aboutsummaryrefslogtreecommitdiffstats
path: root/src/mesa/drivers/dri/i965/brw_blorp_clear.cpp
blob: 0b13bf1331b8cb2ae7ed80ce9976d128982da455 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/*
 * Copyright © 2013 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

extern "C" {
#include "main/teximage.h"
#include "main/blend.h"
#include "main/fbobject.h"
#include "main/renderbuffer.h"
}

#include "glsl/ralloc.h"

#include "intel_fbo.h"

#include "brw_blorp.h"
#include "brw_context.h"
#include "brw_eu.h"
#include "brw_state.h"

#define FILE_DEBUG_FLAG DEBUG_BLORP

struct brw_blorp_const_color_prog_key
{
   bool use_simd16_replicated_data;
   bool pad[3];
};

/**
 * Parameters for a blorp operation where the fragment shader outputs a
 * constant color.  This is used for both fast color clears and color
 * resolves.
 */
class brw_blorp_const_color_params : public brw_blorp_params
{
public:
   virtual uint32_t get_wm_prog(struct brw_context *brw,
                                brw_blorp_prog_data **prog_data) const;

   brw_blorp_const_color_prog_key wm_prog_key;
};

class brw_blorp_clear_params : public brw_blorp_const_color_params
{
public:
   brw_blorp_clear_params(struct brw_context *brw,
                          struct gl_framebuffer *fb,
                          struct gl_renderbuffer *rb,
                          GLubyte *color_mask,
                          bool partial_clear,
                          unsigned layer);
};


/**
 * Parameters for a blorp operation that performs a "render target resolve".
 * This is used to resolve pending fast clear pixels before a color buffer is
 * used for texturing, ReadPixels, or scanout.
 */
class brw_blorp_rt_resolve_params : public brw_blorp_const_color_params
{
public:
   brw_blorp_rt_resolve_params(struct brw_context *brw,
                               struct intel_mipmap_tree *mt);
};


class brw_blorp_const_color_program
{
public:
   brw_blorp_const_color_program(struct brw_context *brw,
                                 const brw_blorp_const_color_prog_key *key);
   ~brw_blorp_const_color_program();

   const GLuint *compile(struct brw_context *brw, GLuint *program_size);

   brw_blorp_prog_data prog_data;

private:
   void alloc_regs();

   void *mem_ctx;
   struct brw_context *brw;
   const brw_blorp_const_color_prog_key *key;
   struct brw_compile func;

   /* Thread dispatch header */
   struct brw_reg R0;

   /* Pixel X/Y coordinates (always in R1). */
   struct brw_reg R1;

   /* Register with push constants (a single vec4) */
   struct brw_reg clear_rgba;

   /* MRF used for render target writes */
   GLuint base_mrf;
};

brw_blorp_const_color_program::brw_blorp_const_color_program(
      struct brw_context *brw,
      const brw_blorp_const_color_prog_key *key)
   : mem_ctx(ralloc_context(NULL)),
     brw(brw),
     key(key),
     R0(),
     R1(),
     clear_rgba(),
     base_mrf(0)
{
   prog_data.first_curbe_grf = 0;
   prog_data.persample_msaa_dispatch = false;
   brw_init_compile(brw, &func, mem_ctx);
}

brw_blorp_const_color_program::~brw_blorp_const_color_program()
{
   ralloc_free(mem_ctx);
}


/**
 * Determine if fast color clear supports the given clear color.
 *
 * Fast color clear can only clear to color values of 1.0 or 0.0.  At the
 * moment we only support floating point, unorm, and snorm buffers.
 */
static bool
is_color_fast_clear_compatible(struct brw_context *brw,
                               mesa_format format,
                               const union gl_color_union *color)
{
   if (_mesa_is_format_integer_color(format))
      return false;

   for (int i = 0; i < 4; i++) {
      if (color->f[i] != 0.0 && color->f[i] != 1.0 &&
          _mesa_format_has_color_component(format, i)) {
         return false;
      }
   }
   return true;
}


/**
 * Convert the given color to a bitfield suitable for ORing into DWORD 7 of
 * SURFACE_STATE.
 */
static uint32_t
compute_fast_clear_color_bits(const union gl_color_union *color)
{
   uint32_t bits = 0;
   for (int i = 0; i < 4; i++) {
      if (color->f[i] != 0.0)
         bits |= 1 << (GEN7_SURFACE_CLEAR_COLOR_SHIFT + (3 - i));
   }
   return bits;
}


brw_blorp_clear_params::brw_blorp_clear_params(struct brw_context *brw,
                                               struct gl_framebuffer *fb,
                                               struct gl_renderbuffer *rb,
                                               GLubyte *color_mask,
                                               bool partial_clear,
                                               unsigned layer)
{
   struct gl_context *ctx = &brw->ctx;
   struct intel_renderbuffer *irb = intel_renderbuffer(rb);

   dst.set(brw, irb->mt, irb->mt_level, layer, true);

   /* Override the surface format according to the context's sRGB rules. */
   mesa_format format = _mesa_get_render_format(ctx, irb->mt->format);
   dst.brw_surfaceformat = brw->render_target_format[format];

   x0 = fb->_Xmin;
   x1 = fb->_Xmax;
   if (rb->Name != 0) {
      y0 = fb->_Ymin;
      y1 = fb->_Ymax;
   } else {
      y0 = rb->Height - fb->_Ymax;
      y1 = rb->Height - fb->_Ymin;
   }

   float *push_consts = (float *)&wm_push_consts;

   push_consts[0] = ctx->Color.ClearColor.f[0];
   push_consts[1] = ctx->Color.ClearColor.f[1];
   push_consts[2] = ctx->Color.ClearColor.f[2];
   push_consts[3] = ctx->Color.ClearColor.f[3];

   use_wm_prog = true;

   memset(&wm_prog_key, 0, sizeof(wm_prog_key));

   wm_prog_key.use_simd16_replicated_data = true;

   /* From the SNB PRM (Vol4_Part1):
    *
    *     "Replicated data (Message Type = 111) is only supported when
    *      accessing tiled memory.  Using this Message Type to access linear
    *      (untiled) memory is UNDEFINED."
    */
   if (irb->mt->region->tiling == I915_TILING_NONE)
      wm_prog_key.use_simd16_replicated_data = false;

   /* Constant color writes ignore everyting in blend and color calculator
    * state.  This is not documented.
    */
   for (int i = 0; i < 4; i++) {
      if (_mesa_format_has_color_component(irb->mt->format, i) &&
          !color_mask[i]) {
         color_write_disable[i] = true;
         wm_prog_key.use_simd16_replicated_data = false;
      }
   }

   /* If we can do this as a fast color clear, do so.
    *
    * Note that the condition "!partial_clear" means we only try to do full
    * buffer clears using fast color clear logic.  This is necessary because
    * the fast color clear alignment requirements mean that we typically have
    * to clear a larger rectangle than (x0, y0) to (x1, y1).  Restricting fast
    * color clears to the full-buffer condition guarantees that the extra
    * memory locations that get written to are outside the image boundary (and
    * hence irrelevant).  Note that the rectangle alignment requirements are
    * never larger than the size of a tile, so there is no danger of
    * overflowing beyond the memory belonging to the region.
    */
   if (irb->mt->fast_clear_state != INTEL_FAST_CLEAR_STATE_NO_MCS &&
       !partial_clear && wm_prog_key.use_simd16_replicated_data &&
       is_color_fast_clear_compatible(brw, format, &ctx->Color.ClearColor)) {
      memset(push_consts, 0xff, 4*sizeof(float));
      fast_clear_op = GEN7_FAST_CLEAR_OP_FAST_CLEAR;

      /* Figure out what the clear rectangle needs to be aligned to, and how
       * much it needs to be scaled down.
       */
      unsigned x_align, y_align, x_scaledown, y_scaledown;

      if (irb->mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE) {
         /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
          * Target(s)", beneath the "Fast Color Clear" bullet (p327):
          *
          *     Clear pass must have a clear rectangle that must follow
          *     alignment rules in terms of pixels and lines as shown in the
          *     table below. Further, the clear-rectangle height and width
          *     must be multiple of the following dimensions. If the height
          *     and width of the render target being cleared do not meet these
          *     requirements, an MCS buffer can be created such that it
          *     follows the requirement and covers the RT.
          *
          * The alignment size in the table that follows is related to the
          * alignment size returned by intel_get_non_msrt_mcs_alignment(), but
          * with X alignment multiplied by 16 and Y alignment multiplied by 32.
          */
         intel_get_non_msrt_mcs_alignment(brw, irb->mt, &x_align, &y_align);
         x_align *= 16;
         y_align *= 32;

         /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
          * Target(s)", beneath the "Fast Color Clear" bullet (p327):
          *
          *     In order to optimize the performance MCS buffer (when bound to
          *     1X RT) clear similarly to MCS buffer clear for MSRT case,
          *     clear rect is required to be scaled by the following factors
          *     in the horizontal and vertical directions:
          *
          * The X and Y scale down factors in the table that follows are each
          * equal to half the alignment value computed above.
          */
         x_scaledown = x_align / 2;
         y_scaledown = y_align / 2;

         /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
          * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
          * Clear of Non-MultiSampled Render Target Restrictions":
          *
          *   Clear rectangle must be aligned to two times the number of
          *   pixels in the table shown below due to 16x16 hashing across the
          *   slice.
          */
         x_align *= 2;
         y_align *= 2;
      } else {
         /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
          * Target(s)", beneath the "MSAA Compression" bullet (p326):
          *
          *     Clear pass for this case requires that scaled down primitive
          *     is sent down with upper left co-ordinate to coincide with
          *     actual rectangle being cleared. For MSAA, clear rectangle’s
          *     height and width need to as show in the following table in
          *     terms of (width,height) of the RT.
          *
          *     MSAA  Width of Clear Rect  Height of Clear Rect
          *      4X     Ceil(1/8*width)      Ceil(1/2*height)
          *      8X     Ceil(1/2*width)      Ceil(1/2*height)
          *
          * The text "with upper left co-ordinate to coincide with actual
          * rectangle being cleared" is a little confusing--it seems to imply
          * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
          * feed the pipeline using the rectangle (x,y) to
          * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
          * the number of samples.  Experiments indicate that this is not
          * quite correct; actually, what the hardware appears to do is to
          * align whatever rectangle is sent down the pipeline to the nearest
          * multiple of 2x2 blocks, and then scale it up by a factor of N
          * horizontally and 2 vertically.  So the resulting alignment is 4
          * vertically and either 4 or 16 horizontally, and the scaledown
          * factor is 2 vertically and either 2 or 8 horizontally.
          */
         switch (irb->mt->num_samples) {
         case 4:
            x_scaledown = 8;
            break;
         case 8:
            x_scaledown = 2;
            break;
         default:
            assert(!"Unexpected sample count for fast clear");
            break;
         }
         y_scaledown = 2;
         x_align = x_scaledown * 2;
         y_align = y_scaledown * 2;
      }

      /* Do the alignment and scaledown. */
      x0 = ROUND_DOWN_TO(x0,  x_align) / x_scaledown;
      y0 = ROUND_DOWN_TO(y0, y_align) / y_scaledown;
      x1 = ALIGN(x1, x_align) / x_scaledown;
      y1 = ALIGN(y1, y_align) / y_scaledown;
   }
}


brw_blorp_rt_resolve_params::brw_blorp_rt_resolve_params(
      struct brw_context *brw,
      struct intel_mipmap_tree *mt)
{
   dst.set(brw, mt, 0 /* level */, 0 /* layer */, true);

   /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
    *
    *     A rectangle primitive must be scaled down by the following factors
    *     with respect to render target being resolved.
    *
    * The scaledown factors in the table that follows are related to the
    * alignment size returned by intel_get_non_msrt_mcs_alignment(), but with
    * X and Y alignment each divided by 2.
    */
   unsigned x_align, y_align;
   intel_get_non_msrt_mcs_alignment(brw, mt, &x_align, &y_align);
   unsigned x_scaledown = x_align / 2;
   unsigned y_scaledown = y_align / 2;
   x0 = y0 = 0;
   x1 = ALIGN(mt->logical_width0, x_scaledown) / x_scaledown;
   y1 = ALIGN(mt->logical_height0, y_scaledown) / y_scaledown;

   fast_clear_op = GEN7_FAST_CLEAR_OP_RESOLVE;

   /* Note: there is no need to initialize push constants because it doesn't
    * matter what data gets dispatched to the render target.  However, we must
    * ensure that the fragment shader delivers the data using the "replicated
    * color" message.
    */
   use_wm_prog = true;
   memset(&wm_prog_key, 0, sizeof(wm_prog_key));
   wm_prog_key.use_simd16_replicated_data = true;
}


uint32_t
brw_blorp_const_color_params::get_wm_prog(struct brw_context *brw,
                                          brw_blorp_prog_data **prog_data)
   const
{
   uint32_t prog_offset = 0;
   if (!brw_search_cache(&brw->cache, BRW_BLORP_CONST_COLOR_PROG,
                         &this->wm_prog_key, sizeof(this->wm_prog_key),
                         &prog_offset, prog_data)) {
      brw_blorp_const_color_program prog(brw, &this->wm_prog_key);
      GLuint program_size;
      const GLuint *program = prog.compile(brw, &program_size);
      brw_upload_cache(&brw->cache, BRW_BLORP_CONST_COLOR_PROG,
                       &this->wm_prog_key, sizeof(this->wm_prog_key),
                       program, program_size,
                       &prog.prog_data, sizeof(prog.prog_data),
                       &prog_offset, prog_data);
   }
   return prog_offset;
}

void
brw_blorp_const_color_program::alloc_regs()
{
   int reg = 0;
   this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
   this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);

   prog_data.first_curbe_grf = reg;
   clear_rgba = retype(brw_vec4_grf(reg++, 0), BRW_REGISTER_TYPE_F);
   reg += BRW_BLORP_NUM_PUSH_CONST_REGS;

   /* Make sure we didn't run out of registers */
   assert(reg <= GEN7_MRF_HACK_START);

   this->base_mrf = 2;
}

const GLuint *
brw_blorp_const_color_program::compile(struct brw_context *brw,
                                       GLuint *program_size)
{
   /* Set up prog_data */
   memset(&prog_data, 0, sizeof(prog_data));
   prog_data.persample_msaa_dispatch = false;

   alloc_regs();

   brw_set_compression_control(&func, BRW_COMPRESSION_NONE);

   struct brw_reg mrf_rt_write =
      retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_F);

   uint32_t mlen, msg_type;
   if (key->use_simd16_replicated_data) {
      /* The message payload is a single register with the low 4 floats/ints
       * filled with the constant clear color.
       */
      brw_set_mask_control(&func, BRW_MASK_DISABLE);
      brw_MOV(&func, vec4(brw_message_reg(base_mrf)), clear_rgba);
      brw_set_mask_control(&func, BRW_MASK_ENABLE);

      msg_type = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
      mlen = 1;
   } else {
      for (int i = 0; i < 4; i++) {
         /* The message payload is pairs of registers for 16 pixels each of r,
          * g, b, and a.
          */
         brw_set_compression_control(&func, BRW_COMPRESSION_COMPRESSED);
         brw_MOV(&func,
                 brw_message_reg(base_mrf + i * 2),
                 brw_vec1_grf(clear_rgba.nr, i));
         brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
      }

      msg_type = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
      mlen = 8;
   }

   /* Now write to the render target and terminate the thread */
   brw_fb_WRITE(&func,
                16 /* dispatch_width */,
                base_mrf /* msg_reg_nr */,
                mrf_rt_write /* src0 */,
                msg_type,
                BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX,
                mlen,
                0 /* response_length */,
                true /* eot */,
                false /* header present */);

   if (unlikely(INTEL_DEBUG & DEBUG_BLORP)) {
      fprintf(stderr, "Native code for BLORP clear:\n");
      brw_dump_compile(&func, stderr, 0, func.next_insn_offset);
      fprintf(stderr, "\n");
   }
   return brw_get_program(&func, program_size);
}


bool
do_single_blorp_clear(struct brw_context *brw, struct gl_framebuffer *fb,
                      struct gl_renderbuffer *rb, unsigned buf,
                      bool partial_clear, unsigned layer)
{
   struct gl_context *ctx = &brw->ctx;
   struct intel_renderbuffer *irb = intel_renderbuffer(rb);

   brw_blorp_clear_params params(brw, fb, rb, ctx->Color.ColorMask[buf],
                                 partial_clear, layer);

   bool is_fast_clear =
      (params.fast_clear_op == GEN7_FAST_CLEAR_OP_FAST_CLEAR);
   if (is_fast_clear) {
      /* Record the clear color in the miptree so that it will be
       * programmed in SURFACE_STATE by later rendering and resolve
       * operations.
       */
      uint32_t new_color_value =
         compute_fast_clear_color_bits(&ctx->Color.ClearColor);
      if (irb->mt->fast_clear_color_value != new_color_value) {
         irb->mt->fast_clear_color_value = new_color_value;
         brw->state.dirty.brw |= BRW_NEW_SURFACES;
      }

      /* If the buffer is already in INTEL_FAST_CLEAR_STATE_CLEAR, the clear
       * is redundant and can be skipped.
       */
      if (irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR)
         return true;

      /* If the MCS buffer hasn't been allocated yet, we need to allocate
       * it now.
       */
      if (!irb->mt->mcs_mt) {
         if (!intel_miptree_alloc_non_msrt_mcs(brw, irb->mt)) {
            /* MCS allocation failed--probably this will only happen in
             * out-of-memory conditions.  But in any case, try to recover
             * by falling back to a non-blorp clear technique.
             */
            return false;
         }
         brw->state.dirty.brw |= BRW_NEW_SURFACES;
      }
   }

   const char *clear_type;
   if (is_fast_clear)
      clear_type = "fast";
   else if (params.wm_prog_key.use_simd16_replicated_data)
      clear_type = "replicated";
   else
      clear_type = "slow";

   DBG("%s (%s) to mt %p level %d layer %d\n", __FUNCTION__, clear_type,
       irb->mt, irb->mt_level, irb->mt_layer);

   brw_blorp_exec(brw, &params);

   if (is_fast_clear) {
      /* Now that the fast clear has occurred, put the buffer in
       * INTEL_FAST_CLEAR_STATE_CLEAR so that we won't waste time doing
       * redundant clears.
       */
      irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
   }

   return true;
}


extern "C" {
bool
brw_blorp_clear_color(struct brw_context *brw, struct gl_framebuffer *fb,
                      GLbitfield mask, bool partial_clear)
{
   for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) {
      struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
      struct intel_renderbuffer *irb = intel_renderbuffer(rb);

      /* Only clear the buffers present in the provided mask */
      if (((1 << fb->_ColorDrawBufferIndexes[buf]) & mask) == 0)
         continue;

      /* If this is an ES2 context or GL_ARB_ES2_compatibility is supported,
       * the framebuffer can be complete with some attachments missing.  In
       * this case the _ColorDrawBuffers pointer will be NULL.
       */
      if (rb == NULL)
         continue;

      if (fb->MaxNumLayers > 0) {
         unsigned layer_multiplier =
            (irb->mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
             irb->mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) ?
            irb->mt->num_samples : 1;
         unsigned num_layers = irb->layer_count;
         for (unsigned layer = 0; layer < num_layers; layer++) {
            if (!do_single_blorp_clear(brw, fb, rb, buf, partial_clear,
                                       irb->mt_layer + layer * layer_multiplier)) {
               return false;
            }
         }
      } else {
         unsigned layer = irb->mt_layer;
         if (!do_single_blorp_clear(brw, fb, rb, buf, partial_clear, layer))
            return false;
      }

      irb->need_downsample = true;
   }

   return true;
}

void
brw_blorp_resolve_color(struct brw_context *brw, struct intel_mipmap_tree *mt)
{
   DBG("%s to mt %p\n", __FUNCTION__, mt);

   brw_blorp_rt_resolve_params params(brw, mt);
   brw_blorp_exec(brw, &params);
   mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
}

} /* extern "C" */