aboutsummaryrefslogtreecommitdiffstats
path: root/src/mesa/drivers/dri/i965/brw_fs_reg_allocate.cpp
blob: f87cbbcd68a6c565be470359b2584cec8cdc3ff9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
/*
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "brw_fs.h"
#include "glsl/glsl_types.h"
#include "glsl/ir_optimization.h"
#include "glsl/ir_print_visitor.h"

static void
assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width)
{
   if (reg->file == GRF) {
      assert(reg->reg_offset >= 0);
      reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width;
      reg->reg_offset = 0;
   }
}

void
fs_visitor::assign_regs_trivial()
{
   int hw_reg_mapping[this->virtual_grf_count + 1];
   int i;
   int reg_width = c->dispatch_width / 8;

   /* Note that compressed instructions require alignment to 2 registers. */
   hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
   for (i = 1; i <= this->virtual_grf_count; i++) {
      hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
			   this->virtual_grf_sizes[i - 1] * reg_width);
   }
   this->grf_used = hw_reg_mapping[this->virtual_grf_count];

   foreach_list(node, &this->instructions) {
      fs_inst *inst = (fs_inst *)node;

      assign_reg(hw_reg_mapping, &inst->dst, reg_width);
      assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
      assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
      assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
   }

   if (this->grf_used >= max_grf) {
      fail("Ran out of regs on trivial allocator (%d/%d)\n",
	   this->grf_used, max_grf);
   }

}

static void
brw_alloc_reg_set(struct brw_context *brw, int reg_width)
{
   struct intel_context *intel = &brw->intel;
   int base_reg_count = BRW_MAX_GRF / reg_width;
   int index = reg_width - 1;

   /* The registers used to make up almost all values handled in the compiler
    * are a scalar value occupying a single register (or 2 registers in the
    * case of 16-wide, which is handled by dividing base_reg_count by 2 and
    * multiplying allocated register numbers by 2).  Things that were
    * aggregates of scalar values at the GLSL level were split to scalar
    * values by split_virtual_grfs().
    *
    * However, texture SEND messages return a series of contiguous registers.
    * We currently always ask for 4 registers, but we may convert that to use
    * less some day.
    *
    * Additionally, on gen5 we need aligned pairs of registers for the PLN
    * instruction.
    *
    * So we have a need for classes for 1, 2, and 4 registers currently, and
    * we add in '3' to make indexing the array easier (since we'll probably
    * want it for texturing later).
    */
   const int class_sizes[4] = {1, 2, 3, 4};
   const int class_count = 4;

   /* Compute the total number of registers across all classes. */
   int ra_reg_count = 0;
   for (int i = 0; i < class_count; i++) {
      ra_reg_count += base_reg_count - (class_sizes[i] - 1);
   }

   uint8_t *ra_reg_to_grf = ralloc_array(brw, uint8_t, ra_reg_count);
   struct ra_regs *regs = ra_alloc_reg_set(brw, ra_reg_count);
   int *classes = ralloc_array(brw, int, class_count);
   int aligned_pairs_class = -1;

   /* Now, add the registers to their classes, and add the conflicts
    * between them and the base GRF registers (and also each other).
    */
   int reg = 0;
   int pairs_base_reg = 0;
   int pairs_reg_count = 0;
   for (int i = 0; i < class_count; i++) {
      int class_reg_count = base_reg_count - (class_sizes[i] - 1);
      classes[i] = ra_alloc_reg_class(regs);

      /* Save this off for the aligned pair class at the end. */
      if (class_sizes[i] == 2) {
	 pairs_base_reg = reg;
	 pairs_reg_count = class_reg_count;
      }

      for (int j = 0; j < class_reg_count; j++) {
	 ra_class_add_reg(regs, classes[i], reg);

	 ra_reg_to_grf[reg] = j;

	 for (int base_reg = j;
	      base_reg < j + class_sizes[i];
	      base_reg++) {
	    ra_add_transitive_reg_conflict(regs, base_reg, reg);
	 }

	 reg++;
      }
   }
   assert(reg == ra_reg_count);

   /* Add a special class for aligned pairs, which we'll put delta_x/y
    * in on gen5 so that we can do PLN.
    */
   if (brw->has_pln && reg_width == 1 && intel->gen < 6) {
      aligned_pairs_class = ra_alloc_reg_class(regs);

      for (int i = 0; i < pairs_reg_count; i++) {
	 if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
	    ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i);
	 }
      }
   }

   ra_set_finalize(regs, NULL);

   brw->wm.reg_sets[index].regs = regs;
   brw->wm.reg_sets[index].classes = classes;
   brw->wm.reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
   brw->wm.reg_sets[index].aligned_pairs_class = aligned_pairs_class;
}

void
brw_fs_alloc_reg_sets(struct brw_context *brw)
{
   brw_alloc_reg_set(brw, 1);
   brw_alloc_reg_set(brw, 2);
}

int
count_to_loop_end(fs_inst *do_inst)
{
   int depth = 1;
   int ip = 1;
   for (fs_inst *inst = (fs_inst *)do_inst->next;
        depth > 0;
        inst = (fs_inst *)inst->next) {
      switch (inst->opcode) {
      case BRW_OPCODE_DO:
         depth++;
         break;
      case BRW_OPCODE_WHILE:
         depth--;
         break;
      default:
         break;
      }
      ip++;
   }
   return ip;
}

/**
 * Sets up interference between thread payload registers and the virtual GRFs
 * to be allocated for program temporaries.
 *
 * We want to be able to reallocate the payload for our virtual GRFs, notably
 * because the setup coefficients for a full set of 16 FS inputs takes up 8 of
 * our 128 registers.
 *
 * The layout of the payload registers is:
 *
 * 0..nr_payload_regs-1: fixed function setup (including bary coordinates).
 * nr_payload_regs..nr_payload_regs+curb_read_lengh-1: uniform data
 * nr_payload_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients.
 *
 * And we have payload_node_count nodes covering these registers in order
 * (note that in 16-wide, a node is two registers).
 */
void
fs_visitor::setup_payload_interference(struct ra_graph *g,
                                       int payload_node_count,
                                       int first_payload_node)
{
   int reg_width = c->dispatch_width / 8;
   int loop_depth = 0;
   int loop_end_ip = 0;

   int payload_last_use_ip[payload_node_count];
   memset(payload_last_use_ip, 0, sizeof(payload_last_use_ip));
   int ip = 0;
   foreach_list(node, &this->instructions) {
      fs_inst *inst = (fs_inst *)node;

      switch (inst->opcode) {
      case BRW_OPCODE_DO:
         loop_depth++;

         /* Since payload regs are deffed only at the start of the shader
          * execution, any uses of the payload within a loop mean the live
          * interval extends to the end of the outermost loop.  Find the ip of
          * the end now.
          */
         if (loop_depth == 1)
            loop_end_ip = ip + count_to_loop_end(inst);
         break;
      case BRW_OPCODE_WHILE:
         loop_depth--;
         break;
      default:
         break;
      }

      int use_ip;
      if (loop_depth > 0)
         use_ip = loop_end_ip;
      else
         use_ip = ip;

      /* Note that UNIFORM args have been turned into FIXED_HW_REG by
       * assign_curbe_setup(), and interpolation uses fixed hardware regs from
       * the start (see interp_reg()).
       */
      for (int i = 0; i < 3; i++) {
         if (inst->src[i].file == FIXED_HW_REG &&
             inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
            int node_nr = inst->src[i].fixed_hw_reg.nr / reg_width;
            if (node_nr >= payload_node_count)
               continue;

            payload_last_use_ip[node_nr] = use_ip;
         }
      }

      /* Special case instructions which have extra implied registers used. */
      switch (inst->opcode) {
      case FS_OPCODE_FB_WRITE:
         /* We could omit this for the !inst->header_present case, except that
          * the simulator apparently incorrectly reads from g0/g1 instead of
          * sideband.  It also really freaks out driver developers to see g0
          * used in unusual places, so just always reserve it.
          */
         payload_last_use_ip[0 / reg_width] = use_ip;
         payload_last_use_ip[1 / reg_width] = use_ip;
         break;
      case FS_OPCODE_DISCARD:
         payload_last_use_ip[1 / reg_width] = use_ip;
         break;

      case FS_OPCODE_LINTERP:
         /* On gen6+ in 16-wide, there are 4 adjacent registers (so 2 nodes)
          * used by PLN's sourcing of the deltas, while we list only the first
          * two in the arguments (1 node).  Pre-gen6, the deltas are computed
          * in normal VGRFs.
          */
         if (intel->gen >= 6) {
            int delta_x_arg = 0;
            if (inst->src[delta_x_arg].file == FIXED_HW_REG &&
                inst->src[delta_x_arg].fixed_hw_reg.file ==
                BRW_GENERAL_REGISTER_FILE) {
               int sechalf_node = (inst->src[delta_x_arg].fixed_hw_reg.nr /
                                   reg_width) + 1;
               assert(sechalf_node < payload_node_count);
               payload_last_use_ip[sechalf_node] = use_ip;
            }
         }
         break;

      default:
         break;
      }

      ip++;
   }

   for (int i = 0; i < payload_node_count; i++) {
      /* Mark the payload node as interfering with any virtual grf that is
       * live between the start of the program and our last use of the payload
       * node.
       */
      for (int j = 0; j < this->virtual_grf_count; j++) {
         if (this->virtual_grf_def[j] <= payload_last_use_ip[i] ||
             this->virtual_grf_use[j] <= payload_last_use_ip[i]) {
            ra_add_node_interference(g, first_payload_node + i, j);
         }
      }
   }

   for (int i = 0; i < payload_node_count; i++) {
      /* Mark each payload node as being allocated to its physical register.
       *
       * The alternative would be to have per-physical-register classes, which
       * would just be silly.
       */
      ra_set_node_reg(g, first_payload_node + i, i);
   }
}

/**
 * Sets interference between virtual GRFs and usage of the high GRFs for SEND
 * messages (treated as MRFs in code generation).
 */
void
fs_visitor::setup_mrf_hack_interference(struct ra_graph *g, int first_mrf_node)
{
   int mrf_count = BRW_MAX_GRF - GEN7_MRF_HACK_START;
   int reg_width = c->dispatch_width / 8;

   /* Identify all the MRFs used in the program. */
   bool mrf_used[mrf_count];
   memset(mrf_used, 0, sizeof(mrf_used));
   foreach_list(node, &this->instructions) {
      fs_inst *inst = (fs_inst *)node;

      if (inst->dst.file == MRF) {
         int reg = inst->dst.reg & ~BRW_MRF_COMPR4;
         mrf_used[reg] = true;
         if (reg_width == 2) {
            if (inst->dst.reg & BRW_MRF_COMPR4) {
               mrf_used[reg + 4] = true;
            } else {
               mrf_used[reg + 1] = true;
            }
         }
      }

      if (inst->mlen > 0) {
	 for (int i = 0; i < implied_mrf_writes(inst); i++) {
            mrf_used[inst->base_mrf + i] = true;
         }
      }
   }

   for (int i = 0; i < mrf_count; i++) {
      /* Mark each payload reg node as being allocated to its physical register.
       *
       * The alternative would be to have per-physical-register classes, which
       * would just be silly.
       */
      ra_set_node_reg(g, first_mrf_node + i,
                      (GEN7_MRF_HACK_START + i) / reg_width);

      /* Since we don't have any live/dead analysis on the MRFs, just mark all
       * that are used as conflicting with all virtual GRFs.
       */
      if (mrf_used[i]) {
         for (int j = 0; j < this->virtual_grf_count; j++) {
            ra_add_node_interference(g, first_mrf_node + i, j);
         }
      }
   }
}

bool
fs_visitor::assign_regs()
{
   /* Most of this allocation was written for a reg_width of 1
    * (dispatch_width == 8).  In extending to 16-wide, the code was
    * left in place and it was converted to have the hardware
    * registers it's allocating be contiguous physical pairs of regs
    * for reg_width == 2.
    */
   int reg_width = c->dispatch_width / 8;
   int hw_reg_mapping[this->virtual_grf_count];
   int payload_node_count = (ALIGN(this->first_non_payload_grf, reg_width) /
                            reg_width);
   int rsi = reg_width - 1; /* Which brw->wm.reg_sets[] to use */
   calculate_live_intervals();

   int node_count = this->virtual_grf_count;
   int first_payload_node = node_count;
   node_count += payload_node_count;
   int first_mrf_hack_node = node_count;
   if (intel->gen >= 7)
      node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
   struct ra_graph *g = ra_alloc_interference_graph(brw->wm.reg_sets[rsi].regs,
                                                    node_count);

   for (int i = 0; i < this->virtual_grf_count; i++) {
      assert(this->virtual_grf_sizes[i] >= 1 &&
             this->virtual_grf_sizes[i] <= 4 &&
             "Register allocation relies on split_virtual_grfs()");
      int c = brw->wm.reg_sets[rsi].classes[this->virtual_grf_sizes[i] - 1];

      /* Special case: on pre-GEN6 hardware that supports PLN, the
       * second operand of a PLN instruction needs to be an
       * even-numbered register, so we have a special register class
       * wm_aligned_pairs_class to handle this case.  pre-GEN6 always
       * uses this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the
       * second operand of a PLN instruction (since it doesn't support
       * any other interpolation modes).  So all we need to do is find
       * that register and set it to the appropriate class.
       */
      if (brw->wm.reg_sets[rsi].aligned_pairs_class >= 0 &&
          this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) {
         c = brw->wm.reg_sets[rsi].aligned_pairs_class;
      }

      ra_set_node_class(g, i, c);

      for (int j = 0; j < i; j++) {
	 if (virtual_grf_interferes(i, j)) {
	    ra_add_node_interference(g, i, j);
	 }
      }
   }

   setup_payload_interference(g, payload_node_count, first_payload_node);
   if (intel->gen >= 7)
      setup_mrf_hack_interference(g, first_mrf_hack_node);

   if (!ra_allocate_no_spills(g)) {
      /* Failed to allocate registers.  Spill a reg, and the caller will
       * loop back into here to try again.
       */
      int reg = choose_spill_reg(g);

      if (reg == -1) {
	 fail("no register to spill\n");
      } else if (c->dispatch_width == 16) {
	 fail("Failure to register allocate.  Reduce number of live scalar "
              "values to avoid this.");
      } else {
	 spill_reg(reg);
      }


      ralloc_free(g);

      return false;
   }

   /* Get the chosen virtual registers for each node, and map virtual
    * regs in the register classes back down to real hardware reg
    * numbers.
    */
   this->grf_used = payload_node_count * reg_width;
   for (int i = 0; i < this->virtual_grf_count; i++) {
      int reg = ra_get_node_reg(g, i);

      hw_reg_mapping[i] = brw->wm.reg_sets[rsi].ra_reg_to_grf[reg] * reg_width;
      this->grf_used = MAX2(this->grf_used,
			    hw_reg_mapping[i] + this->virtual_grf_sizes[i] *
			    reg_width);
   }

   foreach_list(node, &this->instructions) {
      fs_inst *inst = (fs_inst *)node;

      assign_reg(hw_reg_mapping, &inst->dst, reg_width);
      assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
      assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
      assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
   }

   ralloc_free(g);

   return true;
}

void
fs_visitor::emit_unspill(fs_inst *inst, fs_reg dst, uint32_t spill_offset)
{
   fs_inst *unspill_inst = new(mem_ctx) fs_inst(FS_OPCODE_UNSPILL, dst);
   unspill_inst->offset = spill_offset;
   unspill_inst->ir = inst->ir;
   unspill_inst->annotation = inst->annotation;

   /* Choose a MRF that won't conflict with an MRF that's live across the
    * spill.  Nothing else will make it up to MRF 14/15.
    */
   unspill_inst->base_mrf = 14;
   unspill_inst->mlen = 1; /* header contains offset */
   inst->insert_before(unspill_inst);
}

int
fs_visitor::choose_spill_reg(struct ra_graph *g)
{
   float loop_scale = 1.0;
   float spill_costs[this->virtual_grf_count];
   bool no_spill[this->virtual_grf_count];

   for (int i = 0; i < this->virtual_grf_count; i++) {
      spill_costs[i] = 0.0;
      no_spill[i] = false;
   }

   /* Calculate costs for spilling nodes.  Call it a cost of 1 per
    * spill/unspill we'll have to do, and guess that the insides of
    * loops run 10 times.
    */
   foreach_list(node, &this->instructions) {
      fs_inst *inst = (fs_inst *)node;

      for (unsigned int i = 0; i < 3; i++) {
	 if (inst->src[i].file == GRF) {
	    spill_costs[inst->src[i].reg] += loop_scale;

            /* Register spilling logic assumes full-width registers; smeared
             * registers have a width of 1 so if we try to spill them we'll
             * generate invalid assembly.  This shouldn't be a problem because
             * smeared registers are only used as short-term temporaries when
             * loading pull constants, so spilling them is unlikely to reduce
             * register pressure anyhow.
             */
            if (inst->src[i].smear >= 0) {
               no_spill[inst->src[i].reg] = true;
            }
	 }
      }

      if (inst->dst.file == GRF) {
	 spill_costs[inst->dst.reg] += inst->regs_written() * loop_scale;

         if (inst->dst.smear >= 0) {
            no_spill[inst->dst.reg] = true;
         }
      }

      switch (inst->opcode) {

      case BRW_OPCODE_DO:
	 loop_scale *= 10;
	 break;

      case BRW_OPCODE_WHILE:
	 loop_scale /= 10;
	 break;

      case FS_OPCODE_SPILL:
	 if (inst->src[0].file == GRF)
	    no_spill[inst->src[0].reg] = true;
	 break;

      case FS_OPCODE_UNSPILL:
	 if (inst->dst.file == GRF)
	    no_spill[inst->dst.reg] = true;
	 break;

      default:
	 break;
      }
   }

   for (int i = 0; i < this->virtual_grf_count; i++) {
      if (!no_spill[i])
	 ra_set_node_spill_cost(g, i, spill_costs[i]);
   }

   return ra_get_best_spill_node(g);
}

void
fs_visitor::spill_reg(int spill_reg)
{
   int size = virtual_grf_sizes[spill_reg];
   unsigned int spill_offset = c->last_scratch;
   assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
   c->last_scratch += size * REG_SIZE;

   /* Generate spill/unspill instructions for the objects being
    * spilled.  Right now, we spill or unspill the whole thing to a
    * virtual grf of the same size.  For most instructions, though, we
    * could just spill/unspill the GRF being accessed.
    */
   foreach_list(node, &this->instructions) {
      fs_inst *inst = (fs_inst *)node;

      for (unsigned int i = 0; i < 3; i++) {
	 if (inst->src[i].file == GRF &&
	     inst->src[i].reg == spill_reg) {
	    inst->src[i].reg = virtual_grf_alloc(1);
	    emit_unspill(inst, inst->src[i],
                         spill_offset + REG_SIZE * inst->src[i].reg_offset);
	 }
      }

      if (inst->dst.file == GRF &&
	  inst->dst.reg == spill_reg) {
         int subset_spill_offset = (spill_offset +
                                    REG_SIZE * inst->dst.reg_offset);
         inst->dst.reg = virtual_grf_alloc(inst->regs_written());
         inst->dst.reg_offset = 0;

	 /* If our write is going to affect just part of the
          * inst->regs_written(), then we need to unspill the destination
          * since we write back out all of the regs_written().
	  */
	 if (inst->predicate || inst->force_uncompressed || inst->force_sechalf) {
            fs_reg unspill_reg = inst->dst;
            for (int chan = 0; chan < inst->regs_written(); chan++) {
               emit_unspill(inst, unspill_reg,
                            subset_spill_offset + REG_SIZE * chan);
               unspill_reg.reg_offset++;
            }
	 }

	 fs_reg spill_src = inst->dst;
	 spill_src.reg_offset = 0;
	 spill_src.abs = false;
	 spill_src.negate = false;
	 spill_src.smear = -1;

	 for (int chan = 0; chan < inst->regs_written(); chan++) {
	    fs_inst *spill_inst = new(mem_ctx) fs_inst(FS_OPCODE_SPILL,
						       reg_null_f, spill_src);
	    spill_src.reg_offset++;
	    spill_inst->offset = subset_spill_offset + chan * REG_SIZE;
	    spill_inst->ir = inst->ir;
	    spill_inst->annotation = inst->annotation;
	    spill_inst->base_mrf = 14;
	    spill_inst->mlen = 2; /* header, value */
	    inst->insert_after(spill_inst);
	 }
      }
   }

   this->live_intervals_valid = false;
}