1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
|
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "main/macros.h"
#include "intel_batchbuffer.h"
#include "brw_context.h"
#include "brw_state.h"
#include "brw_defines.h"
/**
* The following diagram shows how we partition the URB:
*
* 16kB or 32kB Rest of the URB space
* __________-__________ _________________-_________________
* / \ / \
* +-------------------------------------------------------------+
* | VS/HS/DS/GS/FS Push | VS/HS/DS/GS URB |
* | Constants | Entries |
* +-------------------------------------------------------------+
*
* Notably, push constants must be stored at the beginning of the URB
* space, while entries can be stored anywhere. Ivybridge and Haswell
* GT1/GT2 have a maximum constant buffer size of 16kB, while Haswell GT3
* doubles this (32kB).
*
* Ivybridge and Haswell GT1/GT2 allow push constants to be located (and
* sized) in increments of 1kB. Haswell GT3 requires them to be located and
* sized in increments of 2kB.
*
* Currently we split the constant buffer space evenly among whatever stages
* are active. This is probably not ideal, but simple.
*
* Ivybridge GT1 and Haswell GT1 have 128kB of URB space.
* Ivybridge GT2 and Haswell GT2 have 256kB of URB space.
* Haswell GT3 has 512kB of URB space.
*
* See "Volume 2a: 3D Pipeline," section 1.8, "Volume 1b: Configurations",
* and the documentation for 3DSTATE_PUSH_CONSTANT_ALLOC_xS.
*/
static void
gen7_allocate_push_constants(struct brw_context *brw)
{
/* BRW_NEW_GEOMETRY_PROGRAM */
bool gs_present = brw->geometry_program;
/* BRW_NEW_TESS_PROGRAMS */
bool tess_present = brw->tess_eval_program;
unsigned avail_size = 16;
unsigned multiplier =
(brw->gen >= 8 || (brw->is_haswell && brw->gt == 3)) ? 2 : 1;
int stages = 2 + gs_present + 2 * tess_present;
/* Divide up the available space equally between stages. Because we
* round down (using floor division), there may be some left over
* space. We allocate that to the pixel shader stage.
*/
unsigned size_per_stage = avail_size / stages;
unsigned vs_size = size_per_stage;
unsigned hs_size = tess_present ? size_per_stage : 0;
unsigned ds_size = tess_present ? size_per_stage : 0;
unsigned gs_size = gs_present ? size_per_stage : 0;
unsigned fs_size = avail_size - size_per_stage * (stages - 1);
gen7_emit_push_constant_state(brw, multiplier * vs_size,
multiplier * hs_size, multiplier * ds_size,
multiplier * gs_size, multiplier * fs_size);
/* From p115 of the Ivy Bridge PRM (3.2.1.4 3DSTATE_PUSH_CONSTANT_ALLOC_VS):
*
* Programming Restriction:
*
* The 3DSTATE_CONSTANT_VS must be reprogrammed prior to the next
* 3DPRIMITIVE command after programming the
* 3DSTATE_PUSH_CONSTANT_ALLOC_VS.
*
* Similar text exists for the other 3DSTATE_PUSH_CONSTANT_ALLOC_*
* commands.
*/
brw->ctx.NewDriverState |= BRW_NEW_PUSH_CONSTANT_ALLOCATION;
}
void
gen7_emit_push_constant_state(struct brw_context *brw, unsigned vs_size,
unsigned hs_size, unsigned ds_size,
unsigned gs_size, unsigned fs_size)
{
unsigned offset = 0;
BEGIN_BATCH(10);
OUT_BATCH(_3DSTATE_PUSH_CONSTANT_ALLOC_VS << 16 | (2 - 2));
OUT_BATCH(vs_size | offset << GEN7_PUSH_CONSTANT_BUFFER_OFFSET_SHIFT);
offset += vs_size;
OUT_BATCH(_3DSTATE_PUSH_CONSTANT_ALLOC_HS << 16 | (2 - 2));
OUT_BATCH(hs_size | offset << GEN7_PUSH_CONSTANT_BUFFER_OFFSET_SHIFT);
offset += hs_size;
OUT_BATCH(_3DSTATE_PUSH_CONSTANT_ALLOC_DS << 16 | (2 - 2));
OUT_BATCH(ds_size | offset << GEN7_PUSH_CONSTANT_BUFFER_OFFSET_SHIFT);
offset += ds_size;
OUT_BATCH(_3DSTATE_PUSH_CONSTANT_ALLOC_GS << 16 | (2 - 2));
OUT_BATCH(gs_size | offset << GEN7_PUSH_CONSTANT_BUFFER_OFFSET_SHIFT);
offset += gs_size;
OUT_BATCH(_3DSTATE_PUSH_CONSTANT_ALLOC_PS << 16 | (2 - 2));
OUT_BATCH(fs_size | offset << GEN7_PUSH_CONSTANT_BUFFER_OFFSET_SHIFT);
ADVANCE_BATCH();
/* From p292 of the Ivy Bridge PRM (11.2.4 3DSTATE_PUSH_CONSTANT_ALLOC_PS):
*
* A PIPE_CONTROL command with the CS Stall bit set must be programmed
* in the ring after this instruction.
*
* No such restriction exists for Haswell or Baytrail.
*/
if (brw->gen < 8 && !brw->is_haswell && !brw->is_baytrail)
gen7_emit_cs_stall_flush(brw);
}
const struct brw_tracked_state gen7_push_constant_space = {
.dirty = {
.mesa = 0,
.brw = BRW_NEW_CONTEXT |
BRW_NEW_GEOMETRY_PROGRAM |
BRW_NEW_TESS_PROGRAMS,
},
.emit = gen7_allocate_push_constants,
};
static void
gen7_emit_urb_state(struct brw_context *brw,
unsigned nr_vs_entries,
unsigned vs_size, unsigned vs_start,
unsigned nr_hs_entries,
unsigned hs_size, unsigned hs_start,
unsigned nr_ds_entries,
unsigned ds_size, unsigned ds_start,
unsigned nr_gs_entries,
unsigned gs_size, unsigned gs_start)
{
BEGIN_BATCH(8);
OUT_BATCH(_3DSTATE_URB_VS << 16 | (2 - 2));
OUT_BATCH(nr_vs_entries |
((vs_size - 1) << GEN7_URB_ENTRY_SIZE_SHIFT) |
(vs_start << GEN7_URB_STARTING_ADDRESS_SHIFT));
OUT_BATCH(_3DSTATE_URB_GS << 16 | (2 - 2));
OUT_BATCH(nr_gs_entries |
((gs_size - 1) << GEN7_URB_ENTRY_SIZE_SHIFT) |
(gs_start << GEN7_URB_STARTING_ADDRESS_SHIFT));
OUT_BATCH(_3DSTATE_URB_HS << 16 | (2 - 2));
OUT_BATCH(nr_hs_entries |
((hs_size - 1) << GEN7_URB_ENTRY_SIZE_SHIFT) |
(hs_start << GEN7_URB_STARTING_ADDRESS_SHIFT));
OUT_BATCH(_3DSTATE_URB_DS << 16 | (2 - 2));
OUT_BATCH(nr_ds_entries |
((ds_size - 1) << GEN7_URB_ENTRY_SIZE_SHIFT) |
(ds_start << GEN7_URB_STARTING_ADDRESS_SHIFT));
ADVANCE_BATCH();
}
static void
upload_urb(struct brw_context *brw)
{
/* BRW_NEW_VS_PROG_DATA */
const struct brw_vue_prog_data *vs_vue_prog_data =
brw_vue_prog_data(brw->vs.base.prog_data);
const unsigned vs_size = MAX2(vs_vue_prog_data->urb_entry_size, 1);
/* BRW_NEW_GS_PROG_DATA */
const bool gs_present = brw->gs.base.prog_data;
/* BRW_NEW_TES_PROG_DATA */
const bool tess_present = brw->tes.base.prog_data;
gen7_upload_urb(brw, vs_size, gs_present, tess_present);
}
void
gen7_upload_urb(struct brw_context *brw, unsigned vs_size,
bool gs_present, bool tess_present)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
const int push_size_kB =
(brw->gen >= 8 || (brw->is_haswell && brw->gt == 3)) ? 32 : 16;
/* BRW_NEW_VS_PROG_DATA */
unsigned vs_entry_size_bytes = vs_size * 64;
/* BRW_NEW_GEOMETRY_PROGRAM, BRW_NEW_GS_PROG_DATA */
const struct brw_vue_prog_data *gs_vue_prog_data =
brw_vue_prog_data(brw->gs.base.prog_data);
unsigned gs_size = gs_present ? gs_vue_prog_data->urb_entry_size : 1;
unsigned gs_entry_size_bytes = gs_size * 64;
/* BRW_NEW_TCS_PROG_DATA */
const struct brw_vue_prog_data *tcs_vue_prog_data =
brw_vue_prog_data(brw->tcs.base.prog_data);
unsigned hs_size = tess_present ? tcs_vue_prog_data->urb_entry_size : 1;
unsigned hs_entry_size_bytes = hs_size * 64;
/* BRW_NEW_TES_PROG_DATA */
const struct brw_vue_prog_data *tes_vue_prog_data =
brw_vue_prog_data(brw->tes.base.prog_data);
unsigned ds_size = tess_present ? tes_vue_prog_data->urb_entry_size : 1;
unsigned ds_entry_size_bytes = ds_size * 64;
/* If we're just switching between programs with the same URB requirements,
* skip the rest of the logic.
*/
if (!(brw->ctx.NewDriverState & BRW_NEW_CONTEXT) &&
!(brw->ctx.NewDriverState & BRW_NEW_URB_SIZE) &&
brw->urb.vsize == vs_size &&
brw->urb.gs_present == gs_present &&
brw->urb.gsize == gs_size &&
brw->urb.tess_present == tess_present &&
brw->urb.hsize == hs_size &&
brw->urb.dsize == ds_size) {
return;
}
brw->urb.vsize = vs_size;
brw->urb.gs_present = gs_present;
brw->urb.gsize = gs_size;
brw->urb.tess_present = tess_present;
brw->urb.hsize = hs_size;
brw->urb.dsize = ds_size;
/* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
*
* VS Number of URB Entries must be divisible by 8 if the VS URB Entry
* Allocation Size is less than 9 512-bit URB entries.
*
* Similar text exists for HS, DS and GS.
*/
unsigned vs_granularity = (vs_size < 9) ? 8 : 1;
unsigned hs_granularity = (hs_size < 9) ? 8 : 1;
unsigned ds_granularity = (ds_size < 9) ? 8 : 1;
unsigned gs_granularity = (gs_size < 9) ? 8 : 1;
/* URB allocations must be done in 8k chunks. */
unsigned chunk_size_bytes = 8192;
/* Determine the size of the URB in chunks.
* BRW_NEW_URB_SIZE
*/
unsigned urb_chunks = brw->urb.size * 1024 / chunk_size_bytes;
/* Reserve space for push constants */
unsigned push_constant_bytes = 1024 * push_size_kB;
unsigned push_constant_chunks =
push_constant_bytes / chunk_size_bytes;
/* Initially, assign each stage the minimum amount of URB space it needs,
* and make a note of how much additional space it "wants" (the amount of
* additional space it could actually make use of).
*/
/* VS has a lower limit on the number of URB entries.
*
* From the Broadwell PRM, 3DSTATE_URB_VS instruction:
* "When tessellation is enabled, the VS Number of URB Entries must be
* greater than or equal to 192."
*/
unsigned vs_min_entries =
tess_present && brw->gen == 8 ?
192 : devinfo->urb.min_entries[MESA_SHADER_VERTEX];
/* Min VS Entries isn't a multiple of 8 on Cherryview/Broxton; round up */
vs_min_entries = ALIGN(vs_min_entries, vs_granularity);
unsigned vs_chunks =
DIV_ROUND_UP(vs_min_entries * vs_entry_size_bytes, chunk_size_bytes);
unsigned vs_wants =
DIV_ROUND_UP(devinfo->urb.max_entries[MESA_SHADER_VERTEX] *
vs_entry_size_bytes,
chunk_size_bytes) - vs_chunks;
unsigned gs_chunks = 0;
unsigned gs_wants = 0;
if (gs_present) {
/* There are two constraints on the minimum amount of URB space we can
* allocate:
*
* (1) We need room for at least 2 URB entries, since we always operate
* the GS in DUAL_OBJECT mode.
*
* (2) We can't allocate less than nr_gs_entries_granularity.
*/
gs_chunks = DIV_ROUND_UP(MAX2(gs_granularity, 2) * gs_entry_size_bytes,
chunk_size_bytes);
gs_wants = DIV_ROUND_UP(devinfo->urb.max_entries[MESA_SHADER_GEOMETRY] *
gs_entry_size_bytes,
chunk_size_bytes) - gs_chunks;
}
unsigned hs_chunks = 0;
unsigned hs_wants = 0;
unsigned ds_chunks = 0;
unsigned ds_wants = 0;
if (tess_present) {
hs_chunks =
DIV_ROUND_UP(hs_granularity * hs_entry_size_bytes,
chunk_size_bytes);
hs_wants =
DIV_ROUND_UP(devinfo->urb.max_entries[MESA_SHADER_TESS_CTRL] *
hs_entry_size_bytes, chunk_size_bytes) - hs_chunks;
ds_chunks =
DIV_ROUND_UP(devinfo->urb.min_entries[MESA_SHADER_TESS_EVAL] *
ds_entry_size_bytes, chunk_size_bytes);
ds_wants =
DIV_ROUND_UP(devinfo->urb.max_entries[MESA_SHADER_TESS_EVAL] *
ds_entry_size_bytes, chunk_size_bytes) - ds_chunks;
}
/* There should always be enough URB space to satisfy the minimum
* requirements of each stage.
*/
unsigned total_needs = push_constant_chunks +
vs_chunks + hs_chunks + ds_chunks + gs_chunks;
assert(total_needs <= urb_chunks);
/* Mete out remaining space (if any) in proportion to "wants". */
unsigned total_wants = vs_wants + hs_wants + ds_wants + gs_wants;
unsigned remaining_space = urb_chunks - total_needs;
if (remaining_space > total_wants)
remaining_space = total_wants;
if (remaining_space > 0) {
unsigned vs_additional = (unsigned)
roundf(vs_wants * (((float) remaining_space) / total_wants));
vs_chunks += vs_additional;
remaining_space -= vs_additional;
total_wants -= vs_wants;
if (total_wants > 0) {
unsigned hs_additional = (unsigned)
round(hs_wants * (((double) remaining_space) / total_wants));
hs_chunks += hs_additional;
remaining_space -= hs_additional;
total_wants -= hs_wants;
}
if (total_wants > 0) {
unsigned ds_additional = (unsigned)
round(ds_wants * (((double) remaining_space) / total_wants));
ds_chunks += ds_additional;
remaining_space -= ds_additional;
total_wants -= ds_wants;
}
gs_chunks += remaining_space;
}
/* Sanity check that we haven't over-allocated. */
assert(push_constant_chunks +
vs_chunks + hs_chunks + ds_chunks + gs_chunks <= urb_chunks);
/* Finally, compute the number of entries that can fit in the space
* allocated to each stage.
*/
unsigned nr_vs_entries = vs_chunks * chunk_size_bytes / vs_entry_size_bytes;
unsigned nr_hs_entries = hs_chunks * chunk_size_bytes / hs_entry_size_bytes;
unsigned nr_ds_entries = ds_chunks * chunk_size_bytes / ds_entry_size_bytes;
unsigned nr_gs_entries = gs_chunks * chunk_size_bytes / gs_entry_size_bytes;
/* Since we rounded up when computing *_wants, this may be slightly more
* than the maximum allowed amount, so correct for that.
*/
nr_vs_entries =
MIN2(nr_vs_entries, devinfo->urb.max_entries[MESA_SHADER_VERTEX]);
nr_hs_entries =
MIN2(nr_hs_entries, devinfo->urb.max_entries[MESA_SHADER_TESS_CTRL]);
nr_ds_entries =
MIN2(nr_ds_entries, devinfo->urb.max_entries[MESA_SHADER_TESS_EVAL]);
nr_gs_entries =
MIN2(nr_gs_entries, devinfo->urb.max_entries[MESA_SHADER_GEOMETRY]);
/* Ensure that we program a multiple of the granularity. */
nr_vs_entries = ROUND_DOWN_TO(nr_vs_entries, vs_granularity);
nr_hs_entries = ROUND_DOWN_TO(nr_hs_entries, hs_granularity);
nr_ds_entries = ROUND_DOWN_TO(nr_ds_entries, ds_granularity);
nr_gs_entries = ROUND_DOWN_TO(nr_gs_entries, gs_granularity);
/* Finally, sanity check to make sure we have at least the minimum number
* of entries needed for each stage.
*/
assert(nr_vs_entries >= vs_min_entries);
if (gs_present)
assert(nr_gs_entries >= 2);
if (tess_present) {
assert(nr_hs_entries >= 1);
assert(nr_ds_entries >= devinfo->urb.min_entries[MESA_SHADER_TESS_EVAL]);
}
/* Gen7 doesn't actually use brw->urb.nr_{vs,gs}_entries, but it seems
* better to put reasonable data in there rather than leave them
* uninitialized.
*/
brw->urb.nr_vs_entries = nr_vs_entries;
brw->urb.nr_hs_entries = nr_hs_entries;
brw->urb.nr_ds_entries = nr_ds_entries;
brw->urb.nr_gs_entries = nr_gs_entries;
/* Lay out the URB in the following order:
* - push constants
* - VS
* - HS
* - DS
* - GS
*/
brw->urb.vs_start = push_constant_chunks;
brw->urb.hs_start = push_constant_chunks + vs_chunks;
brw->urb.ds_start = push_constant_chunks + vs_chunks + hs_chunks;
brw->urb.gs_start = push_constant_chunks + vs_chunks + hs_chunks +
ds_chunks;
if (brw->gen == 7 && !brw->is_haswell && !brw->is_baytrail)
gen7_emit_vs_workaround_flush(brw);
gen7_emit_urb_state(brw,
brw->urb.nr_vs_entries, vs_size, brw->urb.vs_start,
brw->urb.nr_hs_entries, hs_size, brw->urb.hs_start,
brw->urb.nr_ds_entries, ds_size, brw->urb.ds_start,
brw->urb.nr_gs_entries, gs_size, brw->urb.gs_start);
}
const struct brw_tracked_state gen7_urb = {
.dirty = {
.mesa = 0,
.brw = BRW_NEW_CONTEXT |
BRW_NEW_URB_SIZE |
BRW_NEW_GS_PROG_DATA |
BRW_NEW_TCS_PROG_DATA |
BRW_NEW_TES_PROG_DATA |
BRW_NEW_VS_PROG_DATA,
},
.emit = upload_urb,
};
|