1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
|
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "main/mtypes.h"
#include "main/macros.h"
#include "main/context.h"
#include "main/objectlabel.h"
#include "main/shaderapi.h"
#include "main/arrayobj.h"
#include "main/bufferobj.h"
#include "main/buffers.h"
#include "main/blend.h"
#include "main/enable.h"
#include "main/depth.h"
#include "main/stencil.h"
#include "main/varray.h"
#include "main/uniforms.h"
#include "main/fbobject.h"
#include "main/texobj.h"
#include "main/api_validate.h"
#include "main/state.h"
#include "vbo/vbo_context.h"
#include "drivers/common/meta.h"
#include "brw_defines.h"
#include "brw_context.h"
#include "brw_draw.h"
#include "intel_fbo.h"
#include "intel_batchbuffer.h"
#include "brw_blorp.h"
struct brw_fast_clear_state {
GLuint vao;
GLuint vbo;
GLuint shader_prog;
GLint color_location;
};
static bool
brw_fast_clear_init(struct brw_context *brw)
{
struct brw_fast_clear_state *clear;
if (brw->fast_clear_state) {
clear = brw->fast_clear_state;
_mesa_BindVertexArray(clear->vao);
_mesa_BindBuffer(GL_ARRAY_BUFFER, clear->vbo);
return true;
}
brw->fast_clear_state = clear = malloc(sizeof *clear);
if (clear == NULL)
return false;
memset(clear, 0, sizeof *clear);
_mesa_GenVertexArrays(1, &clear->vao);
_mesa_BindVertexArray(clear->vao);
_mesa_GenBuffers(1, &clear->vbo);
_mesa_BindBuffer(GL_ARRAY_BUFFER, clear->vbo);
_mesa_VertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, 0);
_mesa_EnableVertexAttribArray(0);
return true;
}
static void
brw_bind_rep_write_shader(struct brw_context *brw, float *color)
{
const char *vs_source =
"#extension GL_AMD_vertex_shader_layer : enable\n"
"#extension GL_ARB_draw_instanced : enable\n"
"attribute vec4 position;\n"
"uniform int layer;\n"
"void main()\n"
"{\n"
"#ifdef GL_AMD_vertex_shader_layer\n"
" gl_Layer = gl_InstanceID;\n"
"#endif\n"
" gl_Position = position;\n"
"}\n";
const char *fs_source =
"uniform vec4 color;\n"
"void main()\n"
"{\n"
" gl_FragColor = color;\n"
"}\n";
GLuint vs, fs;
struct brw_fast_clear_state *clear = brw->fast_clear_state;
struct gl_context *ctx = &brw->ctx;
if (clear->shader_prog) {
_mesa_UseProgram(clear->shader_prog);
_mesa_Uniform4fv(clear->color_location, 1, color);
return;
}
vs = _mesa_meta_compile_shader_with_debug(ctx, GL_VERTEX_SHADER, vs_source);
fs = _mesa_meta_compile_shader_with_debug(ctx, GL_FRAGMENT_SHADER, fs_source);
clear->shader_prog = _mesa_CreateProgram();
_mesa_AttachShader(clear->shader_prog, fs);
_mesa_DeleteShader(fs);
_mesa_AttachShader(clear->shader_prog, vs);
_mesa_DeleteShader(vs);
_mesa_BindAttribLocation(clear->shader_prog, 0, "position");
_mesa_ObjectLabel(GL_PROGRAM, clear->shader_prog, -1, "meta repclear");
_mesa_LinkProgram(clear->shader_prog);
clear->color_location =
_mesa_GetUniformLocation(clear->shader_prog, "color");
_mesa_UseProgram(clear->shader_prog);
_mesa_Uniform4fv(clear->color_location, 1, color);
}
void
brw_meta_fast_clear_free(struct brw_context *brw)
{
struct brw_fast_clear_state *clear = brw->fast_clear_state;
GET_CURRENT_CONTEXT(old_context);
if (clear == NULL)
return;
_mesa_make_current(&brw->ctx, NULL, NULL);
_mesa_DeleteVertexArrays(1, &clear->vao);
_mesa_DeleteBuffers(1, &clear->vbo);
_mesa_DeleteProgram(clear->shader_prog);
free(clear);
if (old_context)
_mesa_make_current(old_context, old_context->WinSysDrawBuffer, old_context->WinSysReadBuffer);
else
_mesa_make_current(NULL, NULL, NULL);
}
struct rect {
int x0, y0, x1, y1;
};
static void
brw_draw_rectlist(struct gl_context *ctx, struct rect *rect, int num_instances)
{
int start = 0, count = 3;
struct _mesa_prim prim;
float verts[6];
verts[0] = rect->x1;
verts[1] = rect->y1;
verts[2] = rect->x0;
verts[3] = rect->y1;
verts[4] = rect->x0;
verts[5] = rect->y0;
/* upload new vertex data */
_mesa_BufferData(GL_ARRAY_BUFFER_ARB, sizeof(verts), verts,
GL_DYNAMIC_DRAW_ARB);
if (ctx->NewState)
_mesa_update_state(ctx);
vbo_bind_arrays(ctx);
memset(&prim, 0, sizeof prim);
prim.begin = 1;
prim.end = 1;
prim.mode = BRW_PRIM_OFFSET + _3DPRIM_RECTLIST;
prim.num_instances = num_instances;
prim.start = start;
prim.count = count;
/* Make sure our internal prim value doesn't clash with a valid GL value. */
assert(!_mesa_is_valid_prim_mode(ctx, prim.mode));
brw_draw_prims(ctx, &prim, 1, NULL,
GL_TRUE, start, start + count - 1,
NULL, 0, NULL);
}
static void
get_fast_clear_rect(struct gl_framebuffer *fb,
struct intel_renderbuffer *irb, struct rect *rect)
{
unsigned int x_align, y_align;
unsigned int x_scaledown, y_scaledown;
if (irb->mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE) {
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
* Target(s)", beneath the "Fast Color Clear" bullet (p327):
*
* Clear pass must have a clear rectangle that must follow
* alignment rules in terms of pixels and lines as shown in the
* table below. Further, the clear-rectangle height and width
* must be multiple of the following dimensions. If the height
* and width of the render target being cleared do not meet these
* requirements, an MCS buffer can be created such that it
* follows the requirement and covers the RT.
*
* The alignment size in the table that follows is related to the
* alignment size returned by intel_get_non_msrt_mcs_alignment(), but
* with X alignment multiplied by 16 and Y alignment multiplied by 32.
*/
intel_get_non_msrt_mcs_alignment(irb->mt, &x_align, &y_align);
x_align *= 16;
y_align *= 32;
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
* Target(s)", beneath the "Fast Color Clear" bullet (p327):
*
* In order to optimize the performance MCS buffer (when bound to
* 1X RT) clear similarly to MCS buffer clear for MSRT case,
* clear rect is required to be scaled by the following factors
* in the horizontal and vertical directions:
*
* The X and Y scale down factors in the table that follows are each
* equal to half the alignment value computed above.
*/
x_scaledown = x_align / 2;
y_scaledown = y_align / 2;
/* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
* Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
* Clear of Non-MultiSampled Render Target Restrictions":
*
* Clear rectangle must be aligned to two times the number of
* pixels in the table shown below due to 16x16 hashing across the
* slice.
*/
x_align *= 2;
y_align *= 2;
} else {
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
* Target(s)", beneath the "MSAA Compression" bullet (p326):
*
* Clear pass for this case requires that scaled down primitive
* is sent down with upper left co-ordinate to coincide with
* actual rectangle being cleared. For MSAA, clear rectangle’s
* height and width need to as show in the following table in
* terms of (width,height) of the RT.
*
* MSAA Width of Clear Rect Height of Clear Rect
* 4X Ceil(1/8*width) Ceil(1/2*height)
* 8X Ceil(1/2*width) Ceil(1/2*height)
*
* The text "with upper left co-ordinate to coincide with actual
* rectangle being cleared" is a little confusing--it seems to imply
* that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
* feed the pipeline using the rectangle (x,y) to
* (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
* the number of samples. Experiments indicate that this is not
* quite correct; actually, what the hardware appears to do is to
* align whatever rectangle is sent down the pipeline to the nearest
* multiple of 2x2 blocks, and then scale it up by a factor of N
* horizontally and 2 vertically. So the resulting alignment is 4
* vertically and either 4 or 16 horizontally, and the scaledown
* factor is 2 vertically and either 2 or 8 horizontally.
*/
switch (irb->mt->num_samples) {
case 2:
case 4:
x_scaledown = 8;
break;
case 8:
x_scaledown = 2;
break;
default:
unreachable("Unexpected sample count for fast clear");
}
y_scaledown = 2;
x_align = x_scaledown * 2;
y_align = y_scaledown * 2;
}
rect->x0 = fb->_Xmin;
rect->x1 = fb->_Xmax;
if (fb->Name != 0) {
rect->y0 = fb->_Ymin;
rect->y1 = fb->_Ymax;
} else {
rect->y0 = fb->Height - fb->_Ymax;
rect->y1 = fb->Height - fb->_Ymin;
}
rect->x0 = ROUND_DOWN_TO(rect->x0, x_align) / x_scaledown;
rect->y0 = ROUND_DOWN_TO(rect->y0, y_align) / y_scaledown;
rect->x1 = ALIGN(rect->x1, x_align) / x_scaledown;
rect->y1 = ALIGN(rect->y1, y_align) / y_scaledown;
}
static void
get_buffer_rect(struct brw_context *brw, struct gl_framebuffer *fb,
struct intel_renderbuffer *irb, struct rect *rect)
{
rect->x0 = fb->_Xmin;
rect->x1 = fb->_Xmax;
if (fb->Name != 0) {
rect->y0 = fb->_Ymin;
rect->y1 = fb->_Ymax;
} else {
rect->y0 = fb->Height - fb->_Ymax;
rect->y1 = fb->Height - fb->_Ymin;
}
}
/**
* Determine if fast color clear supports the given clear color.
*
* Fast color clear can only clear to color values of 1.0 or 0.0. At the
* moment we only support floating point, unorm, and snorm buffers.
*/
static bool
is_color_fast_clear_compatible(struct brw_context *brw,
mesa_format format,
const union gl_color_union *color)
{
if (_mesa_is_format_integer_color(format)) {
if (brw->gen >= 8) {
perf_debug("Integer fast clear not enabled for (%s)",
_mesa_get_format_name(format));
}
return false;
}
for (int i = 0; i < 4; i++) {
if (color->f[i] != 0.0f && color->f[i] != 1.0f &&
_mesa_format_has_color_component(format, i)) {
return false;
}
}
return true;
}
/**
* Convert the given color to a bitfield suitable for ORing into DWORD 7 of
* SURFACE_STATE.
*/
static uint32_t
compute_fast_clear_color_bits(const union gl_color_union *color)
{
uint32_t bits = 0;
for (int i = 0; i < 4; i++) {
/* Testing for non-0 works for integer and float colors */
if (color->f[i] != 0.0f)
bits |= 1 << (GEN7_SURFACE_CLEAR_COLOR_SHIFT + (3 - i));
}
return bits;
}
static const uint32_t fast_clear_color[4] = { ~0, ~0, ~0, ~0 };
static void
set_fast_clear_op(struct brw_context *brw, uint32_t op)
{
/* Set op and dirty BRW_NEW_FRAGMENT_PROGRAM to make sure we re-emit
* 3DSTATE_PS.
*/
brw->wm.fast_clear_op = op;
brw->ctx.NewDriverState |= BRW_NEW_FRAGMENT_PROGRAM;
}
static void
use_rectlist(struct brw_context *brw, bool enable)
{
/* Set custom state to let us use _3DPRIM_RECTLIST and the replicated
* rendertarget write. When we enable reclist mode, we disable the
* viewport transform, disable clipping, enable the rep16 write
* optimization and disable simd8 dispatch in the PS.
*/
brw->sf.viewport_transform_enable = !enable;
brw->use_rep_send = enable;
brw->no_simd8 = enable;
/* Dirty state to make sure we reemit the state packages affected by the
* custom state. We dirty BRW_NEW_FRAGMENT_PROGRAM to emit 3DSTATE_PS for
* disabling simd8 dispatch, _NEW_LIGHT to emit 3DSTATE_SF for disabling
* the viewport transform and 3DSTATE_CLIP to disable clipping for the
* reclist primitive. This is a little messy - it would be nicer to
* BRW_NEW_FAST_CLEAR flag or so, but we're out of brw state bits. Dirty
* _NEW_BUFFERS to make sure we emit new SURFACE_STATE with the new fast
* clear color value.
*/
brw->NewGLState |= _NEW_LIGHT | _NEW_BUFFERS;
brw->ctx.NewDriverState |= BRW_NEW_FRAGMENT_PROGRAM;
}
bool
brw_meta_fast_clear(struct brw_context *brw, struct gl_framebuffer *fb,
GLbitfield buffers, bool partial_clear)
{
struct gl_context *ctx = &brw->ctx;
mesa_format format;
enum { FAST_CLEAR, REP_CLEAR, PLAIN_CLEAR } clear_type;
GLbitfield plain_clear_buffers, meta_save, rep_clear_buffers, fast_clear_buffers;
struct rect fast_clear_rect, clear_rect;
int layers;
fast_clear_buffers = rep_clear_buffers = plain_clear_buffers = 0;
/* First we loop through the color draw buffers and determine which ones
* can be fast cleared, which ones can use the replicated write and which
* ones have to fall back to regular color clear.
*/
for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) {
struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
struct intel_renderbuffer *irb = intel_renderbuffer(rb);
int index = fb->_ColorDrawBufferIndexes[buf];
/* Only clear the buffers present in the provided mask */
if (((1 << index) & buffers) == 0)
continue;
/* If this is an ES2 context or GL_ARB_ES2_compatibility is supported,
* the framebuffer can be complete with some attachments missing. In
* this case the _ColorDrawBuffers pointer will be NULL.
*/
if (rb == NULL)
continue;
clear_type = FAST_CLEAR;
/* We don't have fast clear until gen7. */
if (brw->gen < 7)
clear_type = REP_CLEAR;
if (irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_NO_MCS)
clear_type = REP_CLEAR;
/* We can't do scissored fast clears because of the restrictions on the
* fast clear rectangle size.
*/
if (partial_clear)
clear_type = REP_CLEAR;
/* Fast clear is only supported for colors where all components are
* either 0 or 1.
*/
format = _mesa_get_render_format(ctx, irb->mt->format);
if (!is_color_fast_clear_compatible(brw, format, &ctx->Color.ClearColor))
clear_type = REP_CLEAR;
/* From the SNB PRM (Vol4_Part1):
*
* "Replicated data (Message Type = 111) is only supported when
* accessing tiled memory. Using this Message Type to access
* linear (untiled) memory is UNDEFINED."
*/
if (irb->mt->tiling == I915_TILING_NONE) {
perf_debug("Falling back to plain clear because %dx%d buffer is untiled\n",
irb->mt->logical_width0, irb->mt->logical_height0);
clear_type = PLAIN_CLEAR;
}
/* Constant color writes ignore everything in blend and color calculator
* state. This is not documented.
*/
GLubyte *color_mask = ctx->Color.ColorMask[buf];
for (int i = 0; i < 4; i++) {
if (_mesa_format_has_color_component(irb->mt->format, i) &&
!color_mask[i]) {
perf_debug("Falling back to plain clear on %dx%d buffer because of color mask\n",
irb->mt->logical_width0, irb->mt->logical_height0);
clear_type = PLAIN_CLEAR;
}
}
/* Allocate the MCS for non MSRT surfaces now if we're doing a fast
* clear and we don't have the MCS yet. On failure, fall back to
* replicated clear.
*/
if (clear_type == FAST_CLEAR && irb->mt->mcs_mt == NULL)
if (!intel_miptree_alloc_non_msrt_mcs(brw, irb->mt))
clear_type = REP_CLEAR;
switch (clear_type) {
case FAST_CLEAR:
irb->mt->fast_clear_color_value =
compute_fast_clear_color_bits(&ctx->Color.ClearColor);
irb->need_downsample = true;
/* If the buffer is already in INTEL_FAST_CLEAR_STATE_CLEAR, the
* clear is redundant and can be skipped. Only skip after we've
* updated the fast clear color above though.
*/
if (irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR)
continue;
/* Set fast_clear_state to RESOLVED so we don't try resolve them when
* we draw, in case the mt is also bound as a texture.
*/
irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
irb->need_downsample = true;
fast_clear_buffers |= 1 << index;
get_fast_clear_rect(fb, irb, &fast_clear_rect);
break;
case REP_CLEAR:
rep_clear_buffers |= 1 << index;
get_buffer_rect(brw, fb, irb, &clear_rect);
break;
case PLAIN_CLEAR:
plain_clear_buffers |= 1 << index;
get_buffer_rect(brw, fb, irb, &clear_rect);
continue;
}
}
if (!(fast_clear_buffers | rep_clear_buffers)) {
if (plain_clear_buffers)
/* If we only have plain clears, skip the meta save/restore. */
goto out;
else
/* Nothing left to do. This happens when we hit the redundant fast
* clear case above and nothing else.
*/
return true;
}
meta_save =
MESA_META_ALPHA_TEST |
MESA_META_BLEND |
MESA_META_DEPTH_TEST |
MESA_META_RASTERIZATION |
MESA_META_SHADER |
MESA_META_STENCIL_TEST |
MESA_META_VERTEX |
MESA_META_VIEWPORT |
MESA_META_CLIP |
MESA_META_CLAMP_FRAGMENT_COLOR |
MESA_META_MULTISAMPLE |
MESA_META_OCCLUSION_QUERY |
MESA_META_DRAW_BUFFERS;
_mesa_meta_begin(ctx, meta_save);
if (!brw_fast_clear_init(brw)) {
/* This is going to be hard to recover from, most likely out of memory.
* Bail and let meta try and (probably) fail for us.
*/
plain_clear_buffers = buffers;
goto bail_to_meta;
}
/* Clears never have the color clamped. */
if (ctx->Extensions.ARB_color_buffer_float)
_mesa_ClampColor(GL_CLAMP_FRAGMENT_COLOR, GL_FALSE);
_mesa_set_enable(ctx, GL_DEPTH_TEST, GL_FALSE);
_mesa_DepthMask(GL_FALSE);
_mesa_set_enable(ctx, GL_STENCIL_TEST, GL_FALSE);
use_rectlist(brw, true);
layers = MAX2(1, fb->MaxNumLayers);
if (fast_clear_buffers) {
_mesa_meta_drawbuffers_from_bitfield(fast_clear_buffers);
brw_bind_rep_write_shader(brw, (float *) fast_clear_color);
set_fast_clear_op(brw, GEN7_PS_RENDER_TARGET_FAST_CLEAR_ENABLE);
brw_draw_rectlist(ctx, &fast_clear_rect, layers);
set_fast_clear_op(brw, 0);
}
if (rep_clear_buffers) {
_mesa_meta_drawbuffers_from_bitfield(rep_clear_buffers);
brw_bind_rep_write_shader(brw, ctx->Color.ClearColor.f);
brw_draw_rectlist(ctx, &clear_rect, layers);
}
/* Now set the mts we cleared to INTEL_FAST_CLEAR_STATE_CLEAR so we'll
* resolve them eventually.
*/
for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) {
struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
struct intel_renderbuffer *irb = intel_renderbuffer(rb);
int index = fb->_ColorDrawBufferIndexes[buf];
if ((1 << index) & fast_clear_buffers)
irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
}
bail_to_meta:
/* Dirty _NEW_BUFFERS so we reemit SURFACE_STATE which sets the fast clear
* color before resolve and sets irb->mt->fast_clear_state to UNRESOLVED if
* we render to it.
*/
brw->NewGLState |= _NEW_BUFFERS;
/* Set the custom state back to normal and dirty the same bits as above */
use_rectlist(brw, false);
_mesa_meta_end(ctx);
/* From BSpec: Render Target Fast Clear:
*
* After Render target fast clear, pipe-control with color cache
* write-flush must be issued before sending any DRAW commands on that
* render target.
*/
brw_emit_mi_flush(brw);
/* If we had to fall back to plain clear for any buffers, clear those now
* by calling into meta.
*/
out:
if (plain_clear_buffers)
_mesa_meta_glsl_Clear(&brw->ctx, plain_clear_buffers);
return true;
}
static void
get_resolve_rect(struct brw_context *brw,
struct intel_mipmap_tree *mt, struct rect *rect)
{
unsigned x_align, y_align;
unsigned x_scaledown, y_scaledown;
/* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
*
* A rectangle primitive must be scaled down by the following factors
* with respect to render target being resolved.
*
* The scaledown factors in the table that follows are related to the
* alignment size returned by intel_get_non_msrt_mcs_alignment() by a
* multiplier. For IVB and HSW, we divide by two, for BDW we multiply
* by 8 and 16 and 8 and 8 for SKL.
*/
intel_get_non_msrt_mcs_alignment(mt, &x_align, &y_align);
if (brw->gen >= 9) {
x_scaledown = x_align * 8;
y_scaledown = y_align * 8;
} else if (brw->gen >= 8) {
x_scaledown = x_align * 8;
y_scaledown = y_align * 16;
} else {
x_scaledown = x_align / 2;
y_scaledown = y_align / 2;
}
rect->x0 = rect->y0 = 0;
rect->x1 = ALIGN(mt->logical_width0, x_scaledown) / x_scaledown;
rect->y1 = ALIGN(mt->logical_height0, y_scaledown) / y_scaledown;
}
void
brw_meta_resolve_color(struct brw_context *brw,
struct intel_mipmap_tree *mt)
{
struct gl_context *ctx = &brw->ctx;
GLuint fbo, rbo;
struct rect rect;
brw_emit_mi_flush(brw);
_mesa_meta_begin(ctx, MESA_META_ALL);
_mesa_GenFramebuffers(1, &fbo);
rbo = brw_get_rb_for_slice(brw, mt, 0, 0, false);
_mesa_BindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo);
_mesa_FramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_RENDERBUFFER, rbo);
_mesa_DrawBuffer(GL_COLOR_ATTACHMENT0);
brw_fast_clear_init(brw);
use_rectlist(brw, true);
brw_bind_rep_write_shader(brw, (float *) fast_clear_color);
set_fast_clear_op(brw, GEN7_PS_RENDER_TARGET_RESOLVE_ENABLE);
mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
get_resolve_rect(brw, mt, &rect);
brw_draw_rectlist(ctx, &rect, 1);
set_fast_clear_op(brw, 0);
use_rectlist(brw, false);
_mesa_DeleteRenderbuffers(1, &rbo);
_mesa_DeleteFramebuffers(1, &fbo);
_mesa_meta_end(ctx);
/* We're typically called from intel_update_state() and we're supposed to
* return with the state all updated to what it was before
* brw_meta_resolve_color() was called. The meta rendering will have
* messed up the state and we need to call _mesa_update_state() again to
* get back to where we were supposed to be when resolve was called.
*/
if (ctx->NewState)
_mesa_update_state(ctx);
}
|