1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_cfg.h"
#include "brw_fs_live_variables.h"
using namespace brw;
#define MAX_INSTRUCTION (1 << 30)
/** @file brw_fs_live_variables.cpp
*
* Support for calculating liveness information about virtual GRFs.
*
* This produces a live interval for each whole virtual GRF. We could
* choose to expose per-component live intervals for VGRFs of size > 1,
* but we currently do not. It is easier for the consumers of this
* information to work with whole VGRFs.
*
* However, we internally track use/def information at the per-component
* (reg_offset) level for greater accuracy. Large VGRFs may be accessed
* piecemeal over many (possibly non-adjacent) instructions. In this case,
* examining a single instruction is insufficient to decide whether a whole
* VGRF is ultimately used or defined. Tracking individual components
* allows us to easily assemble this information.
*
* See Muchnick's Advanced Compiler Design and Implementation, section
* 14.1 (p444).
*/
void
fs_live_variables::setup_one_read(struct block_data *bd, fs_inst *inst,
int ip, const fs_reg ®)
{
int var = var_from_reg(reg);
assert(var < num_vars);
/* In most cases, a register can be written over safely by the
* same instruction that is its last use. For a single
* instruction, the sources are dereferenced before writing of the
* destination starts (naturally). This gets more complicated for
* simd16, because the instruction:
*
* add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
*
* is actually decoded in hardware as:
*
* add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
* add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
*
* Which is safe. However, if we have uniform accesses
* happening, we get into trouble:
*
* add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
* add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
*
* Now our destination for the first instruction overwrote the
* second instruction's src0, and we get garbage for those 8
* pixels. There's a similar issue for the pre-gen6
* pixel_x/pixel_y, which are registers of 16-bit values and thus
* would get stomped by the first decode as well.
*/
int end_ip = ip;
if (inst->exec_size == 16 && (reg.stride == 0 ||
reg.type == BRW_REGISTER_TYPE_UW ||
reg.type == BRW_REGISTER_TYPE_W ||
reg.type == BRW_REGISTER_TYPE_UB ||
reg.type == BRW_REGISTER_TYPE_B)) {
end_ip++;
}
start[var] = MIN2(start[var], ip);
end[var] = MAX2(end[var], end_ip);
/* The use[] bitset marks when the block makes use of a variable (VGRF
* channel) without having completely defined that variable within the
* block.
*/
if (!BITSET_TEST(bd->def, var))
BITSET_SET(bd->use, var);
}
void
fs_live_variables::setup_one_write(struct block_data *bd, fs_inst *inst,
int ip, const fs_reg ®)
{
int var = var_from_reg(reg);
assert(var < num_vars);
start[var] = MIN2(start[var], ip);
end[var] = MAX2(end[var], ip);
/* The def[] bitset marks when an initialization in a block completely
* screens off previous updates of that variable (VGRF channel).
*/
if (inst->dst.file == GRF && !inst->is_partial_write()) {
if (!BITSET_TEST(bd->use, var))
BITSET_SET(bd->def, var);
}
}
/**
* Sets up the use[] and def[] bitsets.
*
* The basic-block-level live variable analysis needs to know which
* variables get used before they're completely defined, and which
* variables are completely defined before they're used.
*
* These are tracked at the per-component level, rather than whole VGRFs.
*/
void
fs_live_variables::setup_def_use()
{
int ip = 0;
foreach_block (block, cfg) {
assert(ip == block->start_ip);
if (block->num > 0)
assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
struct block_data *bd = &block_data[block->num];
foreach_inst_in_block(fs_inst, inst, block) {
/* Set use[] for this instruction */
for (unsigned int i = 0; i < inst->sources; i++) {
fs_reg reg = inst->src[i];
if (reg.file != GRF)
continue;
for (int j = 0; j < inst->regs_read(i); j++) {
setup_one_read(bd, inst, ip, reg);
reg.reg_offset++;
}
}
if (inst->reads_flag()) {
/* The vertical combination predicates read f0.0 and f0.1. */
if (inst->predicate == BRW_PREDICATE_ALIGN1_ANYV ||
inst->predicate == BRW_PREDICATE_ALIGN1_ALLV) {
assert(inst->flag_subreg == 0);
if (!BITSET_TEST(bd->flag_def, 1)) {
BITSET_SET(bd->flag_use, 1);
}
}
if (!BITSET_TEST(bd->flag_def, inst->flag_subreg)) {
BITSET_SET(bd->flag_use, inst->flag_subreg);
}
}
/* Set def[] for this instruction */
if (inst->dst.file == GRF) {
fs_reg reg = inst->dst;
for (int j = 0; j < inst->regs_written; j++) {
setup_one_write(bd, inst, ip, reg);
reg.reg_offset++;
}
}
if (inst->writes_flag()) {
if (!BITSET_TEST(bd->flag_use, inst->flag_subreg)) {
BITSET_SET(bd->flag_def, inst->flag_subreg);
}
}
ip++;
}
}
}
/**
* The algorithm incrementally sets bits in liveout and livein,
* propagating it through control flow. It will eventually terminate
* because it only ever adds bits, and stops when no bits are added in
* a pass.
*/
void
fs_live_variables::compute_live_variables()
{
bool cont = true;
while (cont) {
cont = false;
foreach_block_reverse (block, cfg) {
struct block_data *bd = &block_data[block->num];
/* Update liveout */
foreach_list_typed(bblock_link, child_link, link, &block->children) {
struct block_data *child_bd = &block_data[child_link->block->num];
for (int i = 0; i < bitset_words; i++) {
BITSET_WORD new_liveout = (child_bd->livein[i] &
~bd->liveout[i]);
if (new_liveout) {
bd->liveout[i] |= new_liveout;
cont = true;
}
}
BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
~bd->flag_liveout[0]);
if (new_liveout) {
bd->flag_liveout[0] |= new_liveout;
cont = true;
}
}
/* Update livein */
for (int i = 0; i < bitset_words; i++) {
BITSET_WORD new_livein = (bd->use[i] |
(bd->liveout[i] &
~bd->def[i]));
if (new_livein & ~bd->livein[i]) {
bd->livein[i] |= new_livein;
cont = true;
}
}
BITSET_WORD new_livein = (bd->flag_use[0] |
(bd->flag_liveout[0] &
~bd->flag_def[0]));
if (new_livein & ~bd->flag_livein[0]) {
bd->flag_livein[0] |= new_livein;
cont = true;
}
}
}
}
/**
* Extend the start/end ranges for each variable to account for the
* new information calculated from control flow.
*/
void
fs_live_variables::compute_start_end()
{
foreach_block (block, cfg) {
struct block_data *bd = &block_data[block->num];
for (int i = 0; i < num_vars; i++) {
if (BITSET_TEST(bd->livein, i)) {
start[i] = MIN2(start[i], block->start_ip);
end[i] = MAX2(end[i], block->start_ip);
}
if (BITSET_TEST(bd->liveout, i)) {
start[i] = MIN2(start[i], block->end_ip);
end[i] = MAX2(end[i], block->end_ip);
}
}
}
}
fs_live_variables::fs_live_variables(fs_visitor *v, const cfg_t *cfg)
: v(v), cfg(cfg)
{
mem_ctx = ralloc_context(NULL);
num_vgrfs = v->alloc.count;
num_vars = 0;
var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs);
for (int i = 0; i < num_vgrfs; i++) {
var_from_vgrf[i] = num_vars;
num_vars += v->alloc.sizes[i];
}
vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars);
for (int i = 0; i < num_vgrfs; i++) {
for (unsigned j = 0; j < v->alloc.sizes[i]; j++) {
vgrf_from_var[var_from_vgrf[i] + j] = i;
}
}
start = ralloc_array(mem_ctx, int, num_vars);
end = rzalloc_array(mem_ctx, int, num_vars);
for (int i = 0; i < num_vars; i++) {
start[i] = MAX_INSTRUCTION;
end[i] = -1;
}
block_data= rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
bitset_words = BITSET_WORDS(num_vars);
for (int i = 0; i < cfg->num_blocks; i++) {
block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
block_data[i].flag_def[0] = 0;
block_data[i].flag_use[0] = 0;
block_data[i].flag_livein[0] = 0;
block_data[i].flag_liveout[0] = 0;
}
setup_def_use();
compute_live_variables();
compute_start_end();
}
fs_live_variables::~fs_live_variables()
{
ralloc_free(mem_ctx);
}
void
fs_visitor::invalidate_live_intervals()
{
ralloc_free(live_intervals);
live_intervals = NULL;
}
/**
* Compute the live intervals for each virtual GRF.
*
* This uses the per-component use/def data, but combines it to produce
* information about whole VGRFs.
*/
void
fs_visitor::calculate_live_intervals()
{
if (this->live_intervals)
return;
int num_vgrfs = this->alloc.count;
ralloc_free(this->virtual_grf_start);
ralloc_free(this->virtual_grf_end);
virtual_grf_start = ralloc_array(mem_ctx, int, num_vgrfs);
virtual_grf_end = ralloc_array(mem_ctx, int, num_vgrfs);
for (int i = 0; i < num_vgrfs; i++) {
virtual_grf_start[i] = MAX_INSTRUCTION;
virtual_grf_end[i] = -1;
}
this->live_intervals = new(mem_ctx) fs_live_variables(this, cfg);
/* Merge the per-component live ranges to whole VGRF live ranges. */
for (int i = 0; i < live_intervals->num_vars; i++) {
int vgrf = live_intervals->vgrf_from_var[i];
virtual_grf_start[vgrf] = MIN2(virtual_grf_start[vgrf],
live_intervals->start[i]);
virtual_grf_end[vgrf] = MAX2(virtual_grf_end[vgrf],
live_intervals->end[i]);
}
}
bool
fs_live_variables::vars_interfere(int a, int b)
{
return !(end[b] <= start[a] ||
end[a] <= start[b]);
}
bool
fs_visitor::virtual_grf_interferes(int a, int b)
{
return !(virtual_grf_end[a] <= virtual_grf_start[b] ||
virtual_grf_end[b] <= virtual_grf_start[a]);
}
|