summaryrefslogtreecommitdiffstats
path: root/src/intel/vulkan/genX_query.c
blob: 7dd9112d296228f1c7d53253569681014af96d34 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>

#include "anv_private.h"

#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"

VkResult genX(CreateQueryPool)(
    VkDevice                                    _device,
    const VkQueryPoolCreateInfo*                pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkQueryPool*                                pQueryPool)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   const struct anv_physical_device *pdevice = &device->instance->physicalDevice;
   struct anv_query_pool *pool;
   VkResult result;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO);

   /* Query pool slots are made up of some number of 64-bit values packed
    * tightly together.  The first 64-bit value is always the "available" bit
    * which is 0 when the query is unavailable and 1 when it is available.
    * The 64-bit values that follow are determined by the type of query.
    */
   uint32_t uint64s_per_slot = 1;

   VkQueryPipelineStatisticFlags pipeline_statistics = 0;
   switch (pCreateInfo->queryType) {
   case VK_QUERY_TYPE_OCCLUSION:
      /* Occlusion queries have two values: begin and end. */
      uint64s_per_slot += 2;
      break;
   case VK_QUERY_TYPE_TIMESTAMP:
      /* Timestamps just have the one timestamp value */
      uint64s_per_slot += 1;
      break;
   case VK_QUERY_TYPE_PIPELINE_STATISTICS:
      pipeline_statistics = pCreateInfo->pipelineStatistics;
      /* We're going to trust this field implicitly so we need to ensure that
       * no unhandled extension bits leak in.
       */
      pipeline_statistics &= ANV_PIPELINE_STATISTICS_MASK;

      /* Statistics queries have a min and max for every statistic */
      uint64s_per_slot += 2 * util_bitcount(pipeline_statistics);
      break;
   default:
      assert(!"Invalid query type");
   }

   pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
                     VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (pool == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   pool->type = pCreateInfo->queryType;
   pool->pipeline_statistics = pipeline_statistics;
   pool->stride = uint64s_per_slot * sizeof(uint64_t);
   pool->slots = pCreateInfo->queryCount;

   uint64_t size = pool->slots * pool->stride;
   result = anv_bo_init_new(&pool->bo, device, size);
   if (result != VK_SUCCESS)
      goto fail;

   if (pdevice->supports_48bit_addresses)
      pool->bo.flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;

   if (pdevice->use_softpin)
      pool->bo.flags |= EXEC_OBJECT_PINNED;

   if (pdevice->has_exec_async)
      pool->bo.flags |= EXEC_OBJECT_ASYNC;

   anv_vma_alloc(device, &pool->bo);

   /* For query pools, we set the caching mode to I915_CACHING_CACHED.  On LLC
    * platforms, this does nothing.  On non-LLC platforms, this means snooping
    * which comes at a slight cost.  However, the buffers aren't big, won't be
    * written frequently, and trying to handle the flushing manually without
    * doing too much flushing is extremely painful.
    */
   anv_gem_set_caching(device, pool->bo.gem_handle, I915_CACHING_CACHED);

   pool->bo.map = anv_gem_mmap(device, pool->bo.gem_handle, 0, size, 0);

   *pQueryPool = anv_query_pool_to_handle(pool);

   return VK_SUCCESS;

 fail:
   vk_free2(&device->alloc, pAllocator, pool);

   return result;
}

void genX(DestroyQueryPool)(
    VkDevice                                    _device,
    VkQueryPool                                 _pool,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_query_pool, pool, _pool);

   if (!pool)
      return;

   anv_gem_munmap(pool->bo.map, pool->bo.size);
   anv_vma_free(device, &pool->bo);
   anv_gem_close(device, pool->bo.gem_handle);
   vk_free2(&device->alloc, pAllocator, pool);
}

static struct anv_address
anv_query_address(struct anv_query_pool *pool, uint32_t query)
{
   return (struct anv_address) {
      .bo = &pool->bo,
      .offset = query * pool->stride,
   };
}

static void
cpu_write_query_result(void *dst_slot, VkQueryResultFlags flags,
                       uint32_t value_index, uint64_t result)
{
   if (flags & VK_QUERY_RESULT_64_BIT) {
      uint64_t *dst64 = dst_slot;
      dst64[value_index] = result;
   } else {
      uint32_t *dst32 = dst_slot;
      dst32[value_index] = result;
   }
}

static bool
query_is_available(uint64_t *slot)
{
   return *(volatile uint64_t *)slot;
}

static VkResult
wait_for_available(struct anv_device *device,
                   struct anv_query_pool *pool, uint64_t *slot)
{
   while (true) {
      if (query_is_available(slot))
         return VK_SUCCESS;

      int ret = anv_gem_busy(device, pool->bo.gem_handle);
      if (ret == 1) {
         /* The BO is still busy, keep waiting. */
         continue;
      } else if (ret == -1) {
         /* We don't know the real error. */
         anv_device_set_lost(device, "gem wait failed: %m");
         return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
                          "gem wait failed: %m");
      } else {
         assert(ret == 0);
         /* The BO is no longer busy. */
         if (query_is_available(slot)) {
            return VK_SUCCESS;
         } else {
            VkResult status = anv_device_query_status(device);
            if (status != VK_SUCCESS)
               return status;

            /* If we haven't seen availability yet, then we never will.  This
             * can only happen if we have a client error where they call
             * GetQueryPoolResults on a query that they haven't submitted to
             * the GPU yet.  The spec allows us to do anything in this case,
             * but returning VK_SUCCESS doesn't seem right and we shouldn't
             * just keep spinning.
             */
            return VK_NOT_READY;
         }
      }
   }
}

VkResult genX(GetQueryPoolResults)(
    VkDevice                                    _device,
    VkQueryPool                                 queryPool,
    uint32_t                                    firstQuery,
    uint32_t                                    queryCount,
    size_t                                      dataSize,
    void*                                       pData,
    VkDeviceSize                                stride,
    VkQueryResultFlags                          flags)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);

   assert(pool->type == VK_QUERY_TYPE_OCCLUSION ||
          pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS ||
          pool->type == VK_QUERY_TYPE_TIMESTAMP);

   if (anv_device_is_lost(device))
      return VK_ERROR_DEVICE_LOST;

   if (pData == NULL)
      return VK_SUCCESS;

   void *data_end = pData + dataSize;

   VkResult status = VK_SUCCESS;
   for (uint32_t i = 0; i < queryCount; i++) {
      uint64_t *slot = pool->bo.map + (firstQuery + i) * pool->stride;

      /* Availability is always at the start of the slot */
      bool available = slot[0];

      if (!available && (flags & VK_QUERY_RESULT_WAIT_BIT)) {
         status = wait_for_available(device, pool, slot);
         if (status != VK_SUCCESS)
            return status;

         available = true;
      }

      /* From the Vulkan 1.0.42 spec:
       *
       *    "If VK_QUERY_RESULT_WAIT_BIT and VK_QUERY_RESULT_PARTIAL_BIT are
       *    both not set then no result values are written to pData for
       *    queries that are in the unavailable state at the time of the call,
       *    and vkGetQueryPoolResults returns VK_NOT_READY. However,
       *    availability state is still written to pData for those queries if
       *    VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set."
       */
      bool write_results = available || (flags & VK_QUERY_RESULT_PARTIAL_BIT);

      uint32_t idx = 0;
      switch (pool->type) {
      case VK_QUERY_TYPE_OCCLUSION:
         if (write_results)
            cpu_write_query_result(pData, flags, idx, slot[2] - slot[1]);
         idx++;
         break;

      case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
         uint32_t statistics = pool->pipeline_statistics;
         while (statistics) {
            uint32_t stat = u_bit_scan(&statistics);
            if (write_results) {
               uint64_t result = slot[idx * 2 + 2] - slot[idx * 2 + 1];

               /* WaDividePSInvocationCountBy4:HSW,BDW */
               if ((device->info.gen == 8 || device->info.is_haswell) &&
                   (1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT)
                  result >>= 2;

               cpu_write_query_result(pData, flags, idx, result);
            }
            idx++;
         }
         assert(idx == util_bitcount(pool->pipeline_statistics));
         break;
      }

      case VK_QUERY_TYPE_TIMESTAMP:
         if (write_results)
            cpu_write_query_result(pData, flags, idx, slot[1]);
         idx++;
         break;

      default:
         unreachable("invalid pool type");
      }

      if (!write_results)
         status = VK_NOT_READY;

      if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT)
         cpu_write_query_result(pData, flags, idx, available);

      pData += stride;
      if (pData >= data_end)
         break;
   }

   return status;
}

static void
emit_srm32(struct anv_batch *batch, struct anv_address addr, uint32_t reg)
{
   anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
      srm.MemoryAddress    = addr;
      srm.RegisterAddress  = reg;
   }
}

static void
emit_srm64(struct anv_batch *batch, struct anv_address addr, uint32_t reg)
{
   emit_srm32(batch, anv_address_add(addr, 0), reg + 0);
   emit_srm32(batch, anv_address_add(addr, 4), reg + 4);
}

static void
emit_ps_depth_count(struct anv_cmd_buffer *cmd_buffer,
                    struct anv_address addr)
{
   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
      pc.DestinationAddressType  = DAT_PPGTT;
      pc.PostSyncOperation       = WritePSDepthCount;
      pc.DepthStallEnable        = true;
      pc.Address                 = addr;

      if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
         pc.CommandStreamerStallEnable = true;
   }
}

static void
emit_query_availability(struct anv_cmd_buffer *cmd_buffer,
                        struct anv_address addr)
{
   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
      pc.DestinationAddressType  = DAT_PPGTT;
      pc.PostSyncOperation       = WriteImmediateData;
      pc.Address                 = addr;
      pc.ImmediateData           = 1;
   }
}

/**
 * Goes through a series of consecutive query indices in the given pool
 * setting all element values to 0 and emitting them as available.
 */
static void
emit_zero_queries(struct anv_cmd_buffer *cmd_buffer,
                  struct anv_query_pool *pool,
                  uint32_t first_index, uint32_t num_queries)
{
   for (uint32_t i = 0; i < num_queries; i++) {
      struct anv_address slot_addr =
         anv_query_address(pool, first_index + i);
      genX(cmd_buffer_mi_memset)(cmd_buffer, anv_address_add(slot_addr, 8),
                                 0, pool->stride - 8);
      emit_query_availability(cmd_buffer, slot_addr);
   }
}

void genX(CmdResetQueryPool)(
    VkCommandBuffer                             commandBuffer,
    VkQueryPool                                 queryPool,
    uint32_t                                    firstQuery,
    uint32_t                                    queryCount)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);

   for (uint32_t i = 0; i < queryCount; i++) {
      anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdm) {
         sdm.Address = anv_query_address(pool, firstQuery + i);
         sdm.ImmediateData = 0;
      }
   }
}

static const uint32_t vk_pipeline_stat_to_reg[] = {
   GENX(IA_VERTICES_COUNT_num),
   GENX(IA_PRIMITIVES_COUNT_num),
   GENX(VS_INVOCATION_COUNT_num),
   GENX(GS_INVOCATION_COUNT_num),
   GENX(GS_PRIMITIVES_COUNT_num),
   GENX(CL_INVOCATION_COUNT_num),
   GENX(CL_PRIMITIVES_COUNT_num),
   GENX(PS_INVOCATION_COUNT_num),
   GENX(HS_INVOCATION_COUNT_num),
   GENX(DS_INVOCATION_COUNT_num),
   GENX(CS_INVOCATION_COUNT_num),
};

static void
emit_pipeline_stat(struct anv_cmd_buffer *cmd_buffer, uint32_t stat,
                   struct anv_address addr)
{
   STATIC_ASSERT(ANV_PIPELINE_STATISTICS_MASK ==
                 (1 << ARRAY_SIZE(vk_pipeline_stat_to_reg)) - 1);

   assert(stat < ARRAY_SIZE(vk_pipeline_stat_to_reg));
   emit_srm64(&cmd_buffer->batch, addr, vk_pipeline_stat_to_reg[stat]);
}

void genX(CmdBeginQuery)(
    VkCommandBuffer                             commandBuffer,
    VkQueryPool                                 queryPool,
    uint32_t                                    query,
    VkQueryControlFlags                         flags)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
   struct anv_address query_addr = anv_query_address(pool, query);

   switch (pool->type) {
   case VK_QUERY_TYPE_OCCLUSION:
      emit_ps_depth_count(cmd_buffer, anv_address_add(query_addr, 8));
      break;

   case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
      /* TODO: This might only be necessary for certain stats */
      anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
         pc.CommandStreamerStallEnable = true;
         pc.StallAtPixelScoreboard = true;
      }

      uint32_t statistics = pool->pipeline_statistics;
      uint32_t offset = 8;
      while (statistics) {
         uint32_t stat = u_bit_scan(&statistics);
         emit_pipeline_stat(cmd_buffer, stat,
                            anv_address_add(query_addr, offset));
         offset += 16;
      }
      break;
   }

   default:
      unreachable("");
   }
}

void genX(CmdEndQuery)(
    VkCommandBuffer                             commandBuffer,
    VkQueryPool                                 queryPool,
    uint32_t                                    query)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
   struct anv_address query_addr = anv_query_address(pool, query);

   switch (pool->type) {
   case VK_QUERY_TYPE_OCCLUSION:
      emit_ps_depth_count(cmd_buffer, anv_address_add(query_addr, 16));
      emit_query_availability(cmd_buffer, query_addr);
      break;

   case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
      /* TODO: This might only be necessary for certain stats */
      anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
         pc.CommandStreamerStallEnable = true;
         pc.StallAtPixelScoreboard = true;
      }

      uint32_t statistics = pool->pipeline_statistics;
      uint32_t offset = 16;
      while (statistics) {
         uint32_t stat = u_bit_scan(&statistics);
         emit_pipeline_stat(cmd_buffer, stat,
                            anv_address_add(query_addr, offset));
         offset += 16;
      }

      emit_query_availability(cmd_buffer, query_addr);
      break;
   }

   default:
      unreachable("");
   }

   /* When multiview is active the spec requires that N consecutive query
    * indices are used, where N is the number of active views in the subpass.
    * The spec allows that we only write the results to one of the queries
    * but we still need to manage result availability for all the query indices.
    * Since we only emit a single query for all active views in the
    * first index, mark the other query indices as being already available
    * with result 0.
    */
   if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
      const uint32_t num_queries =
         util_bitcount(cmd_buffer->state.subpass->view_mask);
      if (num_queries > 1)
         emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1);
   }
}

#define TIMESTAMP 0x2358

void genX(CmdWriteTimestamp)(
    VkCommandBuffer                             commandBuffer,
    VkPipelineStageFlagBits                     pipelineStage,
    VkQueryPool                                 queryPool,
    uint32_t                                    query)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
   struct anv_address query_addr = anv_query_address(pool, query);

   assert(pool->type == VK_QUERY_TYPE_TIMESTAMP);

   switch (pipelineStage) {
   case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
      emit_srm64(&cmd_buffer->batch, anv_address_add(query_addr, 8), TIMESTAMP);
      break;

   default:
      /* Everything else is bottom-of-pipe */
      anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
         pc.DestinationAddressType  = DAT_PPGTT;
         pc.PostSyncOperation       = WriteTimestamp;
         pc.Address                 = anv_address_add(query_addr, 8);

         if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
            pc.CommandStreamerStallEnable = true;
      }
      break;
   }

   emit_query_availability(cmd_buffer, query_addr);

   /* When multiview is active the spec requires that N consecutive query
    * indices are used, where N is the number of active views in the subpass.
    * The spec allows that we only write the results to one of the queries
    * but we still need to manage result availability for all the query indices.
    * Since we only emit a single query for all active views in the
    * first index, mark the other query indices as being already available
    * with result 0.
    */
   if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
      const uint32_t num_queries =
         util_bitcount(cmd_buffer->state.subpass->view_mask);
      if (num_queries > 1)
         emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1);
   }
}

#if GEN_GEN > 7 || GEN_IS_HASWELL

static uint32_t
mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
{
   struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
      .ALUOpcode = opcode,
      .Operand1 = operand1,
      .Operand2 = operand2,
   };

   uint32_t dw;
   GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);

   return dw;
}

#define CS_GPR(n) (0x2600 + (n) * 8)

static void
emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
                      struct anv_address addr)
{
   anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
      lrm.RegisterAddress  = reg;
      lrm.MemoryAddress    = anv_address_add(addr, 0);
   }
   anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
      lrm.RegisterAddress  = reg + 4;
      lrm.MemoryAddress    = anv_address_add(addr, 4);
   }
}

static void
emit_load_alu_reg_imm32(struct anv_batch *batch, uint32_t reg, uint32_t imm)
{
   anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
      lri.RegisterOffset   = reg;
      lri.DataDWord        = imm;
   }
}

static void
emit_load_alu_reg_imm64(struct anv_batch *batch, uint32_t reg, uint64_t imm)
{
   emit_load_alu_reg_imm32(batch, reg, (uint32_t)imm);
   emit_load_alu_reg_imm32(batch, reg + 4, (uint32_t)(imm >> 32));
}

static void
emit_load_alu_reg_reg32(struct anv_batch *batch, uint32_t src, uint32_t dst)
{
   anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
      lrr.SourceRegisterAddress      = src;
      lrr.DestinationRegisterAddress = dst;
   }
}

/*
 * GPR0 = GPR0 & ((1ull << n) - 1);
 */
static void
keep_gpr0_lower_n_bits(struct anv_batch *batch, uint32_t n)
{
   assert(n < 64);
   emit_load_alu_reg_imm64(batch, CS_GPR(1), (1ull << n) - 1);

   uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
   if (!dw) {
      anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
      return;
   }

   dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
   dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
   dw[3] = mi_alu(MI_ALU_AND, 0, 0);
   dw[4] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU);
}

/*
 * GPR0 = GPR0 << 30;
 */
static void
shl_gpr0_by_30_bits(struct anv_batch *batch)
{
   /* First we mask 34 bits of GPR0 to prevent overflow */
   keep_gpr0_lower_n_bits(batch, 34);

   const uint32_t outer_count = 5;
   const uint32_t inner_count = 6;
   STATIC_ASSERT(outer_count * inner_count == 30);
   const uint32_t cmd_len = 1 + inner_count * 4;

   /* We'll emit 5 commands, each shifting GPR0 left by 6 bits, for a total of
    * 30 left shifts.
    */
   for (int o = 0; o < outer_count; o++) {
      /* Submit one MI_MATH to shift left by 6 bits */
      uint32_t *dw = anv_batch_emitn(batch, cmd_len, GENX(MI_MATH));
      if (!dw) {
         anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
         return;
      }

      dw++;
      for (int i = 0; i < inner_count; i++, dw += 4) {
         dw[0] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
         dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
         dw[2] = mi_alu(MI_ALU_ADD, 0, 0);
         dw[3] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU);
      }
   }
}

/*
 * GPR0 = GPR0 >> 2;
 *
 * Note that the upper 30 bits of GPR are lost!
 */
static void
shr_gpr0_by_2_bits(struct anv_batch *batch)
{
   shl_gpr0_by_30_bits(batch);
   emit_load_alu_reg_reg32(batch, CS_GPR(0) + 4, CS_GPR(0));
   emit_load_alu_reg_imm32(batch, CS_GPR(0) + 4, 0);
}

static void
gpu_write_query_result(struct anv_batch *batch,
                       struct anv_address dst_addr,
                       VkQueryResultFlags flags,
                       uint32_t value_index, uint32_t reg)
{
   if (flags & VK_QUERY_RESULT_64_BIT) {
      emit_srm64(batch, anv_address_add(dst_addr, value_index * 8), reg);
   } else {
      emit_srm32(batch, anv_address_add(dst_addr, value_index * 4), reg);
   }
}

static void
compute_query_result(struct anv_batch *batch, uint32_t dst_reg,
                     struct anv_address addr)
{
   emit_load_alu_reg_u64(batch, CS_GPR(0), anv_address_add(addr, 0));
   emit_load_alu_reg_u64(batch, CS_GPR(1), anv_address_add(addr, 8));

   /* FIXME: We need to clamp the result for 32 bit. */

   uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
   if (!dw) {
      anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
      return;
   }

   dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG1);
   dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
   dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
   dw[4] = mi_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
}

void genX(CmdCopyQueryPoolResults)(
    VkCommandBuffer                             commandBuffer,
    VkQueryPool                                 queryPool,
    uint32_t                                    firstQuery,
    uint32_t                                    queryCount,
    VkBuffer                                    destBuffer,
    VkDeviceSize                                destOffset,
    VkDeviceSize                                destStride,
    VkQueryResultFlags                          flags)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
   ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);

   if (flags & VK_QUERY_RESULT_WAIT_BIT) {
      anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
         pc.CommandStreamerStallEnable = true;
         pc.StallAtPixelScoreboard     = true;
      }
   }

   struct anv_address dest_addr = anv_address_add(buffer->address, destOffset);
   for (uint32_t i = 0; i < queryCount; i++) {
      struct anv_address query_addr = anv_query_address(pool, firstQuery + i);
      uint32_t idx = 0;
      switch (pool->type) {
      case VK_QUERY_TYPE_OCCLUSION:
         compute_query_result(&cmd_buffer->batch, MI_ALU_REG2,
                              anv_address_add(query_addr, 8));
         gpu_write_query_result(&cmd_buffer->batch, dest_addr,
                                flags, idx++, CS_GPR(2));
         break;

      case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
         uint32_t statistics = pool->pipeline_statistics;
         while (statistics) {
            uint32_t stat = u_bit_scan(&statistics);

            compute_query_result(&cmd_buffer->batch, MI_ALU_REG0,
                                 anv_address_add(query_addr, idx * 16 + 8));

            /* WaDividePSInvocationCountBy4:HSW,BDW */
            if ((cmd_buffer->device->info.gen == 8 ||
                 cmd_buffer->device->info.is_haswell) &&
                (1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT) {
               shr_gpr0_by_2_bits(&cmd_buffer->batch);
            }

            gpu_write_query_result(&cmd_buffer->batch, dest_addr,
                                   flags, idx++, CS_GPR(0));
         }
         assert(idx == util_bitcount(pool->pipeline_statistics));
         break;
      }

      case VK_QUERY_TYPE_TIMESTAMP:
         emit_load_alu_reg_u64(&cmd_buffer->batch,
                               CS_GPR(2), anv_address_add(query_addr, 8));
         gpu_write_query_result(&cmd_buffer->batch, dest_addr,
                                flags, 0, CS_GPR(2));
         break;

      default:
         unreachable("unhandled query type");
      }

      if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
         emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0), query_addr);
         gpu_write_query_result(&cmd_buffer->batch, dest_addr,
                                flags, idx, CS_GPR(0));
      }

      dest_addr = anv_address_add(dest_addr, destStride);
   }
}

#else
void genX(CmdCopyQueryPoolResults)(
    VkCommandBuffer                             commandBuffer,
    VkQueryPool                                 queryPool,
    uint32_t                                    firstQuery,
    uint32_t                                    queryCount,
    VkBuffer                                    destBuffer,
    VkDeviceSize                                destOffset,
    VkDeviceSize                                destStride,
    VkQueryResultFlags                          flags)
{
   anv_finishme("Queries not yet supported on Ivy Bridge");
}
#endif