
intel_tiled_to_linear(uint32_t xt1, uint32_t xt2,
uint32_t yt1, uint32_t yt2,
char *dst, const char *src,
int32_t dst_pitch, uint32_t src_pitch,
bool has_swizzling,
enum isl_tiling tiling,
mem_copy_fn_type copy_type)
{
tile_copy_fn tile_copy;
uint32_t xt0, xt3;
uint32_t yt0, yt3;
uint32_t xt, yt;
uint32_t tw, th, span;
uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0;
if (tiling == ISL_TILING_X) {
tw = xtile_width;
th = xtile_height;
span = xtile_span;
tile_copy = xtiled_to_linear_faster;
} else if (tiling == ISL_TILING_Y0) {
tw = ytile_width;
th = ytile_height;
span = ytile_span;
tile_copy = ytiled_to_linear_faster;
} else {
unreachable("unsupported tiling");
}
#if defined(INLINE_SSE41)
if (copy_type == INTEL_COPY_STREAMING_LOAD) {
/* The hidden cacheline sized register used by movntdqa can apparently
* give you stale data, so do an mfence to invalidate it.
*/
_mm_mfence();
}
#endif
/* Round out to tile boundaries. */
xt0 = ALIGN_DOWN(xt1, tw);
xt3 = ALIGN_UP (xt2, tw);
yt0 = ALIGN_DOWN(yt1, th);
yt3 = ALIGN_UP (yt2, th);
/* Loop over all tiles to which we have something to copy.
* 'xt' and 'yt' are the origin of the destination tile, whether copying
* copying a full or partial tile.
* tile_copy() copies one tile or partial tile.
* Looping x inside y is the faster memory access pattern.
*/
for (yt = yt0; yt < yt3; yt += th) {
for (xt = xt0; xt < xt3; xt += tw) {
/* The area to update is [x0,x3) x [y0,y1).
* May not want the whole tile, hence the min and max.
*/
uint32_t x0 = MAX2(xt1, xt);
uint32_t y0 = MAX2(yt1, yt);
uint32_t x3 = MIN2(xt2, xt + tw);
uint32_t y1 = MIN2(yt2, yt + th);
/* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that
* the middle interval is the longest span-aligned part.
* The sub-ranges could be empty.
*/
uint32_t x1, x2;
x1 = ALIGN_UP(x0, span);
if (x1 > x3)
x1 = x2 = x3;
else
x2 = ALIGN_DOWN(x3, span);
assert(x0 <= x1 && x1 <= x2 && x2 <= x3);
assert(x1 - x0 < span && x3 - x2 < span);
assert(x3 - x0 <= tw);
assert((x2 - x1) % span == 0);
/* Translate by (xt,yt) for single-tile copier. */
tile_copy(x0-xt, x1-xt, x2-xt, x3-xt,
y0-yt, y1-yt,
dst + (ptrdiff_t)xt - xt1 + ((ptrdiff_t)yt - yt1) * dst_pitch,
src + (ptrdiff_t)xt * th + (ptrdiff_t)yt * src_pitch,
dst_pitch,
swizzle_bit,
copy_type);
}
}
}
|