1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_cfg.h"
#include "brw_fs_live_variables.h"
using namespace brw;
/** @file brw_fs_live_variables.cpp
*
* Support for computing at the basic block level which variables
* (virtual GRFs in our case) are live at entry and exit.
*
* See Muchnik's Advanced Compiler Design and Implementation, section
* 14.1 (p444).
*/
/**
* Sets up the use[] and def[] bitsets.
*
* The basic-block-level live variable analysis needs to know which
* variables get used before they're completely defined, and which
* variables are completely defined before they're used.
*/
void
fs_live_variables::setup_def_use()
{
int ip = 0;
for (int b = 0; b < cfg->num_blocks; b++) {
bblock_t *block = cfg->blocks[b];
assert(ip == block->start_ip);
if (b > 0)
assert(cfg->blocks[b - 1]->end_ip == ip - 1);
for (fs_inst *inst = (fs_inst *)block->start;
inst != block->end->next;
inst = (fs_inst *)inst->next) {
/* Set use[] for this instruction */
for (unsigned int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF) {
int reg = inst->src[i].reg;
if (!BITSET_TEST(bd[b].def, reg))
BITSET_SET(bd[b].use, reg);
}
}
/* Check for unconditional writes to whole registers. These
* are the things that screen off preceding definitions of a
* variable, and thus qualify for being in def[].
*/
if (inst->dst.file == GRF &&
inst->regs_written == v->virtual_grf_sizes[inst->dst.reg] &&
!inst->is_partial_write()) {
int reg = inst->dst.reg;
if (!BITSET_TEST(bd[b].use, reg))
BITSET_SET(bd[b].def, reg);
}
ip++;
}
}
}
/**
* The algorithm incrementally sets bits in liveout and livein,
* propagating it through control flow. It will eventually terminate
* because it only ever adds bits, and stops when no bits are added in
* a pass.
*/
void
fs_live_variables::compute_live_variables()
{
bool cont = true;
while (cont) {
cont = false;
for (int b = 0; b < cfg->num_blocks; b++) {
/* Update livein */
for (int i = 0; i < bitset_words; i++) {
BITSET_WORD new_livein = (bd[b].use[i] |
(bd[b].liveout[i] & ~bd[b].def[i]));
if (new_livein & ~bd[b].livein[i]) {
bd[b].livein[i] |= new_livein;
cont = true;
}
}
/* Update liveout */
foreach_list(block_node, &cfg->blocks[b]->children) {
bblock_link *link = (bblock_link *)block_node;
bblock_t *block = link->block;
for (int i = 0; i < bitset_words; i++) {
BITSET_WORD new_liveout = (bd[block->block_num].livein[i] &
~bd[b].liveout[i]);
if (new_liveout) {
bd[b].liveout[i] |= new_liveout;
cont = true;
}
}
}
}
}
}
fs_live_variables::fs_live_variables(fs_visitor *v, cfg_t *cfg)
: v(v), cfg(cfg)
{
mem_ctx = ralloc_context(cfg->mem_ctx);
num_vars = v->virtual_grf_count;
bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
bitset_words = BITSET_WORDS(v->virtual_grf_count);
for (int i = 0; i < cfg->num_blocks; i++) {
bd[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
bd[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
bd[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
bd[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
}
setup_def_use();
compute_live_variables();
}
fs_live_variables::~fs_live_variables()
{
ralloc_free(mem_ctx);
}
#define MAX_INSTRUCTION (1 << 30)
void
fs_visitor::calculate_live_intervals()
{
int num_vars = this->virtual_grf_count;
if (this->live_intervals_valid)
return;
int *start = ralloc_array(mem_ctx, int, num_vars);
int *end = ralloc_array(mem_ctx, int, num_vars);
ralloc_free(this->virtual_grf_start);
ralloc_free(this->virtual_grf_end);
this->virtual_grf_start = start;
this->virtual_grf_end = end;
for (int i = 0; i < num_vars; i++) {
start[i] = MAX_INSTRUCTION;
end[i] = -1;
}
/* Start by setting up the intervals with no knowledge of control
* flow.
*/
int ip = 0;
foreach_list(node, &this->instructions) {
fs_inst *inst = (fs_inst *)node;
for (unsigned int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF) {
int reg = inst->src[i].reg;
int end_ip = ip;
/* In most cases, a register can be written over safely by the
* same instruction that is its last use. For a single
* instruction, the sources are dereferenced before writing of the
* destination starts (naturally). This gets more complicated for
* simd16, because the instruction:
*
* mov(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
*
* is actually decoded in hardware as:
*
* mov(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
* mov(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
*
* Which is safe. However, if we have uniform accesses
* happening, we get into trouble:
*
* mov(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
* mov(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
*
* Now our destination for the first instruction overwrote the
* second instruction's src0, and we get garbage for those 8
* pixels. There's a similar issue for the pre-gen6
* pixel_x/pixel_y, which are registers of 16-bit values and thus
* would get stomped by the first decode as well.
*/
if (dispatch_width == 16 && (inst->src[i].smear >= 0 ||
(this->pixel_x.reg == reg ||
this->pixel_y.reg == reg))) {
end_ip++;
}
start[reg] = MIN2(start[reg], ip);
end[reg] = MAX2(end[reg], end_ip);
}
}
if (inst->dst.file == GRF) {
int reg = inst->dst.reg;
start[reg] = MIN2(start[reg], ip);
end[reg] = MAX2(end[reg], ip);
}
ip++;
}
/* Now, extend those intervals using our analysis of control flow. */
cfg_t cfg(this);
fs_live_variables livevars(this, &cfg);
for (int b = 0; b < cfg.num_blocks; b++) {
for (int i = 0; i < num_vars; i++) {
if (BITSET_TEST(livevars.bd[b].livein, i)) {
start[i] = MIN2(start[i], cfg.blocks[b]->start_ip);
end[i] = MAX2(end[i], cfg.blocks[b]->start_ip);
}
if (BITSET_TEST(livevars.bd[b].liveout, i)) {
start[i] = MIN2(start[i], cfg.blocks[b]->end_ip);
end[i] = MAX2(end[i], cfg.blocks[b]->end_ip);
}
}
}
this->live_intervals_valid = true;
}
bool
fs_visitor::virtual_grf_interferes(int a, int b)
{
return !(virtual_grf_end[a] <= virtual_grf_start[b] ||
virtual_grf_end[b] <= virtual_grf_start[a]);
}
|