aboutsummaryrefslogtreecommitdiffstats
path: root/src/mesa/drivers/dri/i965/gen7_l3_state.c
blob: 0c1813f9048ec375eea83fc108ff7f556dd8d36d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
/*
 * Copyright (c) 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "brw_context.h"
#include "brw_defines.h"
#include "brw_state.h"
#include "intel_batchbuffer.h"

/**
 * Chunk of L3 cache reserved for some specific purpose.
 */
enum brw_l3_partition {
   /** Shared local memory. */
   L3P_SLM = 0,
   /** Unified return buffer. */
   L3P_URB,
   /** Union of DC and RO. */
   L3P_ALL,
   /** Data cluster RW partition. */
   L3P_DC,
   /** Union of IS, C and T. */
   L3P_RO,
   /** Instruction and state cache. */
   L3P_IS,
   /** Constant cache. */
   L3P_C,
   /** Texture cache. */
   L3P_T,
   /** Number of supported L3 partitions. */
   NUM_L3P
};

/**
 * L3 configuration represented as the number of ways allocated for each
 * partition.  \sa get_l3_way_size().
 */
struct brw_l3_config {
   unsigned n[NUM_L3P];
};

/**
 * IVB/HSW validated L3 configurations.  The first entry will be used as
 * default by gen7_restore_default_l3_config(), otherwise the ordering is
 * unimportant.
 */
static const struct brw_l3_config ivb_l3_configs[] = {
   /* SLM URB ALL DC  RO  IS   C   T */
   {{  0, 32,  0,  0, 32,  0,  0,  0 }},
   {{  0, 32,  0, 16, 16,  0,  0,  0 }},
   {{  0, 32,  0,  4,  0,  8,  4, 16 }},
   {{  0, 28,  0,  8,  0,  8,  4, 16 }},
   {{  0, 28,  0, 16,  0,  8,  4,  8 }},
   {{  0, 28,  0,  8,  0, 16,  4,  8 }},
   {{  0, 28,  0,  0,  0, 16,  4, 16 }},
   {{  0, 32,  0,  0,  0, 16,  0, 16 }},
   {{  0, 28,  0,  4, 32,  0,  0,  0 }},
   {{ 16, 16,  0, 16, 16,  0,  0,  0 }},
   {{ 16, 16,  0,  8,  0,  8,  8,  8 }},
   {{ 16, 16,  0,  4,  0,  8,  4, 16 }},
   {{ 16, 16,  0,  4,  0, 16,  4,  8 }},
   {{ 16, 16,  0,  0, 32,  0,  0,  0 }},
   {{ 0 }}
};

/**
 * VLV validated L3 configurations.  \sa ivb_l3_configs.
 */
static const struct brw_l3_config vlv_l3_configs[] = {
   /* SLM URB ALL DC  RO  IS   C   T */
   {{  0, 64,  0,  0, 32,  0,  0,  0 }},
   {{  0, 80,  0,  0, 16,  0,  0,  0 }},
   {{  0, 80,  0,  8,  8,  0,  0,  0 }},
   {{  0, 64,  0, 16, 16,  0,  0,  0 }},
   {{  0, 60,  0,  4, 32,  0,  0,  0 }},
   {{ 32, 32,  0, 16, 16,  0,  0,  0 }},
   {{ 32, 40,  0,  8, 16,  0,  0,  0 }},
   {{ 32, 40,  0, 16,  8,  0,  0,  0 }},
   {{ 0 }}
};

/**
 * BDW validated L3 configurations.  \sa ivb_l3_configs.
 */
static const struct brw_l3_config bdw_l3_configs[] = {
   /* SLM URB ALL DC  RO  IS   C   T */
   {{  0, 48, 48,  0,  0,  0,  0,  0 }},
   {{  0, 48,  0, 16, 32,  0,  0,  0 }},
   {{  0, 32,  0, 16, 48,  0,  0,  0 }},
   {{  0, 32,  0,  0, 64,  0,  0,  0 }},
   {{  0, 32, 64,  0,  0,  0,  0,  0 }},
   {{ 24, 16, 48,  0,  0,  0,  0,  0 }},
   {{ 24, 16,  0, 16, 32,  0,  0,  0 }},
   {{ 24, 16,  0, 32, 16,  0,  0,  0 }},
   {{ 0 }}
};

/**
 * CHV/SKL validated L3 configurations.  \sa ivb_l3_configs.
 */
static const struct brw_l3_config chv_l3_configs[] = {
   /* SLM URB ALL DC  RO  IS   C   T */
   {{  0, 48, 48,  0,  0,  0,  0,  0 }},
   {{  0, 48,  0, 16, 32,  0,  0,  0 }},
   {{  0, 32,  0, 16, 48,  0,  0,  0 }},
   {{  0, 32,  0,  0, 64,  0,  0,  0 }},
   {{  0, 32, 64,  0,  0,  0,  0,  0 }},
   {{ 32, 16, 48,  0,  0,  0,  0,  0 }},
   {{ 32, 16,  0, 16, 32,  0,  0,  0 }},
   {{ 32, 16,  0, 32, 16,  0,  0,  0 }},
   {{ 0 }}
};

/**
 * Return a zero-terminated array of validated L3 configurations for the
 * specified device.
 */
static const struct brw_l3_config *
get_l3_configs(const struct brw_device_info *devinfo)
{
   switch (devinfo->gen) {
   case 7:
      return (devinfo->is_baytrail ? vlv_l3_configs : ivb_l3_configs);

   case 8:
      return (devinfo->is_cherryview ? chv_l3_configs : bdw_l3_configs);

   case 9:
      return chv_l3_configs;

   default:
      unreachable("Not implemented");
   }
}

/**
 * Return the size of an L3 way in KB.
 */
static unsigned
get_l3_way_size(const struct brw_device_info *devinfo)
{
   if (devinfo->is_baytrail)
      return 2;

   else if (devinfo->is_cherryview || devinfo->gt == 1)
      return 4;

   else
      return 8 * devinfo->num_slices;
}

/**
 * L3 configuration represented as a vector of weights giving the desired
 * relative size of each partition.  The scale is arbitrary, only the ratios
 * between weights will have an influence on the selection of the closest L3
 * configuration.
 */
struct brw_l3_weights {
   float w[NUM_L3P];
};

/**
 * L1-normalize a vector of L3 partition weights.
 */
static struct brw_l3_weights
norm_l3_weights(struct brw_l3_weights w)
{
   float sz = 0;

   for (unsigned i = 0; i < NUM_L3P; i++)
      sz += w.w[i];

   for (unsigned i = 0; i < NUM_L3P; i++)
      w.w[i] /= sz;

   return w;
}

/**
 * Get the relative partition weights of the specified L3 configuration.
 */
static struct brw_l3_weights
get_config_l3_weights(const struct brw_l3_config *cfg)
{
   if (cfg) {
      struct brw_l3_weights w;

      for (unsigned i = 0; i < NUM_L3P; i++)
         w.w[i] = cfg->n[i];

      return norm_l3_weights(w);
   } else {
      const struct brw_l3_weights w = { { 0 } };
      return w;
   }
}

/**
 * Distance between two L3 configurations represented as vectors of weights.
 * Usually just the L1 metric except when the two configurations are
 * considered incompatible in which case the distance will be infinite.  Note
 * that the compatibility condition is asymmetric -- They will be considered
 * incompatible whenever the reference configuration \p w0 requires SLM, DC,
 * or URB but \p w1 doesn't provide it.
 */
static float
diff_l3_weights(struct brw_l3_weights w0, struct brw_l3_weights w1)
{
   if ((w0.w[L3P_SLM] && !w1.w[L3P_SLM]) ||
       (w0.w[L3P_DC] && !w1.w[L3P_DC] && !w1.w[L3P_ALL]) ||
       (w0.w[L3P_URB] && !w1.w[L3P_URB])) {
      return HUGE_VALF;

   } else {
      float dw = 0;

      for (unsigned i = 0; i < NUM_L3P; i++)
         dw += fabs(w0.w[i] - w1.w[i]);

      return dw;
   }
}

/**
 * Return the closest validated L3 configuration for the specified device and
 * weight vector.
 */
static const struct brw_l3_config *
get_l3_config(const struct brw_device_info *devinfo, struct brw_l3_weights w0)
{
   const struct brw_l3_config *const cfgs = get_l3_configs(devinfo);
   const struct brw_l3_config *cfg_best = NULL;
   float dw_best = HUGE_VALF;

   for (const struct brw_l3_config *cfg = cfgs; cfg->n[L3P_URB]; cfg++) {
      const float dw = diff_l3_weights(w0, get_config_l3_weights(cfg));

      if (dw < dw_best) {
         cfg_best = cfg;
         dw_best = dw;
      }
   }

   return cfg_best;
}

/**
 * Return a reasonable default L3 configuration for the specified device based
 * on whether SLM and DC are required.  In the non-SLM non-DC case the result
 * is intended to approximately resemble the hardware defaults.
 */
static struct brw_l3_weights
get_default_l3_weights(const struct brw_device_info *devinfo,
                       bool needs_dc, bool needs_slm)
{
   struct brw_l3_weights w = {{ 0 }};

   w.w[L3P_SLM] = needs_slm;
   w.w[L3P_URB] = 1.0;

   if (devinfo->gen >= 8) {
      w.w[L3P_ALL] = 1.0;
   } else {
      w.w[L3P_DC] = needs_dc ? 0.1 : 0;
      w.w[L3P_RO] = devinfo->is_baytrail ? 0.5 : 1.0;
   }

   return norm_l3_weights(w);
}

/**
 * Calculate the desired L3 partitioning based on the current state of the
 * pipeline.  For now this simply returns the conservative defaults calculated
 * by get_default_l3_weights(), but we could probably do better by gathering
 * more statistics from the pipeline state (e.g. guess of expected URB usage
 * and bound surfaces), or by using feed-back from performance counters.
 */
static struct brw_l3_weights
get_pipeline_state_l3_weights(const struct brw_context *brw)
{
   const struct brw_stage_state *stage_states[] = {
      &brw->vs.base, &brw->gs.base, &brw->wm.base, &brw->cs.base
   };
   bool needs_dc = false, needs_slm = false;

   for (unsigned i = 0; i < ARRAY_SIZE(stage_states); i++) {
      const struct gl_shader_program *prog =
         brw->ctx._Shader->CurrentProgram[stage_states[i]->stage];
      const struct brw_stage_prog_data *prog_data = stage_states[i]->prog_data;

      needs_dc |= (prog && prog->NumAtomicBuffers) ||
         (prog_data && (prog_data->total_scratch || prog_data->nr_image_params));
      needs_slm |= prog_data && prog_data->total_shared;
   }

   return get_default_l3_weights(brw->intelScreen->devinfo,
                                 needs_dc, needs_slm);
}

/**
 * Program the hardware to use the specified L3 configuration.
 */
static void
setup_l3_config(struct brw_context *brw, const struct brw_l3_config *cfg)
{
   const bool has_dc = cfg->n[L3P_DC] || cfg->n[L3P_ALL];
   const bool has_is = cfg->n[L3P_IS] || cfg->n[L3P_RO] || cfg->n[L3P_ALL];
   const bool has_c = cfg->n[L3P_C] || cfg->n[L3P_RO] || cfg->n[L3P_ALL];
   const bool has_t = cfg->n[L3P_T] || cfg->n[L3P_RO] || cfg->n[L3P_ALL];
   const bool has_slm = cfg->n[L3P_SLM];

   /* According to the hardware docs, the L3 partitioning can only be changed
    * while the pipeline is completely drained and the caches are flushed,
    * which involves a first PIPE_CONTROL flush which stalls the pipeline...
    */
   brw_emit_pipe_control_flush(brw,
                               PIPE_CONTROL_DATA_CACHE_FLUSH |
                               PIPE_CONTROL_NO_WRITE |
                               PIPE_CONTROL_CS_STALL);

   /* ...followed by a second pipelined PIPE_CONTROL that initiates
    * invalidation of the relevant caches.  Note that because RO invalidation
    * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
    * command is processed by the CS) we cannot combine it with the previous
    * stalling flush as the hardware documentation suggests, because that
    * would cause the CS to stall on previous rendering *after* RO
    * invalidation and wouldn't prevent the RO caches from being polluted by
    * concurrent rendering before the stall completes.  This intentionally
    * doesn't implement the SKL+ hardware workaround suggesting to enable CS
    * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
    * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
    * already guarantee that there is no concurrent GPGPU kernel execution
    * (see SKL HSD 2132585).
    */
   brw_emit_pipe_control_flush(brw,
                               PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
                               PIPE_CONTROL_CONST_CACHE_INVALIDATE |
                               PIPE_CONTROL_INSTRUCTION_INVALIDATE |
                               PIPE_CONTROL_STATE_CACHE_INVALIDATE |
                               PIPE_CONTROL_NO_WRITE);

   /* Now send a third stalling flush to make sure that invalidation is
    * complete when the L3 configuration registers are modified.
    */
   brw_emit_pipe_control_flush(brw,
                               PIPE_CONTROL_DATA_CACHE_FLUSH |
                               PIPE_CONTROL_NO_WRITE |
                               PIPE_CONTROL_CS_STALL);

   if (brw->gen >= 8) {
      assert(!cfg->n[L3P_IS] && !cfg->n[L3P_C] && !cfg->n[L3P_T]);

      BEGIN_BATCH(3);
      OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));

      /* Set up the L3 partitioning. */
      OUT_BATCH(GEN8_L3CNTLREG);
      OUT_BATCH((has_slm ? GEN8_L3CNTLREG_SLM_ENABLE : 0) |
                SET_FIELD(cfg->n[L3P_URB], GEN8_L3CNTLREG_URB_ALLOC) |
                SET_FIELD(cfg->n[L3P_RO], GEN8_L3CNTLREG_RO_ALLOC) |
                SET_FIELD(cfg->n[L3P_DC], GEN8_L3CNTLREG_DC_ALLOC) |
                SET_FIELD(cfg->n[L3P_ALL], GEN8_L3CNTLREG_ALL_ALLOC));

      ADVANCE_BATCH();

   } else {
      assert(!cfg->n[L3P_ALL]);

      /* When enabled SLM only uses a portion of the L3 on half of the banks,
       * the matching space on the remaining banks has to be allocated to a
       * client (URB for all validated configurations) set to the
       * lower-bandwidth 2-bank address hashing mode.
       */
      const bool urb_low_bw = has_slm && !brw->is_baytrail;
      assert(!urb_low_bw || cfg->n[L3P_URB] == cfg->n[L3P_SLM]);

      /* Minimum number of ways that can be allocated to the URB. */
      const unsigned n0_urb = (brw->is_baytrail ? 32 : 0);
      assert(cfg->n[L3P_URB] >= n0_urb);

      BEGIN_BATCH(7);
      OUT_BATCH(MI_LOAD_REGISTER_IMM | (7 - 2));

      /* Demote any clients with no ways assigned to LLC. */
      OUT_BATCH(GEN7_L3SQCREG1);
      OUT_BATCH((brw->is_haswell ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
                 brw->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
                 IVB_L3SQCREG1_SQGHPCI_DEFAULT) |
                (has_dc ? 0 : GEN7_L3SQCREG1_CONV_DC_UC) |
                (has_is ? 0 : GEN7_L3SQCREG1_CONV_IS_UC) |
                (has_c ? 0 : GEN7_L3SQCREG1_CONV_C_UC) |
                (has_t ? 0 : GEN7_L3SQCREG1_CONV_T_UC));

      /* Set up the L3 partitioning. */
      OUT_BATCH(GEN7_L3CNTLREG2);
      OUT_BATCH((has_slm ? GEN7_L3CNTLREG2_SLM_ENABLE : 0) |
                SET_FIELD(cfg->n[L3P_URB] - n0_urb, GEN7_L3CNTLREG2_URB_ALLOC) |
                (urb_low_bw ? GEN7_L3CNTLREG2_URB_LOW_BW : 0) |
                SET_FIELD(cfg->n[L3P_ALL], GEN7_L3CNTLREG2_ALL_ALLOC) |
                SET_FIELD(cfg->n[L3P_RO], GEN7_L3CNTLREG2_RO_ALLOC) |
                SET_FIELD(cfg->n[L3P_DC], GEN7_L3CNTLREG2_DC_ALLOC));
      OUT_BATCH(GEN7_L3CNTLREG3);
      OUT_BATCH(SET_FIELD(cfg->n[L3P_IS], GEN7_L3CNTLREG3_IS_ALLOC) |
                SET_FIELD(cfg->n[L3P_C], GEN7_L3CNTLREG3_C_ALLOC) |
                SET_FIELD(cfg->n[L3P_T], GEN7_L3CNTLREG3_T_ALLOC));

      ADVANCE_BATCH();

      if (brw->is_haswell && brw->intelScreen->cmd_parser_version >= 4) {
         /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
          * them disabled to avoid crashing the system hard.
          */
         BEGIN_BATCH(5);
         OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
         OUT_BATCH(HSW_SCRATCH1);
         OUT_BATCH(has_dc ? 0 : HSW_SCRATCH1_L3_ATOMIC_DISABLE);
         OUT_BATCH(HSW_ROW_CHICKEN3);
         OUT_BATCH(REG_MASK(HSW_ROW_CHICKEN3_L3_ATOMIC_DISABLE) |
                   (has_dc ? 0 : HSW_ROW_CHICKEN3_L3_ATOMIC_DISABLE));
         ADVANCE_BATCH();
      }
   }
}

/**
 * Return the unit brw_context::urb::size is expressed in, in KB.  \sa
 * brw_device_info::urb::size.
 */
static unsigned
get_urb_size_scale(const struct brw_device_info *devinfo)
{
   return (devinfo->gen >= 8 ? devinfo->num_slices : 1);
}

/**
 * Update the URB size in the context state for the specified L3
 * configuration.
 */
static void
update_urb_size(struct brw_context *brw, const struct brw_l3_config *cfg)
{
   const struct brw_device_info *devinfo = brw->intelScreen->devinfo;
   /* From the SKL "L3 Allocation and Programming" documentation:
    *
    * "URB is limited to 1008KB due to programming restrictions.  This is not
    * a restriction of the L3 implementation, but of the FF and other clients.
    * Therefore, in a GT4 implementation it is possible for the programmed
    * allocation of the L3 data array to provide 3*384KB=1152KB for URB, but
    * only 1008KB of this will be used."
    */
   const unsigned max = (devinfo->gen == 9 ? 1008 : ~0);
   const unsigned sz =
      MIN2(max, cfg->n[L3P_URB] * get_l3_way_size(devinfo)) /
      get_urb_size_scale(devinfo);

   if (brw->urb.size != sz) {
      brw->urb.size = sz;
      brw->ctx.NewDriverState |= BRW_NEW_URB_SIZE;
   }
}

/**
 * Print out the specified L3 configuration.
 */
static void
dump_l3_config(const struct brw_l3_config *cfg)
{
   fprintf(stderr, "SLM=%d URB=%d ALL=%d DC=%d RO=%d IS=%d C=%d T=%d\n",
           cfg->n[L3P_SLM], cfg->n[L3P_URB], cfg->n[L3P_ALL],
           cfg->n[L3P_DC], cfg->n[L3P_RO],
           cfg->n[L3P_IS], cfg->n[L3P_C], cfg->n[L3P_T]);
}

static void
emit_l3_state(struct brw_context *brw)
{
   const struct brw_l3_weights w = get_pipeline_state_l3_weights(brw);
   const float dw = diff_l3_weights(w, get_config_l3_weights(brw->l3.config));
   /* The distance between any two compatible weight vectors cannot exceed two
    * due to the triangle inequality.
    */
   const float large_dw_threshold = 2.0;
   /* Somewhat arbitrary, simply makes sure that there will be no repeated
    * transitions to the same L3 configuration, could probably do better here.
    */
   const float small_dw_threshold = 0.5;
   /* If we're emitting a new batch the caches should already be clean and the
    * transition should be relatively cheap, so it shouldn't hurt much to use
    * the smaller threshold.  Otherwise use the larger threshold so that we
    * only reprogram the L3 mid-batch if the most recently programmed
    * configuration is incompatible with the current pipeline state.
    */
   const float dw_threshold = (brw->ctx.NewDriverState & BRW_NEW_BATCH ?
                               small_dw_threshold : large_dw_threshold);

   if (dw > dw_threshold && brw->can_do_pipelined_register_writes) {
      const struct brw_l3_config *const cfg =
         get_l3_config(brw->intelScreen->devinfo, w);

      setup_l3_config(brw, cfg);
      update_urb_size(brw, cfg);
      brw->l3.config = cfg;

      if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
         fprintf(stderr, "L3 config transition (%f > %f): ", dw, dw_threshold);
         dump_l3_config(cfg);
      }
   }
}

const struct brw_tracked_state gen7_l3_state = {
   .dirty = {
      .mesa = 0,
      .brw = BRW_NEW_BATCH |
             BRW_NEW_CS_PROG_DATA |
             BRW_NEW_FS_PROG_DATA |
             BRW_NEW_GS_PROG_DATA |
             BRW_NEW_VS_PROG_DATA,
   },
   .emit = emit_l3_state
};

/**
 * Hack to restore the default L3 configuration.
 *
 * This will be called at the end of every batch in order to reset the L3
 * configuration to the default values for the time being until the kernel is
 * fixed.  Until kernel commit 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
 * (included in v4.1) we would set the MI_RESTORE_INHIBIT bit when submitting
 * batch buffers for the default context used by the DDX, which meant that any
 * context state changed by the GL would leak into the DDX, the assumption
 * being that the DDX would initialize any state it cares about manually.  The
 * DDX is however not careful enough to program an L3 configuration
 * explicitly, and it makes assumptions about it (URB size) which won't hold
 * and cause it to misrender if we let our L3 set-up to leak into the DDX.
 *
 * Since v4.1 of the Linux kernel the default context is saved and restored
 * normally, so it's far less likely for our L3 programming to interfere with
 * other contexts -- In fact restoring the default L3 configuration at the end
 * of the batch will be redundant most of the time.  A kind of state leak is
 * still possible though if the context making assumptions about L3 state is
 * created immediately after our context was active (e.g. without the DDX
 * default context being scheduled in between) because at present the DRM
 * doesn't fully initialize the contents of newly created contexts and instead
 * sets the MI_RESTORE_INHIBIT flag causing it to inherit the state from the
 * last active context.
 *
 * It's possible to realize such a scenario if, say, an X server (or a GL
 * application using an outdated non-L3-aware Mesa version) is started while
 * another GL application is running and happens to have modified the L3
 * configuration, or if no X server is running at all and a GL application
 * using a non-L3-aware Mesa version is started after another GL application
 * ran and modified the L3 configuration -- The latter situation can actually
 * be reproduced easily on IVB in our CI system.
 */
void
gen7_restore_default_l3_config(struct brw_context *brw)
{
   const struct brw_device_info *devinfo = brw->intelScreen->devinfo;
   /* For efficiency assume that the first entry of the array matches the
    * default configuration.
    */
   const struct brw_l3_config *const cfg = get_l3_configs(devinfo);
   assert(cfg == get_l3_config(devinfo,
                               get_default_l3_weights(devinfo, false, false)));

   if (cfg != brw->l3.config && brw->can_do_pipelined_register_writes) {
      setup_l3_config(brw, cfg);
      update_urb_size(brw, cfg);
      brw->l3.config = cfg;
   }
}