1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_context.h"
#include "brw_defines.h"
#include "intel_fbo.h"
#include "brw_meta_util.h"
#include "brw_state.h"
#include "main/blend.h"
#include "main/fbobject.h"
#include "util/format_srgb.h"
/**
* Helper function for handling mirror image blits.
*
* If coord0 > coord1, swap them and invert the "mirror" boolean.
*/
static inline void
fixup_mirroring(bool *mirror, float *coord0, float *coord1)
{
if (*coord0 > *coord1) {
*mirror = !*mirror;
float tmp = *coord0;
*coord0 = *coord1;
*coord1 = tmp;
}
}
/**
* Compute the number of pixels to clip for each side of a rect
*
* \param x0 The rect's left coordinate
* \param y0 The rect's bottom coordinate
* \param x1 The rect's right coordinate
* \param y1 The rect's top coordinate
* \param min_x The clipping region's left coordinate
* \param min_y The clipping region's bottom coordinate
* \param max_x The clipping region's right coordinate
* \param max_y The clipping region's top coordinate
* \param clipped_x0 The number of pixels to clip from the left side
* \param clipped_y0 The number of pixels to clip from the bottom side
* \param clipped_x1 The number of pixels to clip from the right side
* \param clipped_y1 The number of pixels to clip from the top side
*
* \return false if we clip everything away, true otherwise
*/
static inline bool
compute_pixels_clipped(float x0, float y0, float x1, float y1,
float min_x, float min_y, float max_x, float max_y,
float *clipped_x0, float *clipped_y0, float *clipped_x1, float *clipped_y1)
{
/* If we are going to clip everything away, stop. */
if (!(min_x <= max_x &&
min_y <= max_y &&
x0 <= max_x &&
y0 <= max_y &&
min_x <= x1 &&
min_y <= y1 &&
x0 <= x1 &&
y0 <= y1)) {
return false;
}
if (x0 < min_x)
*clipped_x0 = min_x - x0;
else
*clipped_x0 = 0;
if (max_x < x1)
*clipped_x1 = x1 - max_x;
else
*clipped_x1 = 0;
if (y0 < min_y)
*clipped_y0 = min_y - y0;
else
*clipped_y0 = 0;
if (max_y < y1)
*clipped_y1 = y1 - max_y;
else
*clipped_y1 = 0;
return true;
}
/**
* Clips a coordinate (left, right, top or bottom) for the src or dst rect
* (whichever requires the largest clip) and adjusts the coordinate
* for the other rect accordingly.
*
* \param mirror true if mirroring is required
* \param src the source rect coordinate (for example srcX0)
* \param dst0 the dst rect coordinate (for example dstX0)
* \param dst1 the opposite dst rect coordinate (for example dstX1)
* \param clipped_src0 number of pixels to clip from the src coordinate
* \param clipped_dst0 number of pixels to clip from the dst coordinate
* \param clipped_dst1 number of pixels to clip from the opposite dst coordinate
* \param scale the src vs dst scale involved for that coordinate
* \param isLeftOrBottom true if we are clipping the left or bottom sides
* of the rect.
*/
static inline void
clip_coordinates(bool mirror,
float *src, float *dst0, float *dst1,
float clipped_src0,
float clipped_dst0,
float clipped_dst1,
float scale,
bool isLeftOrBottom)
{
/* When clipping we need to add or subtract pixels from the original
* coordinates depending on whether we are acting on the left/bottom
* or right/top sides of the rect respectively. We assume we have to
* add them in the code below, and multiply by -1 when we should
* subtract.
*/
int mult = isLeftOrBottom ? 1 : -1;
if (!mirror) {
if (clipped_src0 >= clipped_dst0 * scale) {
*src += clipped_src0 * mult;
*dst0 += clipped_src0 / scale * mult;
} else {
*dst0 += clipped_dst0 * mult;
*src += clipped_dst0 * scale * mult;
}
} else {
if (clipped_src0 >= clipped_dst1 * scale) {
*src += clipped_src0 * mult;
*dst1 -= clipped_src0 / scale * mult;
} else {
*dst1 -= clipped_dst1 * mult;
*src += clipped_dst1 * scale * mult;
}
}
}
bool
brw_meta_mirror_clip_and_scissor(const struct gl_context *ctx,
const struct gl_framebuffer *read_fb,
const struct gl_framebuffer *draw_fb,
GLfloat *srcX0, GLfloat *srcY0,
GLfloat *srcX1, GLfloat *srcY1,
GLfloat *dstX0, GLfloat *dstY0,
GLfloat *dstX1, GLfloat *dstY1,
bool *mirror_x, bool *mirror_y)
{
*mirror_x = false;
*mirror_y = false;
/* Detect if the blit needs to be mirrored */
fixup_mirroring(mirror_x, srcX0, srcX1);
fixup_mirroring(mirror_x, dstX0, dstX1);
fixup_mirroring(mirror_y, srcY0, srcY1);
fixup_mirroring(mirror_y, dstY0, dstY1);
/* Compute number of pixels to clip for each side of both rects. Return
* early if we are going to clip everything away.
*/
float clip_src_x0;
float clip_src_x1;
float clip_src_y0;
float clip_src_y1;
float clip_dst_x0;
float clip_dst_x1;
float clip_dst_y0;
float clip_dst_y1;
if (!compute_pixels_clipped(*srcX0, *srcY0, *srcX1, *srcY1,
0, 0, read_fb->Width, read_fb->Height,
&clip_src_x0, &clip_src_y0, &clip_src_x1, &clip_src_y1))
return true;
if (!compute_pixels_clipped(*dstX0, *dstY0, *dstX1, *dstY1,
draw_fb->_Xmin, draw_fb->_Ymin, draw_fb->_Xmax, draw_fb->_Ymax,
&clip_dst_x0, &clip_dst_y0, &clip_dst_x1, &clip_dst_y1))
return true;
/* When clipping any of the two rects we need to adjust the coordinates in
* the other rect considering the scaling factor involved. To obtain the best
* precision we want to make sure that we only clip once per side to avoid
* accumulating errors due to the scaling adjustment.
*
* For example, if srcX0 and dstX0 need both to be clipped we want to avoid
* the situation where we clip srcX0 first, then adjust dstX0 accordingly
* but then we realize that the resulting dstX0 still needs to be clipped,
* so we clip dstX0 and adjust srcX0 again. Because we are applying scaling
* factors to adjust the coordinates in each clipping pass we lose some
* precision and that can affect the results of the blorp blit operation
* slightly. What we want to do here is detect the rect that we should
* clip first for each side so that when we adjust the other rect we ensure
* the resulting coordinate does not need to be clipped again.
*
* The code below implements this by comparing the number of pixels that
* we need to clip for each side of both rects considering the scales
* involved. For example, clip_src_x0 represents the number of pixels to be
* clipped for the src rect's left side, so if clip_src_x0 = 5,
* clip_dst_x0 = 4 and scaleX = 2 it means that we are clipping more from
* the dst rect so we should clip dstX0 only and adjust srcX0. This is
* because clipping 4 pixels in the dst is equivalent to clipping
* 4 * 2 = 8 > 5 in the src.
*/
if (*srcX0 == *srcX1 || *srcY0 == *srcY1
|| *dstX0 == *dstX1 || *dstY0 == *dstY1)
return true;
float scaleX = (float) (*srcX1 - *srcX0) / (*dstX1 - *dstX0);
float scaleY = (float) (*srcY1 - *srcY0) / (*dstY1 - *dstY0);
/* Clip left side */
clip_coordinates(*mirror_x,
srcX0, dstX0, dstX1,
clip_src_x0, clip_dst_x0, clip_dst_x1,
scaleX, true);
/* Clip right side */
clip_coordinates(*mirror_x,
srcX1, dstX1, dstX0,
clip_src_x1, clip_dst_x1, clip_dst_x0,
scaleX, false);
/* Clip bottom side */
clip_coordinates(*mirror_y,
srcY0, dstY0, dstY1,
clip_src_y0, clip_dst_y0, clip_dst_y1,
scaleY, true);
/* Clip top side */
clip_coordinates(*mirror_y,
srcY1, dstY1, dstY0,
clip_src_y1, clip_dst_y1, clip_dst_y0,
scaleY, false);
/* Account for the fact that in the system framebuffer, the origin is at
* the lower left.
*/
if (read_fb->FlipY) {
GLint tmp = read_fb->Height - *srcY0;
*srcY0 = read_fb->Height - *srcY1;
*srcY1 = tmp;
*mirror_y = !*mirror_y;
}
if (draw_fb->FlipY) {
GLint tmp = draw_fb->Height - *dstY0;
*dstY0 = draw_fb->Height - *dstY1;
*dstY1 = tmp;
*mirror_y = !*mirror_y;
}
/* Check for invalid bounds
* Can't blit for 0-dimensions
*/
return *srcX0 == *srcX1 || *srcY0 == *srcY1
|| *dstX0 == *dstX1 || *dstY0 == *dstY1;
}
/**
* Determine if fast color clear supports the given clear color.
*
* Fast color clear can only clear to color values of 1.0 or 0.0. At the
* moment we only support floating point, unorm, and snorm buffers.
*/
bool
brw_is_color_fast_clear_compatible(struct brw_context *brw,
const struct intel_mipmap_tree *mt,
const union gl_color_union *color)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
const struct gl_context *ctx = &brw->ctx;
/* If we're mapping the render format to a different format than the
* format we use for texturing then it is a bit questionable whether it
* should be possible to use a fast clear. Although we only actually
* render using a renderable format, without the override workaround it
* wouldn't be possible to have a non-renderable surface in a fast clear
* state so the hardware probably legitimately doesn't need to support
* this case. At least on Gen9 this really does seem to cause problems.
*/
if (devinfo->gen >= 9 &&
brw_isl_format_for_mesa_format(mt->format) !=
brw->mesa_to_isl_render_format[mt->format])
return false;
const mesa_format format = _mesa_get_render_format(ctx, mt->format);
if (_mesa_is_format_integer_color(format)) {
if (devinfo->gen >= 8) {
perf_debug("Integer fast clear not enabled for (%s)",
_mesa_get_format_name(format));
}
return false;
}
for (int i = 0; i < 4; i++) {
if (!_mesa_format_has_color_component(format, i)) {
continue;
}
if (devinfo->gen < 9 &&
color->f[i] != 0.0f && color->f[i] != 1.0f) {
return false;
}
}
return true;
}
/**
* Convert the given color to a bitfield suitable for ORing into DWORD 7 of
* SURFACE_STATE (DWORD 12-15 on SKL+).
*/
union isl_color_value
brw_meta_convert_fast_clear_color(const struct brw_context *brw,
const struct intel_mipmap_tree *mt,
const union gl_color_union *color)
{
union isl_color_value override_color = {
.u32 = {
color->ui[0],
color->ui[1],
color->ui[2],
color->ui[3],
},
};
/* The sampler doesn't look at the format of the surface when the fast
* clear color is used so we need to implement luminance, intensity and
* missing components manually.
*/
switch (_mesa_get_format_base_format(mt->format)) {
case GL_INTENSITY:
override_color.u32[3] = override_color.u32[0];
/* fallthrough */
case GL_LUMINANCE:
case GL_LUMINANCE_ALPHA:
override_color.u32[1] = override_color.u32[0];
override_color.u32[2] = override_color.u32[0];
break;
default:
for (int i = 0; i < 3; i++) {
if (!_mesa_format_has_color_component(mt->format, i))
override_color.u32[i] = 0;
}
break;
}
switch (_mesa_get_format_datatype(mt->format)) {
case GL_UNSIGNED_NORMALIZED:
for (int i = 0; i < 4; i++)
override_color.f32[i] = SATURATE(override_color.f32[i]);
break;
case GL_SIGNED_NORMALIZED:
for (int i = 0; i < 4; i++)
override_color.f32[i] = CLAMP(override_color.f32[i], -1.0f, 1.0f);
break;
case GL_UNSIGNED_INT:
for (int i = 0; i < 4; i++) {
unsigned bits = _mesa_get_format_bits(mt->format, GL_RED_BITS + i);
if (bits < 32) {
uint32_t max = (1u << bits) - 1;
override_color.u32[i] = MIN2(override_color.u32[i], max);
}
}
break;
case GL_INT:
for (int i = 0; i < 4; i++) {
unsigned bits = _mesa_get_format_bits(mt->format, GL_RED_BITS + i);
if (bits < 32) {
int32_t max = (1 << (bits - 1)) - 1;
int32_t min = -(1 << (bits - 1));
override_color.i32[i] = CLAMP(override_color.i32[i], min, max);
}
}
break;
case GL_FLOAT:
if (!_mesa_is_format_signed(mt->format)) {
for (int i = 0; i < 4; i++)
override_color.f32[i] = MAX2(override_color.f32[i], 0.0f);
}
break;
}
if (!_mesa_format_has_color_component(mt->format, 3)) {
if (_mesa_is_format_integer_color(mt->format))
override_color.u32[3] = 1;
else
override_color.f32[3] = 1.0f;
}
/* Handle linear to SRGB conversion */
if (brw->ctx.Color.sRGBEnabled &&
_mesa_get_srgb_format_linear(mt->format) != mt->format) {
for (int i = 0; i < 3; i++) {
override_color.f32[i] =
util_format_linear_to_srgb_float(override_color.f32[i]);
}
}
return override_color;
}
|