1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
/**************************************************************************
*
* Copyright 2006 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/** @file i915_tex_layout.c
* Code to layout images in a mipmap tree for i830M-GM915 and G945 and beyond.
*/
#include "intel_mipmap_tree.h"
#include "intel_tex_layout.h"
#include "main/macros.h"
#include "intel_context.h"
#define FILE_DEBUG_FLAG DEBUG_TEXTURE
static GLint initial_offsets[6][2] = {
[FACE_POS_X] = {0, 0},
[FACE_POS_Y] = {1, 0},
[FACE_POS_Z] = {1, 1},
[FACE_NEG_X] = {0, 2},
[FACE_NEG_Y] = {1, 2},
[FACE_NEG_Z] = {1, 3},
};
static GLint step_offsets[6][2] = {
[FACE_POS_X] = {0, 2},
[FACE_POS_Y] = {-1, 2},
[FACE_POS_Z] = {-1, 1},
[FACE_NEG_X] = {0, 2},
[FACE_NEG_Y] = {-1, 2},
[FACE_NEG_Z] = {-1, 1},
};
static GLint bottom_offsets[6] = {
[FACE_POS_X] = 16 + 0 * 8,
[FACE_POS_Y] = 16 + 1 * 8,
[FACE_POS_Z] = 16 + 2 * 8,
[FACE_NEG_X] = 16 + 3 * 8,
[FACE_NEG_Y] = 16 + 4 * 8,
[FACE_NEG_Z] = 16 + 5 * 8,
};
/**
* Cube texture map layout for i830M-GM915 and
* non-compressed cube texture map on GM945.
*
* Hardware layout looks like:
*
* +-------+-------+
* | | |
* | | |
* | | |
* | +x | +y |
* | | |
* | | |
* | | |
* | | |
* +---+---+-------+
* | | | |
* | +x| +y| |
* | | | |
* | | | |
* +-+-+---+ +z |
* | | | | |
* +-+-+ +z| |
* | | | |
* +-+-+---+-------+
* | | |
* | | |
* | | |
* | -x | -y |
* | | |
* | | |
* | | |
* | | |
* +---+---+-------+
* | | | |
* | -x| -y| |
* | | | |
* | | | |
* +-+-+---+ -z |
* | | | | |
* +-+-+ -z| |
* | | | |
* +-+---+-------+
*
*/
static void
i915_miptree_layout_cube(struct intel_mipmap_tree * mt)
{
const GLuint dim = mt->physical_width0;
GLuint face;
GLuint lvlWidth = mt->physical_width0, lvlHeight = mt->physical_height0;
GLint level;
assert(lvlWidth == lvlHeight); /* cubemap images are square */
/* double pitch for cube layouts */
mt->total_width = dim * 2;
mt->total_height = dim * 4;
for (level = mt->first_level; level <= mt->last_level; level++) {
intel_miptree_set_level_info(mt, level,
0, 0,
lvlWidth, lvlHeight,
6);
lvlWidth /= 2;
lvlHeight /= 2;
}
for (face = 0; face < 6; face++) {
GLuint x = initial_offsets[face][0] * dim;
GLuint y = initial_offsets[face][1] * dim;
GLuint d = dim;
for (level = mt->first_level; level <= mt->last_level; level++) {
intel_miptree_set_image_offset(mt, level, face, x, y);
if (d == 0)
printf("cube mipmap %d/%d (%d..%d) is 0x0\n",
face, level, mt->first_level, mt->last_level);
d >>= 1;
x += step_offsets[face][0] * d;
y += step_offsets[face][1] * d;
}
}
}
static void
i915_miptree_layout_3d(struct intel_mipmap_tree * mt)
{
GLuint width = mt->physical_width0;
GLuint height = mt->physical_height0;
GLuint depth = mt->physical_depth0;
GLuint stack_height = 0;
GLint level;
/* Calculate the size of a single slice. */
mt->total_width = mt->physical_width0;
/* XXX: hardware expects/requires 9 levels at minimum. */
for (level = mt->first_level; level <= MAX2(8, mt->last_level); level++) {
intel_miptree_set_level_info(mt, level, 0, mt->total_height,
width, height, depth);
stack_height += MAX2(2, height);
width = minify(width, 1);
height = minify(height, 1);
depth = minify(depth, 1);
}
/* Fixup depth image_offsets: */
depth = mt->physical_depth0;
for (level = mt->first_level; level <= mt->last_level; level++) {
GLuint i;
for (i = 0; i < depth; i++) {
intel_miptree_set_image_offset(mt, level, i,
0, i * stack_height);
}
depth = minify(depth, 1);
}
/* Multiply slice size by texture depth for total size. It's
* remarkable how wasteful of memory the i915 texture layouts
* are. They are largely fixed in the i945.
*/
mt->total_height = stack_height * mt->physical_depth0;
}
static void
i915_miptree_layout_2d(struct intel_mipmap_tree * mt)
{
GLuint width = mt->physical_width0;
GLuint height = mt->physical_height0;
GLuint img_height;
GLint level;
mt->total_width = mt->physical_width0;
mt->total_height = 0;
for (level = mt->first_level; level <= mt->last_level; level++) {
intel_miptree_set_level_info(mt, level,
0, mt->total_height,
width, height, 1);
if (mt->compressed)
img_height = ALIGN(height, 4) / 4;
else
img_height = ALIGN(height, 2);
mt->total_height += img_height;
width = minify(width, 1);
height = minify(height, 1);
}
}
void
i915_miptree_layout(struct intel_mipmap_tree * mt)
{
switch (mt->target) {
case GL_TEXTURE_CUBE_MAP:
i915_miptree_layout_cube(mt);
break;
case GL_TEXTURE_3D:
i915_miptree_layout_3d(mt);
break;
case GL_TEXTURE_1D:
case GL_TEXTURE_2D:
case GL_TEXTURE_RECTANGLE_ARB:
i915_miptree_layout_2d(mt);
break;
default:
_mesa_problem(NULL, "Unexpected tex target in i915_miptree_layout()");
break;
}
DBG("%s: %dx%dx%d\n", __FUNCTION__,
mt->total_width, mt->total_height, mt->cpp);
}
/**
* Compressed cube texture map layout for GM945 and later.
*
* The hardware layout looks like the 830-915 layout, except for the small
* sizes. A zoomed in view of the layout for 945 is:
*
* +-------+-------+
* | 8x8 | 8x8 |
* | | |
* | | |
* | +x | +y |
* | | |
* | | |
* | | |
* | | |
* +---+---+-------+
* |4x4| | 8x8 |
* | +x| | |
* | | | |
* | | | |
* +---+ | +z |
* |4x4| | |
* | +y| | |
* | | | |
* +---+ +-------+
*
* ...
*
* +-------+-------+
* | 8x8 | 8x8 |
* | | |
* | | |
* | -x | -y |
* | | |
* | | |
* | | |
* | | |
* +---+---+-------+
* |4x4| | 8x8 |
* | -x| | |
* | | | |
* | | | |
* +---+ | -z |
* |4x4| | |
* | -y| | |
* | | | |
* +---+ +---+---+---+---+---+---+---+---+---+
* |4x4| |4x4| |2x2| |2x2| |2x2| |2x2|
* | +z| | -z| | +x| | +y| | +z| | -x| ...
* | | | | | | | | | | | |
* +---+ +---+ +---+ +---+ +---+ +---+
*
* The bottom row continues with the remaining 2x2 then the 1x1 mip contents
* in order, with each of them aligned to a 8x8 block boundary. Thus, for
* 32x32 cube maps and smaller, the bottom row layout is going to dictate the
* pitch of the tree. For a tree with 4x4 images, the pitch is at least
* 14 * 8 = 112 texels, for 2x2 it is at least 12 * 8 texels, and for 1x1
* it is 6 * 8 texels.
*/
static void
i945_miptree_layout_cube(struct intel_mipmap_tree * mt)
{
const GLuint dim = mt->physical_width0;
GLuint face;
GLuint lvlWidth = mt->physical_width0, lvlHeight = mt->physical_height0;
GLint level;
assert(lvlWidth == lvlHeight); /* cubemap images are square */
/* Depending on the size of the largest images, pitch can be
* determined either by the old-style packing of cubemap faces,
* or the final row of 4x4, 2x2 and 1x1 faces below this.
*/
if (dim > 32)
mt->total_width = dim * 2;
else
mt->total_width = 14 * 8;
if (dim >= 4)
mt->total_height = dim * 4 + 4;
else
mt->total_height = 4;
/* Set all the levels to effectively occupy the whole rectangular region. */
for (level = mt->first_level; level <= mt->last_level; level++) {
intel_miptree_set_level_info(mt, level,
0, 0,
lvlWidth, lvlHeight, 6);
lvlWidth /= 2;
lvlHeight /= 2;
}
for (face = 0; face < 6; face++) {
GLuint x = initial_offsets[face][0] * dim;
GLuint y = initial_offsets[face][1] * dim;
GLuint d = dim;
if (dim == 4 && face >= 4) {
y = mt->total_height - 4;
x = (face - 4) * 8;
} else if (dim < 4 && (face > 0 || mt->first_level > 0)) {
y = mt->total_height - 4;
x = face * 8;
}
for (level = mt->first_level; level <= mt->last_level; level++) {
intel_miptree_set_image_offset(mt, level, face, x, y);
d >>= 1;
switch (d) {
case 4:
switch (face) {
case FACE_POS_X:
case FACE_NEG_X:
x += step_offsets[face][0] * d;
y += step_offsets[face][1] * d;
break;
case FACE_POS_Y:
case FACE_NEG_Y:
y += 12;
x -= 8;
break;
case FACE_POS_Z:
case FACE_NEG_Z:
y = mt->total_height - 4;
x = (face - 4) * 8;
break;
}
break;
case 2:
y = mt->total_height - 4;
x = bottom_offsets[face];
break;
case 1:
x += 48;
break;
default:
x += step_offsets[face][0] * d;
y += step_offsets[face][1] * d;
break;
}
}
}
}
static void
i945_miptree_layout_3d(struct intel_mipmap_tree * mt)
{
GLuint width = mt->physical_width0;
GLuint height = mt->physical_height0;
GLuint depth = mt->physical_depth0;
GLuint pack_x_pitch, pack_x_nr;
GLuint pack_y_pitch;
GLuint level;
mt->total_width = mt->physical_width0;
mt->total_height = 0;
pack_y_pitch = MAX2(mt->physical_height0, 2);
pack_x_pitch = mt->total_width;
pack_x_nr = 1;
for (level = mt->first_level; level <= mt->last_level; level++) {
GLint x = 0;
GLint y = 0;
GLint q, j;
intel_miptree_set_level_info(mt, level,
0, mt->total_height,
width, height, depth);
for (q = 0; q < depth;) {
for (j = 0; j < pack_x_nr && q < depth; j++, q++) {
intel_miptree_set_image_offset(mt, level, q, x, y);
x += pack_x_pitch;
}
x = 0;
y += pack_y_pitch;
}
mt->total_height += y;
if (pack_x_pitch > 4) {
pack_x_pitch >>= 1;
pack_x_nr <<= 1;
assert(pack_x_pitch * pack_x_nr <= mt->total_width);
}
if (pack_y_pitch > 2) {
pack_y_pitch >>= 1;
}
width = minify(width, 1);
height = minify(height, 1);
depth = minify(depth, 1);
}
}
void
i945_miptree_layout(struct intel_mipmap_tree * mt)
{
switch (mt->target) {
case GL_TEXTURE_CUBE_MAP:
if (mt->compressed)
i945_miptree_layout_cube(mt);
else
i915_miptree_layout_cube(mt);
break;
case GL_TEXTURE_3D:
i945_miptree_layout_3d(mt);
break;
case GL_TEXTURE_1D:
case GL_TEXTURE_2D:
case GL_TEXTURE_RECTANGLE_ARB:
i945_miptree_layout_2d(mt);
break;
default:
_mesa_problem(NULL, "Unexpected tex target in i945_miptree_layout()");
break;
}
DBG("%s: %dx%dx%d\n", __FUNCTION__,
mt->total_width, mt->total_height, mt->cpp);
}
|