1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
/*
* Copyright © 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file brw_vec4_gs.c
*
* State atom for client-programmable geometry shaders, and support code.
*/
#include "brw_gs.h"
#include "brw_context.h"
#include "brw_vec4_gs_visitor.h"
#include "brw_state.h"
#include "brw_ff_gs.h"
#include "brw_nir.h"
static void
assign_gs_binding_table_offsets(const struct brw_device_info *devinfo,
const struct gl_shader_program *shader_prog,
const struct gl_program *prog,
struct brw_gs_prog_data *prog_data)
{
/* In gen6 we reserve the first BRW_MAX_SOL_BINDINGS entries for transform
* feedback surfaces.
*/
uint32_t reserved = devinfo->gen == 6 ? BRW_MAX_SOL_BINDINGS : 0;
brw_assign_common_binding_table_offsets(MESA_SHADER_GEOMETRY, devinfo,
shader_prog, prog,
&prog_data->base.base,
reserved);
}
bool
brw_codegen_gs_prog(struct brw_context *brw,
struct gl_shader_program *prog,
struct brw_geometry_program *gp,
struct brw_gs_prog_key *key)
{
struct gl_shader *shader = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
struct brw_stage_state *stage_state = &brw->gs.base;
struct brw_gs_prog_data prog_data;
struct brw_gs_compile c;
memset(&prog_data, 0, sizeof(prog_data));
memset(&c, 0, sizeof(c));
c.key = *key;
prog_data.include_primitive_id =
(gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;
prog_data.invocations = gp->program.Invocations;
assign_gs_binding_table_offsets(brw->intelScreen->devinfo, prog,
&gp->program.Base, &prog_data);
/* Allocate the references to the uniforms that will end up in the
* prog_data associated with the compiled program, and which will be freed
* by the state cache.
*
* Note: param_count needs to be num_uniform_components * 4, since we add
* padding around uniform values below vec4 size, so the worst case is that
* every uniform is a float which gets padded to the size of a vec4.
*/
struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
int param_count = gp->program.Base.nir->num_uniforms * 4;
prog_data.base.base.param =
rzalloc_array(NULL, const gl_constant_value *, param_count);
prog_data.base.base.pull_param =
rzalloc_array(NULL, const gl_constant_value *, param_count);
prog_data.base.base.image_param =
rzalloc_array(NULL, struct brw_image_param, gs->NumImages);
prog_data.base.base.nr_params = param_count;
prog_data.base.base.nr_image_params = gs->NumImages;
brw_nir_setup_glsl_uniforms(gp->program.Base.nir, prog, &gp->program.Base,
&prog_data.base.base, false);
if (brw->gen >= 8) {
prog_data.static_vertex_count =
nir_gs_count_vertices(gp->program.Base.nir);
}
if (brw->gen >= 7) {
if (gp->program.OutputType == GL_POINTS) {
/* When the output type is points, the geometry shader may output data
* to multiple streams, and EndPrimitive() has no effect. So we
* configure the hardware to interpret the control data as stream ID.
*/
prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
/* We only have to emit control bits if we are using streams */
if (prog->Geom.UsesStreams)
c.control_data_bits_per_vertex = 2;
else
c.control_data_bits_per_vertex = 0;
} else {
/* When the output type is triangle_strip or line_strip, EndPrimitive()
* may be used to terminate the current strip and start a new one
* (similar to primitive restart), and outputting data to multiple
* streams is not supported. So we configure the hardware to interpret
* the control data as EndPrimitive information (a.k.a. "cut bits").
*/
prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
/* We only need to output control data if the shader actually calls
* EndPrimitive().
*/
c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
}
} else {
/* There are no control data bits in gen6. */
c.control_data_bits_per_vertex = 0;
/* If it is using transform feedback, enable it */
if (prog->TransformFeedback.NumVarying)
prog_data.gen6_xfb_enabled = true;
else
prog_data.gen6_xfb_enabled = false;
}
c.control_data_header_size_bits =
gp->program.VerticesOut * c.control_data_bits_per_vertex;
/* 1 HWORD = 32 bytes = 256 bits */
prog_data.control_data_header_size_hwords =
ALIGN(c.control_data_header_size_bits, 256) / 256;
GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;
brw_compute_vue_map(brw->intelScreen->devinfo,
&prog_data.base.vue_map, outputs_written,
prog ? prog->SeparateShader : false);
/* Compute the output vertex size.
*
* From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
* Size (p168):
*
* [0,62] indicating [1,63] 16B units
*
* Specifies the size of each vertex stored in the GS output entry
* (following any Control Header data) as a number of 128-bit units
* (minus one).
*
* Programming Restrictions: The vertex size must be programmed as a
* multiple of 32B units with the following exception: Rendering is
* disabled (as per SOL stage state) and the vertex size output by the
* GS thread is 16B.
*
* If rendering is enabled (as per SOL state) the vertex size must be
* programmed as a multiple of 32B units. In other words, the only time
* software can program a vertex size with an odd number of 16B units
* is when rendering is disabled.
*
* Note: B=bytes in the above text.
*
* It doesn't seem worth the extra trouble to optimize the case where the
* vertex size is 16B (especially since this would require special-casing
* the GEN assembly that writes to the URB). So we just set the vertex
* size to a multiple of 32B (2 vec4's) in all cases.
*
* The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
* budget that as follows:
*
* 512 bytes for varyings (a varying component is 4 bytes and
* gl_MaxGeometryOutputComponents = 128)
* 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
* bytes)
* 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
* even if it's not used)
* 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
* whenever clip planes are enabled, even if the shader doesn't
* write to gl_ClipDistance)
* 16 bytes overhead since the VUE size must be a multiple of 32 bytes
* (see below)--this causes up to 1 VUE slot to be wasted
* 400 bytes available for varying packing overhead
*
* Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
* per interpolation type, so this is plenty.
*
*/
unsigned output_vertex_size_bytes = prog_data.base.vue_map.num_slots * 16;
assert(brw->gen == 6 ||
output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
prog_data.output_vertex_size_hwords =
ALIGN(output_vertex_size_bytes, 32) / 32;
/* Compute URB entry size. The maximum allowed URB entry size is 32k.
* That divides up as follows:
*
* 64 bytes for the control data header (cut indices or StreamID bits)
* 4096 bytes for varyings (a varying component is 4 bytes and
* gl_MaxGeometryTotalOutputComponents = 1024)
* 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
* bytes/vertex and gl_MaxGeometryOutputVertices is 256)
* 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
* even if it's not used)
* 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
* whenever clip planes are enabled, even if the shader doesn't
* write to gl_ClipDistance)
* 4096 bytes overhead since the VUE size must be a multiple of 32
* bytes (see above)--this causes up to 1 VUE slot to be wasted
* 8128 bytes available for varying packing overhead
*
* Worst-case varying packing overhead is 3/4 of a varying slot per
* interpolation type, which works out to 3072 bytes, so this would allow
* us to accommodate 2 interpolation types without any danger of running
* out of URB space.
*
* In practice, the risk of running out of URB space is very small, since
* the above figures are all worst-case, and most of them scale with the
* number of output vertices. So we'll just calculate the amount of space
* we need, and if it's too large, fail to compile.
*
* The above is for gen7+ where we have a single URB entry that will hold
* all the output. In gen6, we will have to allocate URB entries for every
* vertex we emit, so our URB entries only need to be large enough to hold
* a single vertex. Also, gen6 does not have a control data header.
*/
unsigned output_size_bytes;
if (brw->gen >= 7) {
output_size_bytes =
prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
output_size_bytes += 32 * prog_data.control_data_header_size_hwords;
} else {
output_size_bytes = prog_data.output_vertex_size_hwords * 32;
}
/* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
* which comes before the control header.
*/
if (brw->gen >= 8)
output_size_bytes += 32;
assert(output_size_bytes >= 1);
int max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
if (brw->gen == 6)
max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
if (output_size_bytes > max_output_size_bytes)
return false;
/* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
* a multiple of 128 bytes in gen6.
*/
if (brw->gen >= 7)
prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
else
prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
prog_data.output_topology =
get_hw_prim_for_gl_prim(gp->program.OutputType);
/* The GLSL linker will have already matched up GS inputs and the outputs
* of prior stages. The driver does extend VS outputs in some cases, but
* only for legacy OpenGL or Gen4-5 hardware, neither of which offer
* geometry shader support. So we can safely ignore that.
*
* For SSO pipelines, we use a fixed VUE map layout based on variable
* locations, so we can rely on rendezvous-by-location making this work.
*
* However, we need to ignore VARYING_SLOT_PRIMITIVE_ID, as it's not
* written by previous stages and shows up via payload magic.
*/
GLbitfield64 inputs_read =
gp->program.Base.InputsRead & ~VARYING_BIT_PRIMITIVE_ID;
brw_compute_vue_map(brw->intelScreen->devinfo,
&c.input_vue_map, inputs_read,
prog->SeparateShader);
/* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
* need to program a URB read length of ceiling(num_slots / 2).
*/
prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
if (unlikely(INTEL_DEBUG & DEBUG_GS))
brw_dump_ir("geometry", prog, gs, NULL);
int st_index = -1;
if (INTEL_DEBUG & DEBUG_SHADER_TIME)
st_index = brw_get_shader_time_index(brw, prog, NULL, ST_GS);
void *mem_ctx = ralloc_context(NULL);
unsigned program_size;
char *error_str;
const unsigned *program =
brw_compile_gs(brw->intelScreen->compiler, brw, mem_ctx, &c,
&prog_data, shader->Program->nir, prog,
st_index, &program_size, &error_str);
if (program == NULL) {
ralloc_free(mem_ctx);
return false;
}
/* Scratch space is used for register spilling */
if (prog_data.base.base.total_scratch) {
brw_get_scratch_bo(brw, &stage_state->scratch_bo,
prog_data.base.base.total_scratch *
brw->max_gs_threads);
}
brw_upload_cache(&brw->cache, BRW_CACHE_GS_PROG,
&c.key, sizeof(c.key),
program, program_size,
&prog_data, sizeof(prog_data),
&stage_state->prog_offset, &brw->gs.prog_data);
ralloc_free(mem_ctx);
return true;
}
static bool
brw_gs_state_dirty(struct brw_context *brw)
{
return brw_state_dirty(brw,
_NEW_TEXTURE,
BRW_NEW_GEOMETRY_PROGRAM |
BRW_NEW_TRANSFORM_FEEDBACK);
}
static void
brw_gs_populate_key(struct brw_context *brw,
struct brw_gs_prog_key *key)
{
struct gl_context *ctx = &brw->ctx;
struct brw_stage_state *stage_state = &brw->gs.base;
struct brw_geometry_program *gp =
(struct brw_geometry_program *) brw->geometry_program;
struct gl_program *prog = &gp->program.Base;
memset(key, 0, sizeof(*key));
key->program_string_id = gp->id;
/* _NEW_TEXTURE */
brw_populate_sampler_prog_key_data(ctx, prog, stage_state->sampler_count,
&key->tex);
}
void
brw_upload_gs_prog(struct brw_context *brw)
{
struct gl_context *ctx = &brw->ctx;
struct gl_shader_program **current = ctx->_Shader->CurrentProgram;
struct brw_stage_state *stage_state = &brw->gs.base;
struct brw_gs_prog_key key;
/* BRW_NEW_GEOMETRY_PROGRAM */
struct brw_geometry_program *gp =
(struct brw_geometry_program *) brw->geometry_program;
if (!brw_gs_state_dirty(brw))
return;
if (gp == NULL) {
/* No geometry shader. Vertex data just passes straight through. */
if (brw->gen == 6 &&
(brw->ctx.NewDriverState & BRW_NEW_TRANSFORM_FEEDBACK)) {
gen6_brw_upload_ff_gs_prog(brw);
return;
}
/* Other state atoms had better not try to access prog_data, since
* there's no GS program.
*/
brw->gs.prog_data = NULL;
brw->gs.base.prog_data = NULL;
return;
}
brw_gs_populate_key(brw, &key);
if (!brw_search_cache(&brw->cache, BRW_CACHE_GS_PROG,
&key, sizeof(key),
&stage_state->prog_offset, &brw->gs.prog_data)) {
bool success = brw_codegen_gs_prog(brw, current[MESA_SHADER_GEOMETRY],
gp, &key);
assert(success);
(void)success;
}
brw->gs.base.prog_data = &brw->gs.prog_data->base.base;
}
bool
brw_gs_precompile(struct gl_context *ctx,
struct gl_shader_program *shader_prog,
struct gl_program *prog)
{
struct brw_context *brw = brw_context(ctx);
struct brw_gs_prog_key key;
uint32_t old_prog_offset = brw->gs.base.prog_offset;
struct brw_gs_prog_data *old_prog_data = brw->gs.prog_data;
bool success;
struct gl_geometry_program *gp = (struct gl_geometry_program *) prog;
struct brw_geometry_program *bgp = brw_geometry_program(gp);
memset(&key, 0, sizeof(key));
brw_setup_tex_for_precompile(brw, &key.tex, prog);
key.program_string_id = bgp->id;
success = brw_codegen_gs_prog(brw, shader_prog, bgp, &key);
brw->gs.base.prog_offset = old_prog_offset;
brw->gs.prog_data = old_prog_data;
return success;
}
|