1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
|
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "main/teximage.h"
#include "main/fbobject.h"
#include "main/renderbuffer.h"
#include "intel_fbo.h"
#include "brw_blorp.h"
#include "brw_context.h"
#include "brw_blorp_blit_eu.h"
#include "brw_state.h"
#include "brw_meta_util.h"
#define FILE_DEBUG_FLAG DEBUG_BLORP
static struct intel_mipmap_tree *
find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
{
struct intel_mipmap_tree *mt = irb->mt;
if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
mt = mt->stencil_mt;
return mt;
}
/**
* Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using
* INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is
* the physical layer holding sample 0. So, for example, if
* src_mt->num_samples == 4, then logical layer n corresponds to src_layer ==
* 4*n.
*/
void
brw_blorp_blit_miptrees(struct brw_context *brw,
struct intel_mipmap_tree *src_mt,
unsigned src_level, unsigned src_layer,
struct intel_mipmap_tree *dst_mt,
unsigned dst_level, unsigned dst_layer,
float src_x0, float src_y0,
float src_x1, float src_y1,
float dst_x0, float dst_y0,
float dst_x1, float dst_y1,
GLenum filter, bool mirror_x, bool mirror_y)
{
/* Get ready to blit. This includes depth resolving the src and dst
* buffers if necessary. Note: it's not necessary to do a color resolve on
* the destination buffer because we use the standard render path to render
* to destination color buffers, and the standard render path is
* fast-color-aware.
*/
intel_miptree_resolve_color(brw, src_mt);
intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer);
intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer);
DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)"
"to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n",
__FUNCTION__,
src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt,
src_level, src_layer, src_x0, src_y0, src_x1, src_y1,
dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt,
dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1,
mirror_x, mirror_y);
brw_blorp_blit_params params(brw,
src_mt, src_level, src_layer,
dst_mt, dst_level, dst_layer,
src_x0, src_y0,
src_x1, src_y1,
dst_x0, dst_y0,
dst_x1, dst_y1,
filter, mirror_x, mirror_y);
brw_blorp_exec(brw, ¶ms);
intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer);
}
static void
do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit,
struct intel_renderbuffer *src_irb,
struct intel_renderbuffer *dst_irb,
GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
GLenum filter, bool mirror_x, bool mirror_y)
{
/* Find source/dst miptrees */
struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
/* Do the blit */
brw_blorp_blit_miptrees(brw,
src_mt, src_irb->mt_level, src_irb->mt_layer,
dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
srcX0, srcY0, srcX1, srcY1,
dstX0, dstY0, dstX1, dstY1,
filter, mirror_x, mirror_y);
dst_irb->need_downsample = true;
}
static bool
format_is_rgba_or_rgbx_byte(mesa_format format)
{
switch (format) {
case MESA_FORMAT_B8G8R8X8_UNORM:
case MESA_FORMAT_B8G8R8A8_UNORM:
case MESA_FORMAT_R8G8B8X8_UNORM:
case MESA_FORMAT_R8G8B8A8_UNORM:
return true;
default:
return false;
}
}
static bool
color_formats_match(mesa_format src_format, mesa_format dst_format)
{
mesa_format linear_src_format = _mesa_get_srgb_format_linear(src_format);
mesa_format linear_dst_format = _mesa_get_srgb_format_linear(dst_format);
/* Normally, we require the formats to be equal. However, we also support
* blitting from ARGB to XRGB (discarding alpha), and from XRGB to ARGB
* (overriding alpha to 1.0 via blending) as well as swizzling between BGR
* and RGB.
*/
return (linear_src_format == linear_dst_format ||
(format_is_rgba_or_rgbx_byte(linear_src_format) &&
format_is_rgba_or_rgbx_byte(linear_dst_format)));
}
static bool
formats_match(GLbitfield buffer_bit, struct intel_renderbuffer *src_irb,
struct intel_renderbuffer *dst_irb)
{
/* Note: don't just check gl_renderbuffer::Format, because in some cases
* multiple gl_formats resolve to the same native type in the miptree (for
* example MESA_FORMAT_Z24_UNORM_X8_UINT and MESA_FORMAT_Z24_UNORM_S8_UINT), and we can blit
* between those formats.
*/
mesa_format src_format = find_miptree(buffer_bit, src_irb)->format;
mesa_format dst_format = find_miptree(buffer_bit, dst_irb)->format;
return color_formats_match(src_format, dst_format);
}
static bool
try_blorp_blit(struct brw_context *brw,
GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1,
GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1,
GLenum filter, GLbitfield buffer_bit)
{
struct gl_context *ctx = &brw->ctx;
/* Sync up the state of window system buffers. We need to do this before
* we go looking for the buffers.
*/
intel_prepare_render(brw);
const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
bool mirror_x, mirror_y;
if (brw_meta_mirror_clip_and_scissor(ctx,
&srcX0, &srcY0, &srcX1, &srcY1,
&dstX0, &dstY0, &dstX1, &dstY1,
&mirror_x, &mirror_y))
return true;
/* Find buffers */
struct intel_renderbuffer *src_irb;
struct intel_renderbuffer *dst_irb;
switch (buffer_bit) {
case GL_COLOR_BUFFER_BIT:
src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
if (dst_irb && !formats_match(buffer_bit, src_irb, dst_irb))
return false;
}
for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
if (dst_irb)
do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
filter, mirror_x, mirror_y);
}
break;
case GL_DEPTH_BUFFER_BIT:
src_irb =
intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
dst_irb =
intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
if (!formats_match(buffer_bit, src_irb, dst_irb))
return false;
do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
filter, mirror_x, mirror_y);
break;
case GL_STENCIL_BUFFER_BIT:
src_irb =
intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
dst_irb =
intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
if (!formats_match(buffer_bit, src_irb, dst_irb))
return false;
do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
srcX1, srcY1, dstX0, dstY0, dstX1, dstY1,
filter, mirror_x, mirror_y);
break;
default:
unreachable("not reached");
}
return true;
}
bool
brw_blorp_copytexsubimage(struct brw_context *brw,
struct gl_renderbuffer *src_rb,
struct gl_texture_image *dst_image,
int slice,
int srcX0, int srcY0,
int dstX0, int dstY0,
int width, int height)
{
struct gl_context *ctx = &brw->ctx;
struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb);
struct intel_texture_image *intel_image = intel_texture_image(dst_image);
/* Sync up the state of window system buffers. We need to do this before
* we go looking at the src renderbuffer's miptree.
*/
intel_prepare_render(brw);
struct intel_mipmap_tree *src_mt = src_irb->mt;
struct intel_mipmap_tree *dst_mt = intel_image->mt;
/* BLORP is not supported before Gen6. */
if (brw->gen < 6 || brw->gen >= 8)
return false;
if (_mesa_get_format_base_format(src_mt->format) !=
_mesa_get_format_base_format(dst_mt->format)) {
return false;
}
/* We can't handle format conversions between Z24 and other formats since
* we have to lie about the surface format. See the comments in
* brw_blorp_surface_info::set().
*/
if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) !=
(dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) {
return false;
}
if (!brw->format_supported_as_render_target[dst_mt->format])
return false;
/* Source clipping shouldn't be necessary, since copytexsubimage (in
* src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which
* takes care of it.
*
* Destination clipping shouldn't be necessary since the restrictions on
* glCopyTexSubImage prevent the user from specifying a destination rectangle
* that falls outside the bounds of the destination texture.
* See error_check_subtexture_dimensions().
*/
int srcY1 = srcY0 + height;
int srcX1 = srcX0 + width;
int dstX1 = dstX0 + width;
int dstY1 = dstY0 + height;
/* Account for the fact that in the system framebuffer, the origin is at
* the lower left.
*/
bool mirror_y = false;
if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
GLint tmp = src_rb->Height - srcY0;
srcY0 = src_rb->Height - srcY1;
srcY1 = tmp;
mirror_y = true;
}
/* Account for face selection and texture view MinLayer */
int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face;
int dst_level = dst_image->Level + dst_image->TexObject->MinLevel;
brw_blorp_blit_miptrees(brw,
src_mt, src_irb->mt_level, src_irb->mt_layer,
dst_mt, dst_level, dst_slice,
srcX0, srcY0, srcX1, srcY1,
dstX0, dstY0, dstX1, dstY1,
GL_NEAREST, false, mirror_y);
/* If we're copying to a packed depth stencil texture and the source
* framebuffer has separate stencil, we need to also copy the stencil data
* over.
*/
src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer;
if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 &&
src_rb != NULL) {
src_irb = intel_renderbuffer(src_rb);
src_mt = src_irb->mt;
if (src_mt->stencil_mt)
src_mt = src_mt->stencil_mt;
if (dst_mt->stencil_mt)
dst_mt = dst_mt->stencil_mt;
if (src_mt != dst_mt) {
brw_blorp_blit_miptrees(brw,
src_mt, src_irb->mt_level, src_irb->mt_layer,
dst_mt, dst_level, dst_slice,
srcX0, srcY0, srcX1, srcY1,
dstX0, dstY0, dstX1, dstY1,
GL_NEAREST, false, mirror_y);
}
}
return true;
}
GLbitfield
brw_blorp_framebuffer(struct brw_context *brw,
GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
GLbitfield mask, GLenum filter)
{
/* BLORP is not supported before Gen6. */
if (brw->gen < 6 || brw->gen >= 8)
return mask;
static GLbitfield buffer_bits[] = {
GL_COLOR_BUFFER_BIT,
GL_DEPTH_BUFFER_BIT,
GL_STENCIL_BUFFER_BIT,
};
for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
if ((mask & buffer_bits[i]) &&
try_blorp_blit(brw,
srcX0, srcY0, srcX1, srcY1,
dstX0, dstY0, dstX1, dstY1,
filter, buffer_bits[i])) {
mask &= ~buffer_bits[i];
}
}
return mask;
}
/**
* Enum to specify the order of arguments in a sampler message
*/
enum sampler_message_arg
{
SAMPLER_MESSAGE_ARG_U_FLOAT,
SAMPLER_MESSAGE_ARG_V_FLOAT,
SAMPLER_MESSAGE_ARG_U_INT,
SAMPLER_MESSAGE_ARG_V_INT,
SAMPLER_MESSAGE_ARG_SI_INT,
SAMPLER_MESSAGE_ARG_MCS_INT,
SAMPLER_MESSAGE_ARG_ZERO_INT,
};
/**
* Generator for WM programs used in BLORP blits.
*
* The bulk of the work done by the WM program is to wrap and unwrap the
* coordinate transformations used by the hardware to store surfaces in
* memory. The hardware transforms a pixel location (X, Y, S) (where S is the
* sample index for a multisampled surface) to a memory offset by the
* following formulas:
*
* offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
* (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
*
* For a single-sampled surface, or for a multisampled surface using
* INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
* function:
*
* encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
* decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
* encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
* decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
*
* For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
* embeds the sample number into bit 1 of the X and Y coordinates:
*
* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
* Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b11) >> 1 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (Y & 0b10) | (X & 0b10) >> 1
*
* For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
* embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
* the Y coordinate:
*
* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b111) >> 2 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
*
* For X tiling, tile() combines together the low-order bits of the X and Y
* coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
* bytes wide and 8 rows high:
*
* tile(x_tiled, X, Y, S) = A
* where A = tile_num << 12 | offset
* tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
* offset = (Y' & 0b111) << 9
* | (X & 0b111111111)
* X' = X * cpp
* Y' = Y + S * qpitch
* detile(x_tiled, A) = (X, Y, S)
* where X = X' / cpp
* Y = Y' % qpitch
* S = Y' / qpitch
* Y' = (tile_num / tile_pitch) << 3
* | (A & 0b111000000000) >> 9
* X' = (tile_num % tile_pitch) << 9
* | (A & 0b111111111)
*
* (In all tiling formulas, cpp is the number of bytes occupied by a single
* sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
* to fill the width of the surface, and qpitch is the spacing (in rows)
* between array slices).
*
* For Y tiling, tile() combines together the low-order bits of the X and Y
* coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
* bytes wide and 32 rows high:
*
* tile(y_tiled, X, Y, S) = A
* where A = tile_num << 12 | offset
* tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
* offset = (X' & 0b1110000) << 5
* | (Y' & 0b11111) << 4
* | (X' & 0b1111)
* X' = X * cpp
* Y' = Y + S * qpitch
* detile(y_tiled, A) = (X, Y, S)
* where X = X' / cpp
* Y = Y' % qpitch
* S = Y' / qpitch
* Y' = (tile_num / tile_pitch) << 5
* | (A & 0b111110000) >> 4
* X' = (tile_num % tile_pitch) << 7
* | (A & 0b111000000000) >> 5
* | (A & 0b1111)
*
* For W tiling, tile() combines together the low-order bits of the X and Y
* coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
* bytes wide and 64 rows high (note that W tiling is only used for stencil
* buffers, which always have cpp = 1 and S=0):
*
* tile(w_tiled, X, Y, S) = A
* where A = tile_num << 12 | offset
* tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
* offset = (X' & 0b111000) << 6
* | (Y' & 0b111100) << 3
* | (X' & 0b100) << 2
* | (Y' & 0b10) << 2
* | (X' & 0b10) << 1
* | (Y' & 0b1) << 1
* | (X' & 0b1)
* X' = X * cpp = X
* Y' = Y + S * qpitch
* detile(w_tiled, A) = (X, Y, S)
* where X = X' / cpp = X'
* Y = Y' % qpitch = Y'
* S = Y / qpitch = 0
* Y' = (tile_num / tile_pitch) << 6
* | (A & 0b111100000) >> 3
* | (A & 0b1000) >> 2
* | (A & 0b10) >> 1
* X' = (tile_num % tile_pitch) << 6
* | (A & 0b111000000000) >> 6
* | (A & 0b10000) >> 2
* | (A & 0b100) >> 1
* | (A & 0b1)
*
* Finally, for a non-tiled surface, tile() simply combines together the X and
* Y coordinates in the natural way:
*
* tile(untiled, X, Y, S) = A
* where A = Y * pitch + X'
* X' = X * cpp
* Y' = Y + S * qpitch
* detile(untiled, A) = (X, Y, S)
* where X = X' / cpp
* Y = Y' % qpitch
* S = Y' / qpitch
* X' = A % pitch
* Y' = A / pitch
*
* (In these formulas, pitch is the number of bytes occupied by a single row
* of samples).
*/
class brw_blorp_blit_program : public brw_blorp_eu_emitter
{
public:
brw_blorp_blit_program(struct brw_context *brw,
const brw_blorp_blit_prog_key *key, bool debug_flag);
const GLuint *compile(struct brw_context *brw, GLuint *program_size);
brw_blorp_prog_data prog_data;
private:
void alloc_regs();
void alloc_push_const_regs(int base_reg);
void compute_frag_coords();
void translate_tiling(bool old_tiled_w, bool new_tiled_w);
void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
void translate_dst_to_src();
void clamp_tex_coords(struct brw_reg regX, struct brw_reg regY,
struct brw_reg clampX0, struct brw_reg clampY0,
struct brw_reg clampX1, struct brw_reg clampY1);
void single_to_blend();
void manual_blend_average(unsigned num_samples);
void manual_blend_bilinear(unsigned num_samples);
void sample(struct brw_reg dst);
void texel_fetch(struct brw_reg dst);
void mcs_fetch();
void texture_lookup(struct brw_reg dst, enum opcode op,
const sampler_message_arg *args, int num_args);
void render_target_write();
/**
* Base-2 logarithm of the maximum number of samples that can be blended.
*/
static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
struct brw_context *brw;
const brw_blorp_blit_prog_key *key;
/* Thread dispatch header */
struct brw_reg R0;
/* Pixel X/Y coordinates (always in R1). */
struct brw_reg R1;
/* Push constants */
struct brw_reg dst_x0;
struct brw_reg dst_x1;
struct brw_reg dst_y0;
struct brw_reg dst_y1;
/* Top right coordinates of the rectangular grid used for scaled blitting */
struct brw_reg rect_grid_x1;
struct brw_reg rect_grid_y1;
struct {
struct brw_reg multiplier;
struct brw_reg offset;
} x_transform, y_transform;
/* Data read from texture (4 vec16's per array element) */
struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
/* Auxiliary storage for the contents of the MCS surface.
*
* Since the sampler always returns 8 registers worth of data, this is 8
* registers wide, even though we only use the first 2 registers of it.
*/
struct brw_reg mcs_data;
/* X coordinates. We have two of them so that we can perform coordinate
* transformations easily.
*/
struct brw_reg x_coords[2];
/* Y coordinates. We have two of them so that we can perform coordinate
* transformations easily.
*/
struct brw_reg y_coords[2];
/* X, Y coordinates of the pixel from which we need to fetch the specific
* sample. These are used for multisample scaled blitting.
*/
struct brw_reg x_sample_coords;
struct brw_reg y_sample_coords;
/* Fractional parts of the x and y coordinates, used as bilinear interpolation coefficients */
struct brw_reg x_frac;
struct brw_reg y_frac;
/* Which element of x_coords and y_coords is currently in use.
*/
int xy_coord_index;
/* True if, at the point in the program currently being compiled, the
* sample index is known to be zero.
*/
bool s_is_zero;
/* Register storing the sample index when s_is_zero is false. */
struct brw_reg sample_index;
/* Temporaries */
struct brw_reg t1;
struct brw_reg t2;
/* MRF used for sampling and render target writes */
GLuint base_mrf;
};
brw_blorp_blit_program::brw_blorp_blit_program(
struct brw_context *brw,
const brw_blorp_blit_prog_key *key,
bool debug_flag)
: brw_blorp_eu_emitter(brw, debug_flag),
brw(brw),
key(key)
{
}
const GLuint *
brw_blorp_blit_program::compile(struct brw_context *brw,
GLuint *program_size)
{
/* Sanity checks */
if (key->dst_tiled_w && key->rt_samples > 0) {
/* If the destination image is W tiled and multisampled, then the thread
* must be dispatched once per sample, not once per pixel. This is
* necessary because after conversion between W and Y tiling, there's no
* guarantee that all samples corresponding to a single pixel will still
* be together.
*/
assert(key->persample_msaa_dispatch);
}
if (key->blend) {
/* We are blending, which means we won't have an opportunity to
* translate the tiling and sample count for the texture surface. So
* the surface state for the texture must be configured with the correct
* tiling and sample count.
*/
assert(!key->src_tiled_w);
assert(key->tex_samples == key->src_samples);
assert(key->tex_layout == key->src_layout);
assert(key->tex_samples > 0);
}
if (key->persample_msaa_dispatch) {
/* It only makes sense to do persample dispatch if the render target is
* configured as multisampled.
*/
assert(key->rt_samples > 0);
}
/* Make sure layout is consistent with sample count */
assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
(key->tex_samples == 0));
assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
(key->rt_samples == 0));
assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
(key->src_samples == 0));
assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
(key->dst_samples == 0));
/* Set up prog_data */
memset(&prog_data, 0, sizeof(prog_data));
prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
alloc_regs();
compute_frag_coords();
/* Render target and texture hardware don't support W tiling. */
const bool rt_tiled_w = false;
const bool tex_tiled_w = false;
/* The address that data will be written to is determined by the
* coordinates supplied to the WM thread and the tiling and sample count of
* the render target, according to the formula:
*
* (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
*
* If the actual tiling and sample count of the destination surface are not
* the same as the configuration of the render target, then these
* coordinates are wrong and we have to adjust them to compensate for the
* difference.
*/
if (rt_tiled_w != key->dst_tiled_w ||
key->rt_samples != key->dst_samples ||
key->rt_layout != key->dst_layout) {
encode_msaa(key->rt_samples, key->rt_layout);
/* Now (X, Y, S) = detile(rt_tiling, offset) */
translate_tiling(rt_tiled_w, key->dst_tiled_w);
/* Now (X, Y, S) = detile(dst_tiling, offset) */
decode_msaa(key->dst_samples, key->dst_layout);
}
/* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
*
* That is: X, Y and S now contain the true coordinates and sample index of
* the data that the WM thread should output.
*
* If we need to kill pixels that are outside the destination rectangle,
* now is the time to do it.
*/
if (key->use_kill)
emit_kill_if_outside_rect(x_coords[xy_coord_index],
y_coords[xy_coord_index],
dst_x0, dst_x1, dst_y0, dst_y1);
/* Next, apply a translation to obtain coordinates in the source image. */
translate_dst_to_src();
/* If the source image is not multisampled, then we want to fetch sample
* number 0, because that's the only sample there is.
*/
if (key->src_samples == 0)
s_is_zero = true;
/* X, Y, and S are now the coordinates of the pixel in the source image
* that we want to texture from. Exception: if we are blending, then S is
* irrelevant, because we are going to fetch all samples.
*/
if (key->blend && !key->blit_scaled) {
if (brw->gen == 6) {
/* Gen6 hardware an automatically blend using the SAMPLE message */
single_to_blend();
sample(texture_data[0]);
} else {
/* Gen7+ hardware doesn't automaticaly blend. */
manual_blend_average(key->src_samples);
}
} else if(key->blend && key->blit_scaled) {
manual_blend_bilinear(key->src_samples);
} else {
/* We aren't blending, which means we just want to fetch a single sample
* from the source surface. The address that we want to fetch from is
* related to the X, Y and S values according to the formula:
*
* (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
*
* If the actual tiling and sample count of the source surface are not
* the same as the configuration of the texture, then we need to adjust
* the coordinates to compensate for the difference.
*/
if ((tex_tiled_w != key->src_tiled_w ||
key->tex_samples != key->src_samples ||
key->tex_layout != key->src_layout) &&
!key->bilinear_filter) {
encode_msaa(key->src_samples, key->src_layout);
/* Now (X, Y, S) = detile(src_tiling, offset) */
translate_tiling(key->src_tiled_w, tex_tiled_w);
/* Now (X, Y, S) = detile(tex_tiling, offset) */
decode_msaa(key->tex_samples, key->tex_layout);
}
if (key->bilinear_filter) {
sample(texture_data[0]);
}
else {
/* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
*
* In other words: X, Y, and S now contain values which, when passed to
* the texturing unit, will cause data to be read from the correct
* memory location. So we can fetch the texel now.
*/
if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
mcs_fetch();
texel_fetch(texture_data[0]);
}
}
/* Finally, write the fetched (or blended) value to the render target and
* terminate the thread.
*/
render_target_write();
return get_program(program_size);
}
void
brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
{
#define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
#define ALLOC_REG(name, type) \
this->name = \
retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, \
base_reg + CONST_LOC(name) / 32, \
(CONST_LOC(name) % 32) / 4), type)
ALLOC_REG(dst_x0, BRW_REGISTER_TYPE_UD);
ALLOC_REG(dst_x1, BRW_REGISTER_TYPE_UD);
ALLOC_REG(dst_y0, BRW_REGISTER_TYPE_UD);
ALLOC_REG(dst_y1, BRW_REGISTER_TYPE_UD);
ALLOC_REG(rect_grid_x1, BRW_REGISTER_TYPE_F);
ALLOC_REG(rect_grid_y1, BRW_REGISTER_TYPE_F);
ALLOC_REG(x_transform.multiplier, BRW_REGISTER_TYPE_F);
ALLOC_REG(x_transform.offset, BRW_REGISTER_TYPE_F);
ALLOC_REG(y_transform.multiplier, BRW_REGISTER_TYPE_F);
ALLOC_REG(y_transform.offset, BRW_REGISTER_TYPE_F);
#undef CONST_LOC
#undef ALLOC_REG
}
void
brw_blorp_blit_program::alloc_regs()
{
int reg = 0;
this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
prog_data.first_curbe_grf = reg;
alloc_push_const_regs(reg);
reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
this->texture_data[i] =
retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
reg += 8;
}
this->mcs_data =
retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
for (int i = 0; i < 2; ++i) {
this->x_coords[i]
= retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
reg += 2;
this->y_coords[i]
= retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
reg += 2;
}
if (key->blit_scaled && key->blend) {
this->x_sample_coords = brw_vec8_grf(reg, 0);
reg += 2;
this->y_sample_coords = brw_vec8_grf(reg, 0);
reg += 2;
this->x_frac = brw_vec8_grf(reg, 0);
reg += 2;
this->y_frac = brw_vec8_grf(reg, 0);
reg += 2;
}
this->xy_coord_index = 0;
this->sample_index
= retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
reg += 2;
this->t1 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
reg += 2;
this->t2 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
reg += 2;
/* Make sure we didn't run out of registers */
assert(reg <= GEN7_MRF_HACK_START);
int mrf = 2;
this->base_mrf = mrf;
}
/* In the code that follows, X and Y can be used to quickly refer to the
* active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
* prime") to the inactive elements.
*
* S can be used to quickly refer to sample_index.
*/
#define X x_coords[xy_coord_index]
#define Y y_coords[xy_coord_index]
#define Xp x_coords[!xy_coord_index]
#define Yp y_coords[!xy_coord_index]
#define S sample_index
/* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
* MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
*/
#define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
/**
* Emit code to compute the X and Y coordinates of the pixels being rendered
* by this WM invocation.
*
* Assuming the render target is set up for Y tiling, these (X, Y) values are
* related to the address offset where outputs will be written by the formula:
*
* (X, Y, S) = decode_msaa(detile(offset)).
*
* (See brw_blorp_blit_program).
*/
void
brw_blorp_blit_program::compute_frag_coords()
{
/* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
* R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
* R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
* R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
*
* Pixels within a subspan are laid out in this arrangement:
* 0 1
* 2 3
*
* So, to compute the coordinates of each pixel, we need to read every 2nd
* 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
* (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
* In other words, the data we want to access is R1.4<2;4,0>UW.
*
* Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
* result, since pixels n+1 and n+3 are in the right half of the subspan.
*/
emit_add(vec16(retype(X, BRW_REGISTER_TYPE_UW)),
stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
/* Similarly, Y coordinates for subspans come from R1.2[31:16] through
* R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
* 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
* R1.4<2;4,0>UW).
*
* And we need to add the repeating sequence (0, 0, 1, 1, ...), since
* pixels n+2 and n+3 are in the bottom half of the subspan.
*/
emit_add(vec16(retype(Y, BRW_REGISTER_TYPE_UW)),
stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
/* Move the coordinates to UD registers. */
emit_mov(vec16(Xp), retype(X, BRW_REGISTER_TYPE_UW));
emit_mov(vec16(Yp), retype(Y, BRW_REGISTER_TYPE_UW));
SWAP_XY_AND_XPYP();
if (key->persample_msaa_dispatch) {
switch (key->rt_samples) {
case 4: {
/* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
* Therefore, subspan 0 will represent sample 0, subspan 1 will
* represent sample 1, and so on.
*
* So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
* 1, 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to
* populate a temporary variable with the sequence (0, 1, 2, 3), and
* then copy from it using vstride=1, width=4, hstride=0.
*/
struct brw_reg t1_uw1 = retype(t1, BRW_REGISTER_TYPE_UW);
emit_mov(vec16(t1_uw1), brw_imm_v(0x3210));
/* Move to UD sample_index register. */
emit_mov_8(S, stride(t1_uw1, 1, 4, 0));
emit_mov_8(offset(S, 1), suboffset(stride(t1_uw1, 1, 4, 0), 2));
break;
}
case 8: {
/* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
* Therefore, subspan 0 will represent sample N (where N is 0 or 4),
* subspan 1 will represent sample 1, and so on. We can find the
* value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
* Index") and multiplying by two (since samples are always delivered
* in pairs). That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
* 0xc0) >> 5.
*
* Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
* 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
* variable with the sequence (0, 1, 2, 3), and then reading from it
* using vstride=1, width=4, hstride=0.
*/
struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
struct brw_reg t2_uw1 = retype(t2, BRW_REGISTER_TYPE_UW);
struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
emit_and(t1_ud1, r0_ud1, brw_imm_ud(0xc0));
emit_shr(t1_ud1, t1_ud1, brw_imm_ud(5));
emit_mov(vec16(t2_uw1), brw_imm_v(0x3210));
emit_add(vec16(S), retype(t1_ud1, BRW_REGISTER_TYPE_UW),
stride(t2_uw1, 1, 4, 0));
emit_add_8(offset(S, 1),
retype(t1_ud1, BRW_REGISTER_TYPE_UW),
suboffset(stride(t2_uw1, 1, 4, 0), 2));
break;
}
default:
unreachable("Unrecognized sample count in "
"brw_blorp_blit_program::compute_frag_coords()");
}
s_is_zero = false;
} else {
/* Either the destination surface is single-sampled, or the WM will be
* run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
* per pixel). In either case, it's not meaningful to compute a sample
* value. Just set it to 0.
*/
s_is_zero = true;
}
}
/**
* Emit code to compensate for the difference between Y and W tiling.
*
* This code modifies the X and Y coordinates according to the formula:
*
* (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
*
* (See brw_blorp_blit_program).
*
* It can only translate between W and Y tiling, so new_tiling and old_tiling
* are booleans where true represents W tiling and false represents Y tiling.
*/
void
brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
{
if (old_tiled_w == new_tiled_w)
return;
/* In the code that follows, we can safely assume that S = 0, because W
* tiling formats always use IMS layout.
*/
assert(s_is_zero);
if (new_tiled_w) {
/* Given X and Y coordinates that describe an address using Y tiling,
* translate to the X and Y coordinates that describe the same address
* using W tiling.
*
* If we break down the low order bits of X and Y, using a
* single letter to represent each low-order bit:
*
* X = A << 7 | 0bBCDEFGH
* Y = J << 5 | 0bKLMNP (1)
*
* Then we can apply the Y tiling formula to see the memory offset being
* addressed:
*
* offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
*
* If we apply the W detiling formula to this memory location, that the
* corresponding X' and Y' coordinates are:
*
* X' = A << 6 | 0bBCDPFH (3)
* Y' = J << 6 | 0bKLMNEG
*
* Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
* we need to make the following computation:
*
* X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
* Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
*/
emit_and(t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
emit_or(t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
emit_or(Xp, t1, t2);
emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
emit_and(t2, X, brw_imm_uw(8)); /* X & 0b1000 */
emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
emit_or(Yp, t1, t2);
SWAP_XY_AND_XPYP();
} else {
/* Applying the same logic as above, but in reverse, we obtain the
* formulas:
*
* X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
* Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
*/
emit_and(t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
emit_shl(t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
| (Y & 0b1) << 1 */
emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
emit_or(Xp, t1, t2);
emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
emit_and(t2, X, brw_imm_uw(4)); /* X & 0b100 */
emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
emit_or(Yp, t1, t2);
SWAP_XY_AND_XPYP();
}
}
/**
* Emit code to compensate for the difference between MSAA and non-MSAA
* surfaces.
*
* This code modifies the X and Y coordinates according to the formula:
*
* (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
*
* (See brw_blorp_blit_program).
*/
void
brw_blorp_blit_program::encode_msaa(unsigned num_samples,
intel_msaa_layout layout)
{
switch (layout) {
case INTEL_MSAA_LAYOUT_NONE:
/* No translation necessary, and S should already be zero. */
assert(s_is_zero);
break;
case INTEL_MSAA_LAYOUT_CMS:
/* We can't compensate for compressed layout since at this point in the
* program we haven't read from the MCS buffer.
*/
unreachable("Bad layout in encode_msaa");
case INTEL_MSAA_LAYOUT_UMS:
/* No translation necessary. */
break;
case INTEL_MSAA_LAYOUT_IMS:
switch (num_samples) {
case 4:
/* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
*/
emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
if (!s_is_zero) {
emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
emit_or(t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
}
emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
| (S & 0b1) << 1 */
emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
emit_or(Xp, t1, t2);
emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
if (!s_is_zero) {
emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
}
emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
emit_or(Yp, t1, t2);
break;
case 8:
/* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
* | (X & 0b1)
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
*/
emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
emit_shl(t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
if (!s_is_zero) {
emit_and(t2, S, brw_imm_uw(4)); /* S & 0b100 */
emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
emit_shl(t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
| (S & 0b1) << 1 */
}
emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
emit_or(Xp, t1, t2);
emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
if (!s_is_zero) {
emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
}
emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
emit_or(Yp, t1, t2);
break;
}
SWAP_XY_AND_XPYP();
s_is_zero = true;
break;
}
}
/**
* Emit code to compensate for the difference between MSAA and non-MSAA
* surfaces.
*
* This code modifies the X and Y coordinates according to the formula:
*
* (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
*
* (See brw_blorp_blit_program).
*/
void
brw_blorp_blit_program::decode_msaa(unsigned num_samples,
intel_msaa_layout layout)
{
switch (layout) {
case INTEL_MSAA_LAYOUT_NONE:
/* No translation necessary, and S should already be zero. */
assert(s_is_zero);
break;
case INTEL_MSAA_LAYOUT_CMS:
/* We can't compensate for compressed layout since at this point in the
* program we don't have access to the MCS buffer.
*/
unreachable("Bad layout in encode_msaa");
case INTEL_MSAA_LAYOUT_UMS:
/* No translation necessary. */
break;
case INTEL_MSAA_LAYOUT_IMS:
assert(s_is_zero);
switch (num_samples) {
case 4:
/* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b11) >> 1 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (Y & 0b10) | (X & 0b10) >> 1
*/
emit_and(t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
emit_or(Xp, t1, t2);
emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
emit_or(Yp, t1, t2);
emit_and(t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
emit_or(S, t1, t2);
break;
case 8:
/* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b111) >> 2 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
*/
emit_and(t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
emit_shr(t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
emit_or(Xp, t1, t2);
emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
emit_or(Yp, t1, t2);
emit_and(t1, X, brw_imm_uw(4)); /* X & 0b100 */
emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
emit_or(t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
emit_or(S, t1, t2);
break;
}
s_is_zero = false;
SWAP_XY_AND_XPYP();
break;
}
}
/**
* Emit code to translate from destination (X, Y) coordinates to source (X, Y)
* coordinates.
*/
void
brw_blorp_blit_program::translate_dst_to_src()
{
struct brw_reg X_f = retype(X, BRW_REGISTER_TYPE_F);
struct brw_reg Y_f = retype(Y, BRW_REGISTER_TYPE_F);
struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
/* Move the UD coordinates to float registers. */
emit_mov(Xp_f, X);
emit_mov(Yp_f, Y);
/* Scale and offset */
emit_mul(X_f, Xp_f, x_transform.multiplier);
emit_mul(Y_f, Yp_f, y_transform.multiplier);
emit_add(X_f, X_f, x_transform.offset);
emit_add(Y_f, Y_f, y_transform.offset);
if (key->blit_scaled && key->blend) {
/* Translate coordinates to lay out the samples in a rectangular grid
* roughly corresponding to sample locations.
*/
emit_mul(X_f, X_f, brw_imm_f(key->x_scale));
emit_mul(Y_f, Y_f, brw_imm_f(key->y_scale));
/* Adjust coordinates so that integers represent pixel centers rather
* than pixel edges.
*/
emit_add(X_f, X_f, brw_imm_f(-0.5));
emit_add(Y_f, Y_f, brw_imm_f(-0.5));
/* Clamp the X, Y texture coordinates to properly handle the sampling of
* texels on texture edges.
*/
clamp_tex_coords(X_f, Y_f,
brw_imm_f(0.0), brw_imm_f(0.0),
rect_grid_x1, rect_grid_y1);
/* Store the fractional parts to be used as bilinear interpolation
* coefficients.
*/
emit_frc(x_frac, X_f);
emit_frc(y_frac, Y_f);
/* Round the float coordinates down to nearest integer */
emit_rndd(Xp_f, X_f);
emit_rndd(Yp_f, Y_f);
emit_mul(X_f, Xp_f, brw_imm_f(1 / key->x_scale));
emit_mul(Y_f, Yp_f, brw_imm_f(1 / key->y_scale));
SWAP_XY_AND_XPYP();
} else if (!key->bilinear_filter) {
/* Round the float coordinates down to nearest integer by moving to
* UD registers.
*/
emit_mov(Xp, X_f);
emit_mov(Yp, Y_f);
SWAP_XY_AND_XPYP();
}
}
void
brw_blorp_blit_program::clamp_tex_coords(struct brw_reg regX,
struct brw_reg regY,
struct brw_reg clampX0,
struct brw_reg clampY0,
struct brw_reg clampX1,
struct brw_reg clampY1)
{
emit_cond_mov(regX, clampX0, BRW_CONDITIONAL_L, regX, clampX0);
emit_cond_mov(regX, clampX1, BRW_CONDITIONAL_G, regX, clampX1);
emit_cond_mov(regY, clampY0, BRW_CONDITIONAL_L, regY, clampY0);
emit_cond_mov(regY, clampY1, BRW_CONDITIONAL_G, regY, clampY1);
}
/**
* Emit code to transform the X and Y coordinates as needed for blending
* together the different samples in an MSAA texture.
*/
void
brw_blorp_blit_program::single_to_blend()
{
/* When looking up samples in an MSAA texture using the SAMPLE message,
* Gen6 requires the texture coordinates to be odd integers (so that they
* correspond to the center of a 2x2 block representing the four samples
* that maxe up a pixel). So we need to multiply our X and Y coordinates
* each by 2 and then add 1.
*/
emit_shl(t1, X, brw_imm_w(1));
emit_shl(t2, Y, brw_imm_w(1));
emit_add(Xp, t1, brw_imm_w(1));
emit_add(Yp, t2, brw_imm_w(1));
SWAP_XY_AND_XPYP();
}
/**
* Count the number of trailing 1 bits in the given value. For example:
*
* count_trailing_one_bits(0) == 0
* count_trailing_one_bits(7) == 3
* count_trailing_one_bits(11) == 2
*/
inline int count_trailing_one_bits(unsigned value)
{
#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
return __builtin_ctz(~value);
#else
return _mesa_bitcount(value & ~(value + 1));
#endif
}
void
brw_blorp_blit_program::manual_blend_average(unsigned num_samples)
{
if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
mcs_fetch();
/* We add together samples using a binary tree structure, e.g. for 4x MSAA:
*
* result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
*
* This ensures that when all samples have the same value, no numerical
* precision is lost, since each addition operation always adds two equal
* values, and summing two equal floating point values does not lose
* precision.
*
* We perform this computation by treating the texture_data array as a
* stack and performing the following operations:
*
* - push sample 0 onto stack
* - push sample 1 onto stack
* - add top two stack entries
* - push sample 2 onto stack
* - push sample 3 onto stack
* - add top two stack entries
* - add top two stack entries
* - divide top stack entry by 4
*
* Note that after pushing sample i onto the stack, the number of add
* operations we do is equal to the number of trailing 1 bits in i. This
* works provided the total number of samples is a power of two, which it
* always is for i965.
*
* For integer formats, we replace the add operations with average
* operations and skip the final division.
*/
unsigned stack_depth = 0;
for (unsigned i = 0; i < num_samples; ++i) {
assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
/* Push sample i onto the stack */
assert(stack_depth < ARRAY_SIZE(texture_data));
if (i == 0) {
s_is_zero = true;
} else {
s_is_zero = false;
emit_mov(vec16(S), brw_imm_ud(i));
}
texel_fetch(texture_data[stack_depth++]);
if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
/* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
* suggests an optimization:
*
* "A simple optimization with probable large return in
* performance is to compare the MCS value to zero (indicating
* all samples are on sample slice 0), and sample only from
* sample slice 0 using ld2dss if MCS is zero."
*
* Note that in the case where the MCS value is zero, sampling from
* sample slice 0 using ld2dss and sampling from sample 0 using
* ld2dms are equivalent (since all samples are on sample slice 0).
* Since we have already sampled from sample 0, all we need to do is
* skip the remaining fetches and averaging if MCS is zero.
*/
emit_cmp_if(BRW_CONDITIONAL_NZ, mcs_data, brw_imm_ud(0));
}
/* Do count_trailing_one_bits(i) times */
for (int j = count_trailing_one_bits(i); j-- > 0; ) {
assert(stack_depth >= 2);
--stack_depth;
/* TODO: should use a smaller loop bound for non_RGBA formats */
for (int k = 0; k < 4; ++k) {
emit_combine(key->texture_data_type == BRW_REGISTER_TYPE_F ?
BRW_OPCODE_ADD : BRW_OPCODE_AVG,
offset(texture_data[stack_depth - 1], 2*k),
offset(vec8(texture_data[stack_depth - 1]), 2*k),
offset(vec8(texture_data[stack_depth]), 2*k));
}
}
}
/* We should have just 1 sample on the stack now. */
assert(stack_depth == 1);
if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
/* Scale the result down by a factor of num_samples */
/* TODO: should use a smaller loop bound for non-RGBA formats */
for (int j = 0; j < 4; ++j) {
emit_mul(offset(texture_data[0], 2*j),
offset(vec8(texture_data[0]), 2*j),
brw_imm_f(1.0/num_samples));
}
}
if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
emit_endif();
}
void
brw_blorp_blit_program::manual_blend_bilinear(unsigned num_samples)
{
/* We do this computation by performing the following operations:
*
* In case of 4x, 8x MSAA:
* - Compute the pixel coordinates and sample numbers (a, b, c, d)
* which are later used for interpolation
* - linearly interpolate samples a and b in X
* - linearly interpolate samples c and d in X
* - linearly interpolate the results of last two operations in Y
*
* result = lrp(lrp(a + b) + lrp(c + d))
*/
struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
struct brw_reg t1_f = retype(t1, BRW_REGISTER_TYPE_F);
struct brw_reg t2_f = retype(t2, BRW_REGISTER_TYPE_F);
for (unsigned i = 0; i < 4; ++i) {
assert(i < ARRAY_SIZE(texture_data));
s_is_zero = false;
/* Compute pixel coordinates */
emit_add(vec16(x_sample_coords), Xp_f,
brw_imm_f((float)(i & 0x1) * (1.0 / key->x_scale)));
emit_add(vec16(y_sample_coords), Yp_f,
brw_imm_f((float)((i >> 1) & 0x1) * (1.0 / key->y_scale)));
emit_mov(vec16(X), x_sample_coords);
emit_mov(vec16(Y), y_sample_coords);
/* The MCS value we fetch has to match up with the pixel that we're
* sampling from. Since we sample from different pixels in each
* iteration of this "for" loop, the call to mcs_fetch() should be
* here inside the loop after computing the pixel coordinates.
*/
if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
mcs_fetch();
/* Compute sample index and map the sample index to a sample number.
* Sample index layout shows the numbering of slots in a rectangular
* grid of samples with in a pixel. Sample number layout shows the
* rectangular grid of samples roughly corresponding to the real sample
* locations with in a pixel.
* In case of 4x MSAA, layout of sample indices matches the layout of
* sample numbers:
* ---------
* | 0 | 1 |
* ---------
* | 2 | 3 |
* ---------
*
* In case of 8x MSAA the two layouts don't match.
* sample index layout : --------- sample number layout : ---------
* | 0 | 1 | | 5 | 2 |
* --------- ---------
* | 2 | 3 | | 4 | 6 |
* --------- ---------
* | 4 | 5 | | 0 | 3 |
* --------- ---------
* | 6 | 7 | | 7 | 1 |
* --------- ---------
*/
emit_frc(vec16(t1_f), x_sample_coords);
emit_frc(vec16(t2_f), y_sample_coords);
emit_mul(vec16(t1_f), t1_f, brw_imm_f(key->x_scale));
emit_mul(vec16(t2_f), t2_f, brw_imm_f(key->x_scale * key->y_scale));
emit_add(vec16(t1_f), t1_f, t2_f);
emit_mov(vec16(S), t1_f);
if (num_samples == 8) {
/* Map the sample index to a sample number */
emit_cmp_if(BRW_CONDITIONAL_L, S, brw_imm_d(4));
{
emit_mov(vec16(t2), brw_imm_d(5));
emit_if_eq_mov(S, 1, vec16(t2), 2);
emit_if_eq_mov(S, 2, vec16(t2), 4);
emit_if_eq_mov(S, 3, vec16(t2), 6);
}
emit_else();
{
emit_mov(vec16(t2), brw_imm_d(0));
emit_if_eq_mov(S, 5, vec16(t2), 3);
emit_if_eq_mov(S, 6, vec16(t2), 7);
emit_if_eq_mov(S, 7, vec16(t2), 1);
}
emit_endif();
emit_mov(vec16(S), t2);
}
texel_fetch(texture_data[i]);
}
#define SAMPLE(x, y) offset(texture_data[x], y)
for (int index = 3; index > 0; ) {
/* Since we're doing SIMD16, 4 color channels fits in to 8 registers.
* Counter value of 8 in 'for' loop below is used to interpolate all
* the color components.
*/
for (int k = 0; k < 8; k += 2)
emit_lrp(vec8(SAMPLE(index - 1, k)),
x_frac,
vec8(SAMPLE(index, k)),
vec8(SAMPLE(index - 1, k)));
index -= 2;
}
for (int k = 0; k < 8; k += 2)
emit_lrp(vec8(SAMPLE(0, k)),
y_frac,
vec8(SAMPLE(2, k)),
vec8(SAMPLE(0, k)));
#undef SAMPLE
}
/**
* Emit code to look up a value in the texture using the SAMPLE message (which
* does blending of MSAA surfaces).
*/
void
brw_blorp_blit_program::sample(struct brw_reg dst)
{
static const sampler_message_arg args[2] = {
SAMPLER_MESSAGE_ARG_U_FLOAT,
SAMPLER_MESSAGE_ARG_V_FLOAT
};
texture_lookup(dst, SHADER_OPCODE_TEX, args, ARRAY_SIZE(args));
}
/**
* Emit code to look up a value in the texture using the SAMPLE_LD message
* (which does a simple texel fetch).
*/
void
brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
{
static const sampler_message_arg gen6_args[5] = {
SAMPLER_MESSAGE_ARG_U_INT,
SAMPLER_MESSAGE_ARG_V_INT,
SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
SAMPLER_MESSAGE_ARG_SI_INT
};
static const sampler_message_arg gen7_ld_args[3] = {
SAMPLER_MESSAGE_ARG_U_INT,
SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
SAMPLER_MESSAGE_ARG_V_INT
};
static const sampler_message_arg gen7_ld2dss_args[3] = {
SAMPLER_MESSAGE_ARG_SI_INT,
SAMPLER_MESSAGE_ARG_U_INT,
SAMPLER_MESSAGE_ARG_V_INT
};
static const sampler_message_arg gen7_ld2dms_args[4] = {
SAMPLER_MESSAGE_ARG_SI_INT,
SAMPLER_MESSAGE_ARG_MCS_INT,
SAMPLER_MESSAGE_ARG_U_INT,
SAMPLER_MESSAGE_ARG_V_INT
};
switch (brw->gen) {
case 6:
texture_lookup(dst, SHADER_OPCODE_TXF, gen6_args, s_is_zero ? 2 : 5);
break;
case 7:
switch (key->tex_layout) {
case INTEL_MSAA_LAYOUT_IMS:
/* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
* Format):
*
* If this field is MSFMT_DEPTH_STENCIL
* [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
* messages allowed are "ld2dms", "resinfo", and "sampleinfo".
*
* So fall through to emit the same message as we use for
* INTEL_MSAA_LAYOUT_CMS.
*/
case INTEL_MSAA_LAYOUT_CMS:
texture_lookup(dst, SHADER_OPCODE_TXF_CMS,
gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
break;
case INTEL_MSAA_LAYOUT_UMS:
texture_lookup(dst, SHADER_OPCODE_TXF_UMS,
gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
break;
case INTEL_MSAA_LAYOUT_NONE:
assert(s_is_zero);
texture_lookup(dst, SHADER_OPCODE_TXF, gen7_ld_args,
ARRAY_SIZE(gen7_ld_args));
break;
}
break;
default:
unreachable("Should not get here.");
};
}
void
brw_blorp_blit_program::mcs_fetch()
{
static const sampler_message_arg gen7_ld_mcs_args[2] = {
SAMPLER_MESSAGE_ARG_U_INT,
SAMPLER_MESSAGE_ARG_V_INT
};
texture_lookup(vec16(mcs_data), SHADER_OPCODE_TXF_MCS,
gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
}
void
brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
enum opcode op,
const sampler_message_arg *args,
int num_args)
{
struct brw_reg mrf =
retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
for (int arg = 0; arg < num_args; ++arg) {
switch (args[arg]) {
case SAMPLER_MESSAGE_ARG_U_FLOAT:
if (key->bilinear_filter)
emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
retype(X, BRW_REGISTER_TYPE_F));
else
emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), X);
break;
case SAMPLER_MESSAGE_ARG_V_FLOAT:
if (key->bilinear_filter)
emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
retype(Y, BRW_REGISTER_TYPE_F));
else
emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), Y);
break;
case SAMPLER_MESSAGE_ARG_U_INT:
emit_mov(mrf, X);
break;
case SAMPLER_MESSAGE_ARG_V_INT:
emit_mov(mrf, Y);
break;
case SAMPLER_MESSAGE_ARG_SI_INT:
/* Note: on Gen7, this code may be reached with s_is_zero==true
* because in Gen7's ld2dss message, the sample index is the first
* argument. When this happens, we need to move a 0 into the
* appropriate message register.
*/
if (s_is_zero)
emit_mov(mrf, brw_imm_ud(0));
else
emit_mov(mrf, S);
break;
case SAMPLER_MESSAGE_ARG_MCS_INT:
switch (key->tex_layout) {
case INTEL_MSAA_LAYOUT_CMS:
emit_mov(mrf, mcs_data);
break;
case INTEL_MSAA_LAYOUT_IMS:
/* When sampling from an IMS surface, MCS data is not relevant,
* and the hardware ignores it. So don't bother populating it.
*/
break;
default:
/* We shouldn't be trying to send MCS data with any other
* layouts.
*/
assert (!"Unsupported layout for MCS data");
break;
}
break;
case SAMPLER_MESSAGE_ARG_ZERO_INT:
emit_mov(mrf, brw_imm_ud(0));
break;
}
mrf.nr += 2;
}
emit_texture_lookup(retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
op,
base_mrf,
mrf.nr - base_mrf /* msg_length */);
}
#undef X
#undef Y
#undef U
#undef V
#undef S
#undef SWAP_XY_AND_XPYP
void
brw_blorp_blit_program::render_target_write()
{
struct brw_reg mrf_rt_write =
retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
int mrf_offset = 0;
/* If we may have killed pixels, then we need to send R0 and R1 in a header
* so that the render target knows which pixels we killed.
*/
bool use_header = key->use_kill;
if (use_header) {
/* Copy R0/1 to MRF */
emit_mov(retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
retype(R0, BRW_REGISTER_TYPE_UD));
mrf_offset += 2;
}
/* Copy texture data to MRFs */
for (int i = 0; i < 4; ++i) {
/* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
emit_mov(offset(mrf_rt_write, mrf_offset),
offset(vec8(texture_data[0]), 2*i));
mrf_offset += 2;
}
/* Now write to the render target and terminate the thread */
emit_render_target_write(
mrf_rt_write,
base_mrf,
mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
use_header);
}
void
brw_blorp_coord_transform_params::setup(GLfloat src0, GLfloat src1,
GLfloat dst0, GLfloat dst1,
bool mirror)
{
float scale = (src1 - src0) / (dst1 - dst0);
if (!mirror) {
/* When not mirroring a coordinate (say, X), we need:
* src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
* Therefore:
* src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
*
* blorp program uses "round toward zero" to convert the
* transformed floating point coordinates to integer coordinates,
* whereas the behaviour we actually want is "round to nearest",
* so 0.5 provides the necessary correction.
*/
multiplier = scale;
offset = src0 + (-dst0 + 0.5) * scale;
} else {
/* When mirroring X we need:
* src_x - src_x0 = dst_x1 - dst_x - 0.5
* Therefore:
* src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
*/
multiplier = -scale;
offset = src0 + (dst1 - 0.5) * scale;
}
}
/**
* Determine which MSAA layout the GPU pipeline should be configured for,
* based on the chip generation, the number of samples, and the true layout of
* the image in memory.
*/
inline intel_msaa_layout
compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
intel_msaa_layout true_layout)
{
if (num_samples <= 1) {
/* When configuring the GPU for non-MSAA, we can still accommodate IMS
* format buffers, by transforming coordinates appropriately.
*/
assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
true_layout == INTEL_MSAA_LAYOUT_IMS);
return INTEL_MSAA_LAYOUT_NONE;
} else {
assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
}
/* Prior to Gen7, all MSAA surfaces use IMS layout. */
if (brw->gen == 6) {
assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
}
return true_layout;
}
brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
struct intel_mipmap_tree *src_mt,
unsigned src_level, unsigned src_layer,
struct intel_mipmap_tree *dst_mt,
unsigned dst_level, unsigned dst_layer,
GLfloat src_x0, GLfloat src_y0,
GLfloat src_x1, GLfloat src_y1,
GLfloat dst_x0, GLfloat dst_y0,
GLfloat dst_x1, GLfloat dst_y1,
GLenum filter,
bool mirror_x, bool mirror_y)
{
src.set(brw, src_mt, src_level, src_layer, false);
dst.set(brw, dst_mt, dst_level, dst_layer, true);
/* Even though we do multisample resolves at the time of the blit, OpenGL
* specification defines them as if they happen at the time of rendering,
* which means that the type of averaging we do during the resolve should
* only depend on the source format; the destination format should be
* ignored. But, specification doesn't seem to be strict about it.
*
* It has been observed that mulitisample resolves produce slightly better
* looking images when averaging is done using destination format. NVIDIA's
* proprietary OpenGL driver also follow this approach. So, we choose to
* follow it in our driver.
*
* When multisampling, if the source and destination formats are equal
* (aside from the color space), we choose to blit in sRGB space to get
* this higher quality image.
*/
if (src.num_samples > 1 &&
_mesa_get_format_color_encoding(dst_mt->format) == GL_SRGB &&
_mesa_get_srgb_format_linear(src_mt->format) ==
_mesa_get_srgb_format_linear(dst_mt->format)) {
dst.brw_surfaceformat = brw_format_for_mesa_format(dst_mt->format);
src.brw_surfaceformat = dst.brw_surfaceformat;
}
/* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F
* texture, the above code configures the source format for L32_FLOAT or
* I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge,
* the SAMPLE message appears to handle multisampled L32_FLOAT and
* I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work
* around the problem by using a source format of R32_FLOAT. This
* shouldn't affect rendering correctness, since the destination format is
* R32_FLOAT, so only the contents of the red channel matters.
*/
if (brw->gen == 6 && src.num_samples > 1 && dst.num_samples <= 1 &&
src_mt->format == dst_mt->format &&
dst.brw_surfaceformat == BRW_SURFACEFORMAT_R32_FLOAT) {
src.brw_surfaceformat = dst.brw_surfaceformat;
}
use_wm_prog = true;
memset(&wm_prog_key, 0, sizeof(wm_prog_key));
/* texture_data_type indicates the register type that should be used to
* manipulate texture data.
*/
switch (_mesa_get_format_datatype(src_mt->format)) {
case GL_UNSIGNED_NORMALIZED:
case GL_SIGNED_NORMALIZED:
case GL_FLOAT:
wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
break;
case GL_UNSIGNED_INT:
if (src_mt->format == MESA_FORMAT_S_UINT8) {
/* We process stencil as though it's an unsigned normalized color */
wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
} else {
wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
}
break;
case GL_INT:
wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
break;
default:
unreachable("Unrecognized blorp format");
}
if (brw->gen > 6) {
/* Gen7's rendering hardware only supports the IMS layout for depth and
* stencil render targets. Blorp always maps its destination surface as
* a color render target (even if it's actually a depth or stencil
* buffer). So if the destination is IMS, we'll have to map it as a
* single-sampled texture and interleave the samples ourselves.
*/
if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
dst.num_samples = 0;
}
if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) {
/* If the destination surface is a W-tiled multisampled stencil buffer
* that we're mapping as Y tiled, then we need to arrange for the WM
* program to run once per sample rather than once per pixel, because
* the memory layout of related samples doesn't match between W and Y
* tiling.
*/
wm_prog_key.persample_msaa_dispatch = true;
}
if (src.num_samples > 0 && dst.num_samples > 1) {
/* We are blitting from a multisample buffer to a multisample buffer, so
* we must preserve samples within a pixel. This means we have to
* arrange for the WM program to run once per sample rather than once
* per pixel.
*/
wm_prog_key.persample_msaa_dispatch = true;
}
/* Scaled blitting or not. */
wm_prog_key.blit_scaled =
((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
(dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
/* Scaling factors used for bilinear filtering in multisample scaled
* blits.
*/
wm_prog_key.x_scale = 2.0;
wm_prog_key.y_scale = src_mt->num_samples / 2.0;
if (filter == GL_LINEAR && src.num_samples <= 1 && dst.num_samples <= 1)
wm_prog_key.bilinear_filter = true;
GLenum base_format = _mesa_get_format_base_format(src_mt->format);
if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
base_format != GL_STENCIL_INDEX &&
src_mt->num_samples > 1 && dst_mt->num_samples <= 1) {
/* We are downsampling a color buffer, so blend. */
wm_prog_key.blend = true;
}
/* src_samples and dst_samples are the true sample counts */
wm_prog_key.src_samples = src_mt->num_samples;
wm_prog_key.dst_samples = dst_mt->num_samples;
/* tex_samples and rt_samples are the sample counts that are set up in
* SURFACE_STATE.
*/
wm_prog_key.tex_samples = src.num_samples;
wm_prog_key.rt_samples = dst.num_samples;
/* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
* use to access the source and destination surfaces.
*/
wm_prog_key.tex_layout =
compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
wm_prog_key.rt_layout =
compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
/* src_layout and dst_layout indicate the true MSAA layout used by src and
* dst.
*/
wm_prog_key.src_layout = src_mt->msaa_layout;
wm_prog_key.dst_layout = dst_mt->msaa_layout;
wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
x0 = wm_push_consts.dst_x0 = dst_x0;
y0 = wm_push_consts.dst_y0 = dst_y0;
x1 = wm_push_consts.dst_x1 = dst_x1;
y1 = wm_push_consts.dst_y1 = dst_y1;
wm_push_consts.rect_grid_x1 = (minify(src_mt->logical_width0, src_level) *
wm_prog_key.x_scale - 1.0);
wm_push_consts.rect_grid_y1 = (minify(src_mt->logical_height0, src_level) *
wm_prog_key.y_scale - 1.0);
wm_push_consts.x_transform.setup(src_x0, src_x1, dst_x0, dst_x1, mirror_x);
wm_push_consts.y_transform.setup(src_y0, src_y1, dst_y0, dst_y1, mirror_y);
if (dst.num_samples <= 1 && dst_mt->num_samples > 1) {
/* We must expand the rectangle we send through the rendering pipeline,
* to account for the fact that we are mapping the destination region as
* single-sampled when it is in fact multisampled. We must also align
* it to a multiple of the multisampling pattern, because the
* differences between multisampled and single-sampled surface formats
* will mean that pixels are scrambled within the multisampling pattern.
* TODO: what if this makes the coordinates too large?
*
* Note: this only works if the destination surface uses the IMS layout.
* If it's UMS, then we have no choice but to set up the rendering
* pipeline as multisampled.
*/
assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
switch (dst_mt->num_samples) {
case 4:
x0 = ROUND_DOWN_TO(x0 * 2, 4);
y0 = ROUND_DOWN_TO(y0 * 2, 4);
x1 = ALIGN(x1 * 2, 4);
y1 = ALIGN(y1 * 2, 4);
break;
case 8:
x0 = ROUND_DOWN_TO(x0 * 4, 8);
y0 = ROUND_DOWN_TO(y0 * 2, 4);
x1 = ALIGN(x1 * 4, 8);
y1 = ALIGN(y1 * 2, 4);
break;
default:
unreachable("Unrecognized sample count in brw_blorp_blit_params ctor");
}
wm_prog_key.use_kill = true;
}
if (dst.map_stencil_as_y_tiled) {
/* We must modify the rectangle we send through the rendering pipeline
* (and the size and x/y offset of the destination surface), to account
* for the fact that we are mapping it as Y-tiled when it is in fact
* W-tiled.
*
* Both Y tiling and W tiling can be understood as organizations of
* 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
* is different, but the layout of the 32-byte sub-tiles within the 4k
* tile is the same (8 sub-tiles across by 16 sub-tiles down, in
* column-major order). In Y tiling, the sub-tiles are 16 bytes wide
* and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
*
* Therefore, to account for the layout differences within the 32-byte
* sub-tiles, we must expand the rectangle so the X coordinates of its
* edges are multiples of 8 (the W sub-tile width), and its Y
* coordinates of its edges are multiples of 4 (the W sub-tile height).
* Then we need to scale the X and Y coordinates of the rectangle to
* account for the differences in aspect ratio between the Y and W
* sub-tiles. We need to modify the layer width and height similarly.
*
* A correction needs to be applied when MSAA is in use: since
* INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
* we need to align the Y coordinates to multiples of 8, so that when
* they are divided by two they are still multiples of 4.
*
* Note: Since the x/y offset of the surface will be applied using the
* SURFACE_STATE command packet, it will be invisible to the swizzling
* code in the shader; therefore it needs to be in a multiple of the
* 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
* pixels wide and 4 pixels high (when viewed as a W-tiled stencil
* buffer), and the miplevel alignment used for stencil buffers is 8
* pixels horizontally and either 4 or 8 pixels vertically (see
* intel_horizontal_texture_alignment_unit() and
* intel_vertical_texture_alignment_unit()).
*
* Note: Also, since the SURFACE_STATE command packet can only apply
* offsets that are multiples of 4 pixels horizontally and 2 pixels
* vertically, it is important that the offsets will be multiples of
* these sizes after they are converted into Y-tiled coordinates.
* Fortunately they will be, since we know from above that the offsets
* are a multiple of the 32-byte sub-tile size, and in Y-tiled
* coordinates the sub-tile is 16 pixels wide and 2 pixels high.
*
* TODO: what if this makes the coordinates (or the texture size) too
* large?
*/
const unsigned x_align = 8, y_align = dst.num_samples != 0 ? 8 : 4;
x0 = ROUND_DOWN_TO(x0, x_align) * 2;
y0 = ROUND_DOWN_TO(y0, y_align) / 2;
x1 = ALIGN(x1, x_align) * 2;
y1 = ALIGN(y1, y_align) / 2;
dst.width = ALIGN(dst.width, x_align) * 2;
dst.height = ALIGN(dst.height, y_align) / 2;
dst.x_offset *= 2;
dst.y_offset /= 2;
wm_prog_key.use_kill = true;
}
if (src.map_stencil_as_y_tiled) {
/* We must modify the size and x/y offset of the source surface to
* account for the fact that we are mapping it as Y-tiled when it is in
* fact W tiled.
*
* See the comments above concerning x/y offset alignment for the
* destination surface.
*
* TODO: what if this makes the texture size too large?
*/
const unsigned x_align = 8, y_align = src.num_samples != 0 ? 8 : 4;
src.width = ALIGN(src.width, x_align) * 2;
src.height = ALIGN(src.height, y_align) / 2;
src.x_offset *= 2;
src.y_offset /= 2;
}
}
uint32_t
brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
brw_blorp_prog_data **prog_data) const
{
uint32_t prog_offset = 0;
if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
&this->wm_prog_key, sizeof(this->wm_prog_key),
&prog_offset, prog_data)) {
brw_blorp_blit_program prog(brw, &this->wm_prog_key,
INTEL_DEBUG & DEBUG_BLORP);
GLuint program_size;
const GLuint *program = prog.compile(brw, &program_size);
brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
&this->wm_prog_key, sizeof(this->wm_prog_key),
program, program_size,
&prog.prog_data, sizeof(prog.prog_data),
&prog_offset, prog_data);
}
return prog_offset;
}
|