1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
static uint32_t
vertex_element_comp_control(enum isl_format format, unsigned comp)
{
uint8_t bits;
switch (comp) {
case 0: bits = isl_format_layouts[format].channels.r.bits; break;
case 1: bits = isl_format_layouts[format].channels.g.bits; break;
case 2: bits = isl_format_layouts[format].channels.b.bits; break;
case 3: bits = isl_format_layouts[format].channels.a.bits; break;
default: unreachable("Invalid component");
}
if (bits) {
return VFCOMP_STORE_SRC;
} else if (comp < 3) {
return VFCOMP_STORE_0;
} else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
isl_format_layouts[format].channels.r.type == ISL_SINT) {
assert(comp == 3);
return VFCOMP_STORE_1_INT;
} else {
assert(comp == 3);
return VFCOMP_STORE_1_FP;
}
}
static void
emit_vertex_input(struct anv_pipeline *pipeline,
const VkPipelineVertexInputStateCreateInfo *info,
const struct anv_graphics_pipeline_create_info *extra)
{
uint32_t elements;
if (extra && extra->disable_vs) {
/* If the VS is disabled, just assume the user knows what they're
* doing and apply the layout blindly. This can only come from
* meta, so this *should* be safe.
*/
elements = 0;
for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++)
elements |= (1 << info->pVertexAttributeDescriptions[i].location);
} else {
/* Pull inputs_read out of the VS prog data */
uint64_t inputs_read = pipeline->vs_prog_data.inputs_read;
assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
elements = inputs_read >> VERT_ATTRIB_GENERIC0;
}
#if ANV_GEN >= 8
/* On BDW+, we only need to allocate space for base ids. Setting up
* the actual vertex and instance id is a separate packet.
*/
const bool needs_svgs_elem = pipeline->vs_prog_data.uses_basevertex ||
pipeline->vs_prog_data.uses_baseinstance;
#else
/* On Haswell and prior, vertex and instance id are created by using the
* ComponentControl fields, so we need an element for any of them.
*/
const bool needs_svgs_elem = pipeline->vs_prog_data.uses_vertexid ||
pipeline->vs_prog_data.uses_instanceid ||
pipeline->vs_prog_data.uses_basevertex ||
pipeline->vs_prog_data.uses_baseinstance;
#endif
uint32_t elem_count = __builtin_popcount(elements) + needs_svgs_elem;
if (elem_count == 0)
return;
uint32_t *p;
const uint32_t num_dwords = 1 + elem_count * 2;
p = anv_batch_emitn(&pipeline->batch, num_dwords,
GENX(3DSTATE_VERTEX_ELEMENTS));
memset(p + 1, 0, (num_dwords - 1) * 4);
for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription *desc =
&info->pVertexAttributeDescriptions[i];
enum isl_format format = anv_get_isl_format(desc->format,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_TILING_LINEAR,
NULL);
assert(desc->binding < 32);
if ((elements & (1 << desc->location)) == 0)
continue; /* Binding unused */
uint32_t slot = __builtin_popcount(elements & ((1 << desc->location) - 1));
struct GENX(VERTEX_ELEMENT_STATE) element = {
.VertexBufferIndex = desc->binding,
.Valid = true,
.SourceElementFormat = format,
.EdgeFlagEnable = false,
.SourceElementOffset = desc->offset,
.Component0Control = vertex_element_comp_control(format, 0),
.Component1Control = vertex_element_comp_control(format, 1),
.Component2Control = vertex_element_comp_control(format, 2),
.Component3Control = vertex_element_comp_control(format, 3),
};
GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
#if ANV_GEN >= 8
/* On Broadwell and later, we have a separate VF_INSTANCING packet
* that controls instancing. On Haswell and prior, that's part of
* VERTEX_BUFFER_STATE which we emit later.
*/
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING),
.InstancingEnable = pipeline->instancing_enable[desc->binding],
.VertexElementIndex = slot,
/* Vulkan so far doesn't have an instance divisor, so
* this is always 1 (ignored if not instancing). */
.InstanceDataStepRate = 1);
#endif
}
const uint32_t id_slot = __builtin_popcount(elements);
if (needs_svgs_elem) {
/* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
* "Within a VERTEX_ELEMENT_STATE structure, if a Component
* Control field is set to something other than VFCOMP_STORE_SRC,
* no higher-numbered Component Control fields may be set to
* VFCOMP_STORE_SRC"
*
* This means, that if we have BaseInstance, we need BaseVertex as
* well. Just do all or nothing.
*/
uint32_t base_ctrl = (pipeline->vs_prog_data.uses_basevertex ||
pipeline->vs_prog_data.uses_baseinstance) ?
VFCOMP_STORE_SRC : VFCOMP_STORE_0;
struct GENX(VERTEX_ELEMENT_STATE) element = {
.VertexBufferIndex = 32, /* Reserved for this */
.Valid = true,
.SourceElementFormat = ISL_FORMAT_R32G32_UINT,
.Component0Control = base_ctrl,
.Component1Control = base_ctrl,
#if ANV_GEN >= 8
.Component2Control = VFCOMP_STORE_0,
.Component3Control = VFCOMP_STORE_0,
#else
.Component2Control = VFCOMP_STORE_VID,
.Component3Control = VFCOMP_STORE_IID,
#endif
};
GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
}
#if ANV_GEN >= 8
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS),
.VertexIDEnable = pipeline->vs_prog_data.uses_vertexid,
.VertexIDComponentNumber = 2,
.VertexIDElementOffset = id_slot,
.InstanceIDEnable = pipeline->vs_prog_data.uses_instanceid,
.InstanceIDComponentNumber = 3,
.InstanceIDElementOffset = id_slot);
#endif
}
static inline void
emit_urb_setup(struct anv_pipeline *pipeline)
{
#if ANV_GEN == 7
struct anv_device *device = pipeline->device;
/* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
*
* "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
* needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
* 3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
* 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one PIPE_CONTROL
* needs to be sent before any combination of VS associated 3DSTATE."
*/
anv_batch_emit(&pipeline->batch, GEN7_PIPE_CONTROL,
.DepthStallEnable = true,
.PostSyncOperation = WriteImmediateData,
.Address = { &device->workaround_bo, 0 });
#endif
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS),
.ConstantBufferOffset = 0,
.ConstantBufferSize = 4);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_GS),
.ConstantBufferOffset = 4,
.ConstantBufferSize = 4);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS),
.ConstantBufferOffset = 8,
.ConstantBufferSize = 4);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_VS),
.VSURBStartingAddress = pipeline->urb.vs_start,
.VSURBEntryAllocationSize = pipeline->urb.vs_size - 1,
.VSNumberofURBEntries = pipeline->urb.nr_vs_entries);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_GS),
.GSURBStartingAddress = pipeline->urb.gs_start,
.GSURBEntryAllocationSize = pipeline->urb.gs_size - 1,
.GSNumberofURBEntries = pipeline->urb.nr_gs_entries);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_HS),
.HSURBStartingAddress = pipeline->urb.vs_start,
.HSURBEntryAllocationSize = 0,
.HSNumberofURBEntries = 0);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_DS),
.DSURBStartingAddress = pipeline->urb.vs_start,
.DSURBEntryAllocationSize = 0,
.DSNumberofURBEntries = 0);
}
static inline uint32_t
scratch_space(const struct brw_stage_prog_data *prog_data)
{
return ffs(prog_data->total_scratch / 2048);
}
static const uint32_t vk_to_gen_cullmode[] = {
[VK_CULL_MODE_NONE] = CULLMODE_NONE,
[VK_CULL_MODE_FRONT_BIT] = CULLMODE_FRONT,
[VK_CULL_MODE_BACK_BIT] = CULLMODE_BACK,
[VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH
};
static const uint32_t vk_to_gen_fillmode[] = {
[VK_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
[VK_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
[VK_POLYGON_MODE_POINT] = FILL_MODE_POINT,
};
static const uint32_t vk_to_gen_front_face[] = {
[VK_FRONT_FACE_COUNTER_CLOCKWISE] = 1,
[VK_FRONT_FACE_CLOCKWISE] = 0
};
static const uint32_t vk_to_gen_logic_op[] = {
[VK_LOGIC_OP_COPY] = LOGICOP_COPY,
[VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR,
[VK_LOGIC_OP_AND] = LOGICOP_AND,
[VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE,
[VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED,
[VK_LOGIC_OP_NO_OP] = LOGICOP_NOOP,
[VK_LOGIC_OP_XOR] = LOGICOP_XOR,
[VK_LOGIC_OP_OR] = LOGICOP_OR,
[VK_LOGIC_OP_NOR] = LOGICOP_NOR,
[VK_LOGIC_OP_EQUIVALENT] = LOGICOP_EQUIV,
[VK_LOGIC_OP_INVERT] = LOGICOP_INVERT,
[VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE,
[VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED,
[VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED,
[VK_LOGIC_OP_NAND] = LOGICOP_NAND,
[VK_LOGIC_OP_SET] = LOGICOP_SET,
};
static const uint32_t vk_to_gen_blend[] = {
[VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO,
[VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE,
[VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
[VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
[VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
[VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
[VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
[VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
[VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
[VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
[VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
[VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
[VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
};
static const uint32_t vk_to_gen_blend_op[] = {
[VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
[VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
[VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
[VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
[VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
};
static const uint32_t vk_to_gen_compare_op[] = {
[VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER,
[VK_COMPARE_OP_LESS] = PREFILTEROPLESS,
[VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL,
[VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROPLEQUAL,
[VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER,
[VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL,
[VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROPGEQUAL,
[VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS,
};
static const uint32_t vk_to_gen_stencil_op[] = {
[VK_STENCIL_OP_KEEP] = STENCILOP_KEEP,
[VK_STENCIL_OP_ZERO] = STENCILOP_ZERO,
[VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE,
[VK_STENCIL_OP_INCREMENT_AND_CLAMP] = STENCILOP_INCRSAT,
[VK_STENCIL_OP_DECREMENT_AND_CLAMP] = STENCILOP_DECRSAT,
[VK_STENCIL_OP_INVERT] = STENCILOP_INVERT,
[VK_STENCIL_OP_INCREMENT_AND_WRAP] = STENCILOP_INCR,
[VK_STENCIL_OP_DECREMENT_AND_WRAP] = STENCILOP_DECR,
};
|