1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "compiler/brw_nir.h"
#include "compiler/glsl/ir_uniform.h"
#include "compiler/nir/nir_builder.h"
#include "brw_program.h"
static void
brw_nir_setup_glsl_builtin_uniform(nir_variable *var,
const struct gl_program *prog,
struct brw_stage_prog_data *stage_prog_data,
bool is_scalar)
{
const nir_state_slot *const slots = var->state_slots;
assert(var->state_slots != NULL);
unsigned uniform_index = var->data.driver_location / 4;
for (unsigned int i = 0; i < var->num_state_slots; i++) {
/* This state reference has already been setup by ir_to_mesa, but we'll
* get the same index back here.
*/
int index = _mesa_add_state_reference(prog->Parameters,
slots[i].tokens);
/* Add each of the unique swizzles of the element as a parameter.
* This'll end up matching the expected layout of the
* array/matrix/structure we're trying to fill in.
*/
int last_swiz = -1;
for (unsigned j = 0; j < 4; j++) {
int swiz = GET_SWZ(slots[i].swizzle, j);
/* If we hit a pair of identical swizzles, this means we've hit the
* end of the builtin variable. In scalar mode, we should just quit
* and move on to the next one. In vec4, we need to continue and pad
* it out to 4 components.
*/
if (swiz == last_swiz && is_scalar)
break;
last_swiz = swiz;
stage_prog_data->param[uniform_index++] =
BRW_PARAM_PARAMETER(index, swiz);
}
}
}
static void
setup_vec4_image_param(uint32_t *params, uint32_t idx,
unsigned offset, unsigned n)
{
assert(offset % sizeof(uint32_t) == 0);
for (unsigned i = 0; i < n; ++i)
params[i] = BRW_PARAM_IMAGE(idx, offset / sizeof(uint32_t) + i);
for (unsigned i = n; i < 4; ++i)
params[i] = BRW_PARAM_BUILTIN_ZERO;
}
static void
brw_setup_image_uniform_values(gl_shader_stage stage,
struct brw_stage_prog_data *stage_prog_data,
unsigned param_start_index,
const gl_uniform_storage *storage)
{
uint32_t *param = &stage_prog_data->param[param_start_index];
for (unsigned i = 0; i < MAX2(storage->array_elements, 1); i++) {
const unsigned image_idx = storage->opaque[stage].index + i;
/* Upload the brw_image_param structure. The order is expected to match
* the BRW_IMAGE_PARAM_*_OFFSET defines.
*/
setup_vec4_image_param(param + BRW_IMAGE_PARAM_OFFSET_OFFSET,
image_idx,
offsetof(brw_image_param, offset), 2);
setup_vec4_image_param(param + BRW_IMAGE_PARAM_SIZE_OFFSET,
image_idx,
offsetof(brw_image_param, size), 3);
setup_vec4_image_param(param + BRW_IMAGE_PARAM_STRIDE_OFFSET,
image_idx,
offsetof(brw_image_param, stride), 4);
setup_vec4_image_param(param + BRW_IMAGE_PARAM_TILING_OFFSET,
image_idx,
offsetof(brw_image_param, tiling), 3);
setup_vec4_image_param(param + BRW_IMAGE_PARAM_SWIZZLING_OFFSET,
image_idx,
offsetof(brw_image_param, swizzling), 2);
param += BRW_IMAGE_PARAM_SIZE;
}
}
static unsigned
count_uniform_storage_slots(const struct glsl_type *type)
{
/* gl_uniform_storage can cope with one level of array, so if the
* type is a composite type or an array where each element occupies
* more than one slot than we need to recursively process it.
*/
if (glsl_type_is_struct(type)) {
unsigned location_count = 0;
for (unsigned i = 0; i < glsl_get_length(type); i++) {
const struct glsl_type *field_type = glsl_get_struct_field(type, i);
location_count += count_uniform_storage_slots(field_type);
}
return location_count;
}
if (glsl_type_is_array(type)) {
const struct glsl_type *element_type = glsl_get_array_element(type);
if (glsl_type_is_array(element_type) ||
glsl_type_is_struct(element_type)) {
unsigned element_count = count_uniform_storage_slots(element_type);
return element_count * glsl_get_length(type);
}
}
return 1;
}
static void
brw_nir_setup_glsl_uniform(gl_shader_stage stage, nir_variable *var,
const struct gl_program *prog,
struct brw_stage_prog_data *stage_prog_data,
bool is_scalar)
{
/* The data for our (non-builtin) uniforms is stored in a series of
* gl_uniform_storage structs for each subcomponent that
* glGetUniformLocation() could name. We know it's been set up in the same
* order we'd walk the type, so walk the list of storage that matches the
* range of slots covered by this variable.
*/
unsigned uniform_index = var->data.driver_location / 4;
unsigned num_slots = count_uniform_storage_slots(var->type);
for (unsigned u = 0; u < num_slots; u++) {
struct gl_uniform_storage *storage =
&prog->sh.data->UniformStorage[var->data.location + u];
if (storage->builtin || storage->type->is_sampler())
continue;
if (storage->type->is_image()) {
brw_setup_image_uniform_values(stage, stage_prog_data,
uniform_index, storage);
uniform_index +=
BRW_IMAGE_PARAM_SIZE * MAX2(storage->array_elements, 1);
} else {
gl_constant_value *components = storage->storage;
unsigned vector_count = (MAX2(storage->array_elements, 1) *
storage->type->matrix_columns);
unsigned vector_size = storage->type->vector_elements;
unsigned max_vector_size = 4;
if (storage->type->base_type == GLSL_TYPE_DOUBLE ||
storage->type->base_type == GLSL_TYPE_UINT64 ||
storage->type->base_type == GLSL_TYPE_INT64) {
vector_size *= 2;
if (vector_size > 4)
max_vector_size = 8;
}
for (unsigned s = 0; s < vector_count; s++) {
unsigned i;
for (i = 0; i < vector_size; i++) {
uint32_t idx = components - prog->sh.data->UniformDataSlots;
stage_prog_data->param[uniform_index++] = BRW_PARAM_UNIFORM(idx);
components++;
}
if (!is_scalar) {
/* Pad out with zeros if needed (only needed for vec4) */
for (; i < max_vector_size; i++) {
stage_prog_data->param[uniform_index++] =
BRW_PARAM_BUILTIN_ZERO;
}
}
}
}
}
}
void
brw_nir_setup_glsl_uniforms(void *mem_ctx, nir_shader *shader,
const struct gl_program *prog,
struct brw_stage_prog_data *stage_prog_data,
bool is_scalar)
{
unsigned nr_params = shader->num_uniforms / 4;
stage_prog_data->nr_params = nr_params;
stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t, nr_params);
nir_foreach_variable(var, &shader->uniforms) {
/* UBO's, atomics and samplers don't take up space in the
uniform file */
if (var->interface_type != NULL || var->type->contains_atomic())
continue;
if (var->num_state_slots > 0) {
brw_nir_setup_glsl_builtin_uniform(var, prog, stage_prog_data,
is_scalar);
} else {
brw_nir_setup_glsl_uniform(shader->info.stage, var, prog,
stage_prog_data, is_scalar);
}
}
}
void
brw_nir_setup_arb_uniforms(void *mem_ctx, nir_shader *shader,
struct gl_program *prog,
struct brw_stage_prog_data *stage_prog_data)
{
struct gl_program_parameter_list *plist = prog->Parameters;
unsigned nr_params = plist->NumParameters * 4;
stage_prog_data->nr_params = nr_params;
stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t, nr_params);
/* For ARB programs, prog_to_nir generates a single "parameters" variable
* for all uniform data. There may be additional sampler variables, and
* an extra uniform from nir_lower_wpos_ytransform.
*/
for (unsigned p = 0; p < plist->NumParameters; p++) {
/* Parameters should be either vec4 uniforms or single component
* constants; matrices and other larger types should have been broken
* down earlier.
*/
assert(plist->Parameters[p].Size <= 4);
unsigned i;
for (i = 0; i < plist->Parameters[p].Size; i++)
stage_prog_data->param[4 * p + i] = BRW_PARAM_PARAMETER(p, i);
for (; i < 4; i++)
stage_prog_data->param[4 * p + i] = BRW_PARAM_BUILTIN_ZERO;
}
}
static nir_ssa_def *
get_aoa_deref_offset(nir_builder *b,
nir_deref_instr *deref,
unsigned elem_size)
{
unsigned array_size = elem_size;
nir_ssa_def *offset = nir_imm_int(b, 0);
while (deref->deref_type != nir_deref_type_var) {
assert(deref->deref_type == nir_deref_type_array);
/* This level's element size is the previous level's array size */
nir_ssa_def *index = nir_ssa_for_src(b, deref->arr.index, 1);
assert(deref->arr.index.ssa);
offset = nir_iadd(b, offset,
nir_imul(b, index, nir_imm_int(b, array_size)));
deref = nir_deref_instr_parent(deref);
assert(glsl_type_is_array(deref->type));
array_size *= glsl_get_length(deref->type);
}
/* Accessing an invalid surface index with the dataport can result in a
* hang. According to the spec "if the index used to select an individual
* element is negative or greater than or equal to the size of the array,
* the results of the operation are undefined but may not lead to
* termination" -- which is one of the possible outcomes of the hang.
* Clamp the index to prevent access outside of the array bounds.
*/
return nir_umin(b, offset, nir_imm_int(b, array_size - elem_size));
}
void
brw_nir_lower_gl_images(nir_shader *shader,
const struct gl_program *prog)
{
/* We put image uniforms at the end */
nir_foreach_variable(var, &shader->uniforms) {
if (!var->type->contains_image())
continue;
/* GL Only allows arrays of arrays of images */
assert(var->type->without_array()->is_image());
const unsigned num_images = MAX2(1, var->type->arrays_of_arrays_size());
var->data.driver_location = shader->num_uniforms;
shader->num_uniforms += num_images * BRW_IMAGE_PARAM_SIZE * 4;
}
nir_function_impl *impl = nir_shader_get_entrypoint(shader);
nir_builder b;
nir_builder_init(&b, impl);
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_image_deref_load:
case nir_intrinsic_image_deref_store:
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_min:
case nir_intrinsic_image_deref_atomic_max:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
case nir_intrinsic_image_deref_size:
case nir_intrinsic_image_deref_samples:
case nir_intrinsic_image_deref_load_raw_intel:
case nir_intrinsic_image_deref_store_raw_intel: {
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
nir_variable *var = nir_deref_instr_get_variable(deref);
struct gl_uniform_storage *storage =
&prog->sh.data->UniformStorage[var->data.location];
const unsigned image_var_idx =
storage->opaque[shader->info.stage].index;
b.cursor = nir_before_instr(&intrin->instr);
nir_ssa_def *index = nir_iadd(&b, nir_imm_int(&b, image_var_idx),
get_aoa_deref_offset(&b, deref, 1));
brw_nir_rewrite_image_intrinsic(intrin, index);
break;
}
case nir_intrinsic_image_deref_load_param_intel: {
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
nir_variable *var = nir_deref_instr_get_variable(deref);
const unsigned num_images =
MAX2(1, var->type->arrays_of_arrays_size());
b.cursor = nir_instr_remove(&intrin->instr);
const unsigned param = nir_intrinsic_base(intrin);
nir_ssa_def *offset =
get_aoa_deref_offset(&b, deref, BRW_IMAGE_PARAM_SIZE * 4);
offset = nir_iadd(&b, offset, nir_imm_int(&b, param * 16));
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(b.shader,
nir_intrinsic_load_uniform);
nir_intrinsic_set_base(load, var->data.driver_location);
nir_intrinsic_set_range(load, num_images * BRW_IMAGE_PARAM_SIZE * 4);
load->src[0] = nir_src_for_ssa(offset);
load->num_components = intrin->dest.ssa.num_components;
nir_ssa_dest_init(&load->instr, &load->dest,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size, NULL);
nir_builder_instr_insert(&b, &load->instr);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
nir_src_for_ssa(&load->dest.ssa));
break;
}
default:
break;
}
}
}
}
|