1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_cfg.h"
#include "brw_vec4_live_variables.h"
using namespace brw;
/** @file brw_vec4_live_variables.cpp
*
* Support for computing at the basic block level which variables
* (virtual GRFs in our case) are live at entry and exit.
*
* See Muchnick's Advanced Compiler Design and Implementation, section
* 14.1 (p444).
*/
/**
* Sets up the use[] and def[] arrays.
*
* The basic-block-level live variable analysis needs to know which
* variables get used before they're completely defined, and which
* variables are completely defined before they're used.
*
* We independently track each channel of a vec4. This is because we need to
* be able to recognize a sequence like:
*
* ...
* DP4 tmp.x a b;
* DP4 tmp.y c d;
* MUL result.xy tmp.xy e.xy
* ...
*
* as having tmp live only across that sequence (assuming it's used nowhere
* else), because it's a common pattern. A more conservative approach that
* doesn't get tmp marked a deffed in this block will tend to result in
* spilling.
*/
void
vec4_live_variables::setup_def_use()
{
int ip = 0;
foreach_block (block, cfg) {
assert(ip == block->start_ip);
if (block->num > 0)
assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
foreach_inst_in_block(vec4_instruction, inst, block) {
struct block_data *bd = &block_data[block->num];
/* Set use[] for this instruction */
for (unsigned int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF) {
for (unsigned j = 0; j < inst->regs_read(i); j++) {
for (int c = 0; c < 4; c++) {
const unsigned v =
var_from_reg(alloc, offset(inst->src[i], j), c);
if (!BITSET_TEST(bd->def, v))
BITSET_SET(bd->use, v);
}
}
}
}
if (inst->reads_flag()) {
if (!BITSET_TEST(bd->flag_def, 0)) {
BITSET_SET(bd->flag_use, 0);
}
}
/* Check for unconditional writes to whole registers. These
* are the things that screen off preceding definitions of a
* variable, and thus qualify for being in def[].
*/
if (inst->dst.file == GRF &&
(!inst->predicate || inst->opcode == BRW_OPCODE_SEL)) {
for (unsigned i = 0; i < inst->regs_written; i++) {
for (int c = 0; c < 4; c++) {
if (inst->dst.writemask & (1 << c)) {
const unsigned v =
var_from_reg(alloc, offset(inst->dst, i), c);
if (!BITSET_TEST(bd->use, v))
BITSET_SET(bd->def, v);
}
}
}
}
if (inst->writes_flag()) {
if (!BITSET_TEST(bd->flag_use, 0)) {
BITSET_SET(bd->flag_def, 0);
}
}
ip++;
}
}
}
/**
* The algorithm incrementally sets bits in liveout and livein,
* propagating it through control flow. It will eventually terminate
* because it only ever adds bits, and stops when no bits are added in
* a pass.
*/
void
vec4_live_variables::compute_live_variables()
{
bool cont = true;
while (cont) {
cont = false;
foreach_block_reverse (block, cfg) {
struct block_data *bd = &block_data[block->num];
/* Update liveout */
foreach_list_typed(bblock_link, child_link, link, &block->children) {
struct block_data *child_bd = &block_data[child_link->block->num];
for (int i = 0; i < bitset_words; i++) {
BITSET_WORD new_liveout = (child_bd->livein[i] &
~bd->liveout[i]);
if (new_liveout) {
bd->liveout[i] |= new_liveout;
cont = true;
}
}
BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
~bd->flag_liveout[0]);
if (new_liveout) {
bd->flag_liveout[0] |= new_liveout;
cont = true;
}
}
/* Update livein */
for (int i = 0; i < bitset_words; i++) {
BITSET_WORD new_livein = (bd->use[i] |
(bd->liveout[i] &
~bd->def[i]));
if (new_livein & ~bd->livein[i]) {
bd->livein[i] |= new_livein;
cont = true;
}
}
BITSET_WORD new_livein = (bd->flag_use[0] |
(bd->flag_liveout[0] &
~bd->flag_def[0]));
if (new_livein & ~bd->flag_livein[0]) {
bd->flag_livein[0] |= new_livein;
cont = true;
}
}
}
}
vec4_live_variables::vec4_live_variables(const simple_allocator &alloc,
cfg_t *cfg)
: alloc(alloc), cfg(cfg)
{
mem_ctx = ralloc_context(NULL);
num_vars = alloc.total_size * 4;
block_data = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
bitset_words = BITSET_WORDS(num_vars);
for (int i = 0; i < cfg->num_blocks; i++) {
block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
block_data[i].flag_def[0] = 0;
block_data[i].flag_use[0] = 0;
block_data[i].flag_livein[0] = 0;
block_data[i].flag_liveout[0] = 0;
}
setup_def_use();
compute_live_variables();
}
vec4_live_variables::~vec4_live_variables()
{
ralloc_free(mem_ctx);
}
#define MAX_INSTRUCTION (1 << 30)
/**
* Computes a conservative start/end of the live intervals for each virtual GRF.
*
* We could expose per-channel live intervals to the consumer based on the
* information we computed in vec4_live_variables, except that our only
* current user is virtual_grf_interferes(). So we instead union the
* per-channel ranges into a per-vgrf range for virtual_grf_start[] and
* virtual_grf_end[].
*
* We could potentially have virtual_grf_interferes() do the test per-channel,
* which would let some interesting register allocation occur (particularly on
* code-generated GLSL sequences from the Cg compiler which does register
* allocation at the GLSL level and thus reuses components of the variable
* with distinct lifetimes). But right now the complexity of doing so doesn't
* seem worth it, since having virtual_grf_interferes() be cheap is important
* for register allocation performance.
*/
void
vec4_visitor::calculate_live_intervals()
{
if (this->live_intervals)
return;
int *start = ralloc_array(mem_ctx, int, this->alloc.total_size * 4);
int *end = ralloc_array(mem_ctx, int, this->alloc.total_size * 4);
ralloc_free(this->virtual_grf_start);
ralloc_free(this->virtual_grf_end);
this->virtual_grf_start = start;
this->virtual_grf_end = end;
for (unsigned i = 0; i < this->alloc.total_size * 4; i++) {
start[i] = MAX_INSTRUCTION;
end[i] = -1;
}
/* Start by setting up the intervals with no knowledge of control
* flow.
*/
int ip = 0;
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
for (unsigned int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF) {
for (unsigned j = 0; j < inst->regs_read(i); j++) {
for (int c = 0; c < 4; c++) {
const unsigned v =
var_from_reg(alloc, offset(inst->src[i], j), c);
start[v] = MIN2(start[v], ip);
end[v] = ip;
}
}
}
}
if (inst->dst.file == GRF) {
for (unsigned i = 0; i < inst->regs_written; i++) {
for (int c = 0; c < 4; c++) {
if (inst->dst.writemask & (1 << c)) {
const unsigned v =
var_from_reg(alloc, offset(inst->dst, i), c);
start[v] = MIN2(start[v], ip);
end[v] = ip;
}
}
}
}
ip++;
}
/* Now, extend those intervals using our analysis of control flow.
*
* The control flow-aware analysis was done at a channel level, while at
* this point we're distilling it down to vgrfs.
*/
this->live_intervals = new(mem_ctx) vec4_live_variables(alloc, cfg);
foreach_block (block, cfg) {
struct block_data *bd = &live_intervals->block_data[block->num];
for (int i = 0; i < live_intervals->num_vars; i++) {
if (BITSET_TEST(bd->livein, i)) {
start[i] = MIN2(start[i], block->start_ip);
end[i] = MAX2(end[i], block->start_ip);
}
if (BITSET_TEST(bd->liveout, i)) {
start[i] = MIN2(start[i], block->end_ip);
end[i] = MAX2(end[i], block->end_ip);
}
}
}
}
void
vec4_visitor::invalidate_live_intervals()
{
ralloc_free(live_intervals);
live_intervals = NULL;
}
int
vec4_visitor::var_range_start(unsigned v, unsigned n) const
{
int start = INT_MAX;
for (unsigned i = 0; i < n; i++)
start = MIN2(start, virtual_grf_start[v + i]);
return start;
}
int
vec4_visitor::var_range_end(unsigned v, unsigned n) const
{
int end = INT_MIN;
for (unsigned i = 0; i < n; i++)
end = MAX2(end, virtual_grf_end[v + i]);
return end;
}
bool
vec4_visitor::virtual_grf_interferes(int a, int b)
{
return !((var_range_end(4 * alloc.offsets[a], 4 * alloc.sizes[a]) <=
var_range_start(4 * alloc.offsets[b], 4 * alloc.sizes[b])) ||
(var_range_end(4 * alloc.offsets[b], 4 * alloc.sizes[b]) <=
var_range_start(4 * alloc.offsets[a], 4 * alloc.sizes[a])));
}
|