1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
|
/*
* Copyright 2003 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "main/mtypes.h"
#include "main/blit.h"
#include "main/context.h"
#include "main/enums.h"
#include "main/fbobject.h"
#include "brw_context.h"
#include "brw_defines.h"
#include "intel_blit.h"
#include "intel_buffers.h"
#include "intel_fbo.h"
#include "intel_batchbuffer.h"
#include "intel_mipmap_tree.h"
#define FILE_DEBUG_FLAG DEBUG_BLIT
static void
intel_miptree_set_alpha_to_one(struct brw_context *brw,
struct intel_mipmap_tree *mt,
int x, int y, int width, int height);
static GLuint translate_raster_op(enum gl_logicop_mode logicop)
{
return logicop | (logicop << 4);
}
static uint32_t
br13_for_cpp(int cpp)
{
switch (cpp) {
case 16:
return BR13_32323232;
case 8:
return BR13_16161616;
case 4:
return BR13_8888;
case 2:
return BR13_565;
case 1:
return BR13_8;
default:
unreachable("not reached");
}
}
/**
* Emits the packet for switching the blitter from X to Y tiled or back.
*
* This has to be called in a single BEGIN_BATCH_BLT_TILED() /
* ADVANCE_BATCH_TILED(). This is because BCS_SWCTRL is saved and restored as
* part of the power context, not a render context, and if the batchbuffer was
* to get flushed between setting and blitting, or blitting and restoring, our
* tiling state would leak into other unsuspecting applications (like the X
* server).
*/
static uint32_t *
set_blitter_tiling(struct brw_context *brw,
bool dst_y_tiled, bool src_y_tiled,
uint32_t *__map)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
const unsigned n_dwords = devinfo->gen >= 8 ? 5 : 4;
assert(devinfo->gen >= 6);
/* Idle the blitter before we update how tiling is interpreted. */
OUT_BATCH(MI_FLUSH_DW | (n_dwords - 2));
OUT_BATCH(0);
OUT_BATCH(0);
OUT_BATCH(0);
if (n_dwords == 5)
OUT_BATCH(0);
OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
OUT_BATCH(BCS_SWCTRL);
OUT_BATCH((BCS_SWCTRL_DST_Y | BCS_SWCTRL_SRC_Y) << 16 |
(dst_y_tiled ? BCS_SWCTRL_DST_Y : 0) |
(src_y_tiled ? BCS_SWCTRL_SRC_Y : 0));
return __map;
}
#define SET_BLITTER_TILING(...) __map = set_blitter_tiling(__VA_ARGS__, __map)
#define BEGIN_BATCH_BLT_TILED(n, dst_y_tiled, src_y_tiled) \
unsigned set_tiling_batch_size = 0; \
if (dst_y_tiled || src_y_tiled) { \
if (devinfo->gen >= 8) \
set_tiling_batch_size = 16; \
else \
set_tiling_batch_size = 14; \
} \
BEGIN_BATCH_BLT(n + set_tiling_batch_size); \
if (dst_y_tiled || src_y_tiled) \
SET_BLITTER_TILING(brw, dst_y_tiled, src_y_tiled)
#define ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled) \
if (dst_y_tiled || src_y_tiled) \
SET_BLITTER_TILING(brw, false, false); \
ADVANCE_BATCH()
static int
blt_pitch(struct intel_mipmap_tree *mt)
{
int pitch = mt->surf.row_pitch;
if (mt->surf.tiling != ISL_TILING_LINEAR)
pitch /= 4;
return pitch;
}
bool
intel_miptree_blit_compatible_formats(mesa_format src, mesa_format dst)
{
/* The BLT doesn't handle sRGB conversion */
assert(src == _mesa_get_srgb_format_linear(src));
assert(dst == _mesa_get_srgb_format_linear(dst));
/* No swizzle or format conversions possible, except... */
if (src == dst)
return true;
/* ...we can either discard the alpha channel when going from A->X,
* or we can fill the alpha channel with 0xff when going from X->A
*/
if (src == MESA_FORMAT_B8G8R8A8_UNORM || src == MESA_FORMAT_B8G8R8X8_UNORM)
return (dst == MESA_FORMAT_B8G8R8A8_UNORM ||
dst == MESA_FORMAT_B8G8R8X8_UNORM);
if (src == MESA_FORMAT_R8G8B8A8_UNORM || src == MESA_FORMAT_R8G8B8X8_UNORM)
return (dst == MESA_FORMAT_R8G8B8A8_UNORM ||
dst == MESA_FORMAT_R8G8B8X8_UNORM);
/* We can also discard alpha when going from A2->X2 for 2 bit alpha,
* however we can't fill the alpha channel with two 1 bits when going
* from X2->A2, because intel_miptree_set_alpha_to_one() is not yet
* ready for this / can only handle 8 bit alpha.
*/
if (src == MESA_FORMAT_B10G10R10A2_UNORM)
return (dst == MESA_FORMAT_B10G10R10A2_UNORM ||
dst == MESA_FORMAT_B10G10R10X2_UNORM);
if (src == MESA_FORMAT_R10G10B10A2_UNORM)
return (dst == MESA_FORMAT_R10G10B10A2_UNORM ||
dst == MESA_FORMAT_R10G10B10X2_UNORM);
return false;
}
static void
get_blit_intratile_offset_el(const struct brw_context *brw,
struct intel_mipmap_tree *mt,
uint32_t total_x_offset_el,
uint32_t total_y_offset_el,
uint32_t *base_address_offset,
uint32_t *x_offset_el,
uint32_t *y_offset_el)
{
isl_tiling_get_intratile_offset_el(mt->surf.tiling,
mt->cpp * 8, mt->surf.row_pitch,
total_x_offset_el, total_y_offset_el,
base_address_offset,
x_offset_el, y_offset_el);
if (mt->surf.tiling == ISL_TILING_LINEAR) {
/* From the Broadwell PRM docs for XY_SRC_COPY_BLT::SourceBaseAddress:
*
* "Base address of the destination surface: X=0, Y=0. Lower 32bits
* of the 48bit addressing. When Src Tiling is enabled (Bit_15
* enabled), this address must be 4KB-aligned. When Tiling is not
* enabled, this address should be CL (64byte) aligned."
*
* The offsets we get from ISL in the tiled case are already aligned.
* In the linear case, we need to do some of our own aligning.
*/
uint32_t delta = *base_address_offset & 63;
assert(delta % mt->cpp == 0);
*base_address_offset -= delta;
*x_offset_el += delta / mt->cpp;
} else {
assert(*base_address_offset % 4096 == 0);
}
}
static bool
alignment_valid(struct brw_context *brw, unsigned offset,
enum isl_tiling tiling)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
/* Tiled buffers must be page-aligned (4K). */
if (tiling != ISL_TILING_LINEAR)
return (offset & 4095) == 0;
/* On Gen8+, linear buffers must be cacheline-aligned. */
if (devinfo->gen >= 8)
return (offset & 63) == 0;
return true;
}
static uint32_t
xy_blit_cmd(enum isl_tiling src_tiling, enum isl_tiling dst_tiling,
uint32_t cpp)
{
uint32_t CMD = 0;
assert(cpp <= 4);
switch (cpp) {
case 1:
case 2:
CMD = XY_SRC_COPY_BLT_CMD;
break;
case 4:
CMD = XY_SRC_COPY_BLT_CMD | XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
break;
default:
unreachable("not reached");
}
if (dst_tiling != ISL_TILING_LINEAR)
CMD |= XY_DST_TILED;
if (src_tiling != ISL_TILING_LINEAR)
CMD |= XY_SRC_TILED;
return CMD;
}
/* Copy BitBlt
*/
static bool
emit_copy_blit(struct brw_context *brw,
GLuint cpp,
int32_t src_pitch,
struct brw_bo *src_buffer,
GLuint src_offset,
enum isl_tiling src_tiling,
int32_t dst_pitch,
struct brw_bo *dst_buffer,
GLuint dst_offset,
enum isl_tiling dst_tiling,
GLshort src_x, GLshort src_y,
GLshort dst_x, GLshort dst_y,
GLshort w, GLshort h,
enum gl_logicop_mode logic_op)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
GLuint CMD, BR13;
int dst_y2 = dst_y + h;
int dst_x2 = dst_x + w;
bool dst_y_tiled = dst_tiling == ISL_TILING_Y0;
bool src_y_tiled = src_tiling == ISL_TILING_Y0;
uint32_t src_tile_w, src_tile_h;
uint32_t dst_tile_w, dst_tile_h;
if ((dst_y_tiled || src_y_tiled) && devinfo->gen < 6)
return false;
const unsigned bo_sizes = dst_buffer->size + src_buffer->size;
/* do space check before going any further */
if (!brw_batch_has_aperture_space(brw, bo_sizes))
intel_batchbuffer_flush(brw);
if (!brw_batch_has_aperture_space(brw, bo_sizes))
return false;
unsigned length = devinfo->gen >= 8 ? 10 : 8;
intel_batchbuffer_require_space(brw, length * 4);
DBG("%s src:buf(%p)/%d+%d %d,%d dst:buf(%p)/%d+%d %d,%d sz:%dx%d\n",
__func__,
src_buffer, src_pitch, src_offset, src_x, src_y,
dst_buffer, dst_pitch, dst_offset, dst_x, dst_y, w, h);
intel_get_tile_dims(src_tiling, cpp, &src_tile_w, &src_tile_h);
intel_get_tile_dims(dst_tiling, cpp, &dst_tile_w, &dst_tile_h);
/* For Tiled surfaces, the pitch has to be a multiple of the Tile width
* (X direction width of the Tile). This is ensured while allocating the
* buffer object.
*/
assert(src_tiling == ISL_TILING_LINEAR || (src_pitch % src_tile_w) == 0);
assert(dst_tiling == ISL_TILING_LINEAR || (dst_pitch % dst_tile_w) == 0);
/* For big formats (such as floating point), do the copy using 16 or
* 32bpp and multiply the coordinates.
*/
if (cpp > 4) {
if (cpp % 4 == 2) {
dst_x *= cpp / 2;
dst_x2 *= cpp / 2;
src_x *= cpp / 2;
cpp = 2;
} else {
assert(cpp % 4 == 0);
dst_x *= cpp / 4;
dst_x2 *= cpp / 4;
src_x *= cpp / 4;
cpp = 4;
}
}
if (!alignment_valid(brw, dst_offset, dst_tiling))
return false;
if (!alignment_valid(brw, src_offset, src_tiling))
return false;
/* Blit pitch must be dword-aligned. Otherwise, the hardware appears to drop
* the low bits. Offsets must be naturally aligned.
*/
if (src_pitch % 4 != 0 || src_offset % cpp != 0 ||
dst_pitch % 4 != 0 || dst_offset % cpp != 0)
return false;
assert(cpp <= 4);
BR13 = br13_for_cpp(cpp) | translate_raster_op(logic_op) << 16;
CMD = xy_blit_cmd(src_tiling, dst_tiling, cpp);
/* For tiled source and destination, pitch value should be specified
* as a number of Dwords.
*/
if (dst_tiling != ISL_TILING_LINEAR)
dst_pitch /= 4;
if (src_tiling != ISL_TILING_LINEAR)
src_pitch /= 4;
if (dst_y2 <= dst_y || dst_x2 <= dst_x)
return true;
assert(dst_x < dst_x2);
assert(dst_y < dst_y2);
BEGIN_BATCH_BLT_TILED(length, dst_y_tiled, src_y_tiled);
OUT_BATCH(CMD | (length - 2));
OUT_BATCH(BR13 | (uint16_t)dst_pitch);
OUT_BATCH(SET_FIELD(dst_y, BLT_Y) | SET_FIELD(dst_x, BLT_X));
OUT_BATCH(SET_FIELD(dst_y2, BLT_Y) | SET_FIELD(dst_x2, BLT_X));
if (devinfo->gen >= 8) {
OUT_RELOC64(dst_buffer, RELOC_WRITE, dst_offset);
} else {
OUT_RELOC(dst_buffer, RELOC_WRITE, dst_offset);
}
OUT_BATCH(SET_FIELD(src_y, BLT_Y) | SET_FIELD(src_x, BLT_X));
OUT_BATCH((uint16_t)src_pitch);
if (devinfo->gen >= 8) {
OUT_RELOC64(src_buffer, 0, src_offset);
} else {
OUT_RELOC(src_buffer, 0, src_offset);
}
ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled);
brw_emit_mi_flush(brw);
return true;
}
static bool
emit_miptree_blit(struct brw_context *brw,
struct intel_mipmap_tree *src_mt,
uint32_t src_x, uint32_t src_y,
struct intel_mipmap_tree *dst_mt,
uint32_t dst_x, uint32_t dst_y,
uint32_t width, uint32_t height,
bool reverse, enum gl_logicop_mode logicop)
{
/* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics
* Data Size Limitations):
*
* The BLT engine is capable of transferring very large quantities of
* graphics data. Any graphics data read from and written to the
* destination is permitted to represent a number of pixels that
* occupies up to 65,536 scan lines and up to 32,768 bytes per scan line
* at the destination. The maximum number of pixels that may be
* represented per scan line’s worth of graphics data depends on the
* color depth.
*
* The blitter's pitch is a signed 16-bit integer, but measured in bytes
* for linear surfaces and DWords for tiled surfaces. So the maximum
* pitch is 32k linear and 128k tiled.
*/
if (blt_pitch(src_mt) >= 32768 || blt_pitch(dst_mt) >= 32768) {
perf_debug("Falling back due to >= 32k/128k pitch\n");
return false;
}
/* We need to split the blit into chunks that each fit within the blitter's
* restrictions. We can't use a chunk size of 32768 because we need to
* ensure that src_tile_x + chunk_size fits. We choose 16384 because it's
* a nice round power of two, big enough that performance won't suffer, and
* small enough to guarantee everything fits.
*/
const uint32_t max_chunk_size = 16384;
for (uint32_t chunk_x = 0; chunk_x < width; chunk_x += max_chunk_size) {
for (uint32_t chunk_y = 0; chunk_y < height; chunk_y += max_chunk_size) {
const uint32_t chunk_w = MIN2(max_chunk_size, width - chunk_x);
const uint32_t chunk_h = MIN2(max_chunk_size, height - chunk_y);
uint32_t src_offset, src_tile_x, src_tile_y;
get_blit_intratile_offset_el(brw, src_mt,
src_x + chunk_x, src_y + chunk_y,
&src_offset, &src_tile_x, &src_tile_y);
uint32_t dst_offset, dst_tile_x, dst_tile_y;
get_blit_intratile_offset_el(brw, dst_mt,
dst_x + chunk_x, dst_y + chunk_y,
&dst_offset, &dst_tile_x, &dst_tile_y);
if (!emit_copy_blit(brw,
src_mt->cpp,
reverse ? -src_mt->surf.row_pitch :
src_mt->surf.row_pitch,
src_mt->bo, src_mt->offset + src_offset,
src_mt->surf.tiling,
dst_mt->surf.row_pitch,
dst_mt->bo, dst_mt->offset + dst_offset,
dst_mt->surf.tiling,
src_tile_x, src_tile_y,
dst_tile_x, dst_tile_y,
chunk_w, chunk_h,
logicop)) {
/* If this is ever going to fail, it will fail on the first chunk */
assert(chunk_x == 0 && chunk_y == 0);
return false;
}
}
}
return true;
}
/**
* Implements a rectangular block transfer (blit) of pixels between two
* miptrees.
*
* Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous,
* but limited, pitches and sizes allowed.
*
* The src/dst coordinates are relative to the given level/slice of the
* miptree.
*
* If @src_flip or @dst_flip is set, then the rectangle within that miptree
* will be inverted (including scanline order) when copying. This is common
* in GL when copying between window system and user-created
* renderbuffers/textures.
*/
bool
intel_miptree_blit(struct brw_context *brw,
struct intel_mipmap_tree *src_mt,
int src_level, int src_slice,
uint32_t src_x, uint32_t src_y, bool src_flip,
struct intel_mipmap_tree *dst_mt,
int dst_level, int dst_slice,
uint32_t dst_x, uint32_t dst_y, bool dst_flip,
uint32_t width, uint32_t height,
enum gl_logicop_mode logicop)
{
/* The blitter doesn't understand multisampling at all. */
if (src_mt->surf.samples > 1 || dst_mt->surf.samples > 1)
return false;
/* No sRGB decode or encode is done by the hardware blitter, which is
* consistent with what we want in many callers (glCopyTexSubImage(),
* texture validation, etc.).
*/
mesa_format src_format = _mesa_get_srgb_format_linear(src_mt->format);
mesa_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format);
/* The blitter doesn't support doing any format conversions. We do also
* support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into
* the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A
* channel to 1.0 at the end. Also trivially ARGB2101010 to XRGB2101010,
* but not XRGB2101010 to ARGB2101010 yet.
*/
if (!intel_miptree_blit_compatible_formats(src_format, dst_format)) {
perf_debug("%s: Can't use hardware blitter from %s to %s, "
"falling back.\n", __func__,
_mesa_get_format_name(src_format),
_mesa_get_format_name(dst_format));
return false;
}
/* The blitter has no idea about HiZ or fast color clears, so we need to
* resolve the miptrees before we do anything.
*/
intel_miptree_access_raw(brw, src_mt, src_level, src_slice, false);
intel_miptree_access_raw(brw, dst_mt, dst_level, dst_slice, true);
if (src_flip) {
const unsigned h0 = src_mt->surf.phys_level0_sa.height;
src_y = minify(h0, src_level - src_mt->first_level) - src_y - height;
}
if (dst_flip) {
const unsigned h0 = dst_mt->surf.phys_level0_sa.height;
dst_y = minify(h0, dst_level - dst_mt->first_level) - dst_y - height;
}
uint32_t src_image_x, src_image_y, dst_image_x, dst_image_y;
intel_miptree_get_image_offset(src_mt, src_level, src_slice,
&src_image_x, &src_image_y);
intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
&dst_image_x, &dst_image_y);
src_x += src_image_x;
src_y += src_image_y;
dst_x += dst_image_x;
dst_y += dst_image_y;
if (!emit_miptree_blit(brw, src_mt, src_x, src_y,
dst_mt, dst_x, dst_y, width, height,
src_flip != dst_flip, logicop)) {
return false;
}
/* XXX This could be done in a single pass using XY_FULL_MONO_PATTERN_BLT */
if (_mesa_get_format_bits(src_format, GL_ALPHA_BITS) == 0 &&
_mesa_get_format_bits(dst_format, GL_ALPHA_BITS) > 0) {
intel_miptree_set_alpha_to_one(brw, dst_mt,
dst_x, dst_y,
width, height);
}
return true;
}
bool
intel_miptree_copy(struct brw_context *brw,
struct intel_mipmap_tree *src_mt,
int src_level, int src_slice,
uint32_t src_x, uint32_t src_y,
struct intel_mipmap_tree *dst_mt,
int dst_level, int dst_slice,
uint32_t dst_x, uint32_t dst_y,
uint32_t src_width, uint32_t src_height)
{
/* The blitter doesn't understand multisampling at all. */
if (src_mt->surf.samples > 1 || dst_mt->surf.samples > 1)
return false;
if (src_mt->format == MESA_FORMAT_S_UINT8)
return false;
/* The blitter has no idea about HiZ or fast color clears, so we need to
* resolve the miptrees before we do anything.
*/
intel_miptree_access_raw(brw, src_mt, src_level, src_slice, false);
intel_miptree_access_raw(brw, dst_mt, dst_level, dst_slice, true);
uint32_t src_image_x, src_image_y;
intel_miptree_get_image_offset(src_mt, src_level, src_slice,
&src_image_x, &src_image_y);
if (_mesa_is_format_compressed(src_mt->format)) {
GLuint bw, bh;
_mesa_get_format_block_size(src_mt->format, &bw, &bh);
/* Compressed textures need not have dimensions that are a multiple of
* the block size. Rectangles in compressed textures do need to be a
* multiple of the block size. The one exception is that the right and
* bottom edges may be at the right or bottom edge of the miplevel even
* if it's not aligned.
*/
assert(src_x % bw == 0);
assert(src_y % bh == 0);
assert(src_width % bw == 0 ||
src_x + src_width ==
minify(src_mt->surf.logical_level0_px.width, src_level));
assert(src_height % bh == 0 ||
src_y + src_height ==
minify(src_mt->surf.logical_level0_px.height, src_level));
src_x /= (int)bw;
src_y /= (int)bh;
src_width = DIV_ROUND_UP(src_width, (int)bw);
src_height = DIV_ROUND_UP(src_height, (int)bh);
}
src_x += src_image_x;
src_y += src_image_y;
uint32_t dst_image_x, dst_image_y;
intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
&dst_image_x, &dst_image_y);
if (_mesa_is_format_compressed(dst_mt->format)) {
GLuint bw, bh;
_mesa_get_format_block_size(dst_mt->format, &bw, &bh);
assert(dst_x % bw == 0);
assert(dst_y % bh == 0);
dst_x /= (int)bw;
dst_y /= (int)bh;
}
dst_x += dst_image_x;
dst_y += dst_image_y;
return emit_miptree_blit(brw, src_mt, src_x, src_y,
dst_mt, dst_x, dst_y,
src_width, src_height, false, COLOR_LOGICOP_COPY);
}
bool
intelEmitImmediateColorExpandBlit(struct brw_context *brw,
GLuint cpp,
GLubyte *src_bits, GLuint src_size,
GLuint fg_color,
GLshort dst_pitch,
struct brw_bo *dst_buffer,
GLuint dst_offset,
enum isl_tiling dst_tiling,
GLshort x, GLshort y,
GLshort w, GLshort h,
enum gl_logicop_mode logic_op)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
int dwords = ALIGN(src_size, 8) / 4;
uint32_t opcode, br13, blit_cmd;
if (dst_tiling != ISL_TILING_LINEAR) {
if (dst_offset & 4095)
return false;
if (dst_tiling == ISL_TILING_Y0)
return false;
}
assert((unsigned) logic_op <= 0x0f);
assert(dst_pitch > 0);
if (w < 0 || h < 0)
return true;
DBG("%s dst:buf(%p)/%d+%d %d,%d sz:%dx%d, %d bytes %d dwords\n",
__func__,
dst_buffer, dst_pitch, dst_offset, x, y, w, h, src_size, dwords);
unsigned xy_setup_blt_length = devinfo->gen >= 8 ? 10 : 8;
intel_batchbuffer_require_space(brw, (xy_setup_blt_length * 4) +
(3 * 4) + dwords * 4);
opcode = XY_SETUP_BLT_CMD;
if (cpp == 4)
opcode |= XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
if (dst_tiling != ISL_TILING_LINEAR) {
opcode |= XY_DST_TILED;
dst_pitch /= 4;
}
br13 = dst_pitch | (translate_raster_op(logic_op) << 16) | (1 << 29);
br13 |= br13_for_cpp(cpp);
blit_cmd = XY_TEXT_IMMEDIATE_BLIT_CMD | XY_TEXT_BYTE_PACKED; /* packing? */
if (dst_tiling != ISL_TILING_LINEAR)
blit_cmd |= XY_DST_TILED;
BEGIN_BATCH_BLT(xy_setup_blt_length + 3);
OUT_BATCH(opcode | (xy_setup_blt_length - 2));
OUT_BATCH(br13);
OUT_BATCH((0 << 16) | 0); /* clip x1, y1 */
OUT_BATCH((100 << 16) | 100); /* clip x2, y2 */
if (devinfo->gen >= 8) {
OUT_RELOC64(dst_buffer, RELOC_WRITE, dst_offset);
} else {
OUT_RELOC(dst_buffer, RELOC_WRITE, dst_offset);
}
OUT_BATCH(0); /* bg */
OUT_BATCH(fg_color); /* fg */
OUT_BATCH(0); /* pattern base addr */
if (devinfo->gen >= 8)
OUT_BATCH(0);
OUT_BATCH(blit_cmd | ((3 - 2) + dwords));
OUT_BATCH(SET_FIELD(y, BLT_Y) | SET_FIELD(x, BLT_X));
OUT_BATCH(SET_FIELD(y + h, BLT_Y) | SET_FIELD(x + w, BLT_X));
ADVANCE_BATCH();
intel_batchbuffer_data(brw, src_bits, dwords * 4);
brw_emit_mi_flush(brw);
return true;
}
/**
* Used to initialize the alpha value of an ARGB8888 miptree after copying
* into it from an XRGB8888 source.
*
* This is very common with glCopyTexImage2D(). Note that the coordinates are
* relative to the start of the miptree, not relative to a slice within the
* miptree.
*/
static void
intel_miptree_set_alpha_to_one(struct brw_context *brw,
struct intel_mipmap_tree *mt,
int x, int y, int width, int height)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
uint32_t BR13, CMD;
int pitch, cpp;
pitch = mt->surf.row_pitch;
cpp = mt->cpp;
DBG("%s dst:buf(%p)/%d %d,%d sz:%dx%d\n",
__func__, mt->bo, pitch, x, y, width, height);
/* Note: Currently only handles 8 bit alpha channel. Extension to < 8 Bit
* alpha channel would be likely possible via ROP code 0xfa instead of 0xf0
* and writing a suitable bit-mask instead of 0xffffffff.
*/
BR13 = br13_for_cpp(cpp) | 0xf0 << 16;
CMD = XY_COLOR_BLT_CMD;
CMD |= XY_BLT_WRITE_ALPHA;
if (mt->surf.tiling != ISL_TILING_LINEAR) {
CMD |= XY_DST_TILED;
pitch /= 4;
}
BR13 |= pitch;
/* do space check before going any further */
if (!brw_batch_has_aperture_space(brw, mt->bo->size))
intel_batchbuffer_flush(brw);
unsigned length = devinfo->gen >= 8 ? 7 : 6;
const bool dst_y_tiled = mt->surf.tiling == ISL_TILING_Y0;
/* We need to split the blit into chunks that each fit within the blitter's
* restrictions. We can't use a chunk size of 32768 because we need to
* ensure that src_tile_x + chunk_size fits. We choose 16384 because it's
* a nice round power of two, big enough that performance won't suffer, and
* small enough to guarantee everything fits.
*/
const uint32_t max_chunk_size = 16384;
for (uint32_t chunk_x = 0; chunk_x < width; chunk_x += max_chunk_size) {
for (uint32_t chunk_y = 0; chunk_y < height; chunk_y += max_chunk_size) {
const uint32_t chunk_w = MIN2(max_chunk_size, width - chunk_x);
const uint32_t chunk_h = MIN2(max_chunk_size, height - chunk_y);
uint32_t offset, tile_x, tile_y;
get_blit_intratile_offset_el(brw, mt,
x + chunk_x, y + chunk_y,
&offset, &tile_x, &tile_y);
BEGIN_BATCH_BLT_TILED(length, dst_y_tiled, false);
OUT_BATCH(CMD | (length - 2));
OUT_BATCH(BR13);
OUT_BATCH(SET_FIELD(y + chunk_y, BLT_Y) |
SET_FIELD(x + chunk_x, BLT_X));
OUT_BATCH(SET_FIELD(y + chunk_y + chunk_h, BLT_Y) |
SET_FIELD(x + chunk_x + chunk_w, BLT_X));
if (devinfo->gen >= 8) {
OUT_RELOC64(mt->bo, RELOC_WRITE, mt->offset + offset);
} else {
OUT_RELOC(mt->bo, RELOC_WRITE, mt->offset + offset);
}
OUT_BATCH(0xffffffff); /* white, but only alpha gets written */
ADVANCE_BATCH_TILED(dst_y_tiled, false);
}
}
brw_emit_mi_flush(brw);
}
|