1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_private.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
#include "common/gen_l3_config.h"
/**
* This file implements some lightweight memcpy/memset operations on the GPU
* using a vertex buffer and streamout.
*/
/**
* Returns the greatest common divisor of a and b that is a power of two.
*/
static uint64_t
gcd_pow2_u64(uint64_t a, uint64_t b)
{
assert(a > 0 || b > 0);
unsigned a_log2 = ffsll(a) - 1;
unsigned b_log2 = ffsll(b) - 1;
/* If either a or b is 0, then a_log2 or b_log2 will be UINT_MAX in which
* case, the MIN2() will take the other one. If both are 0 then we will
* hit the assert above.
*/
return 1 << MIN2(a_log2, b_log2);
}
void
genX(cmd_buffer_mi_memcpy)(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *dst, uint32_t dst_offset,
struct anv_bo *src, uint32_t src_offset,
uint32_t size)
{
/* This memcpy operates in units of dwords. */
assert(size % 4 == 0);
assert(dst_offset % 4 == 0);
assert(src_offset % 4 == 0);
#if GEN_GEN == 7
/* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
* and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
* in-flight when they are issued even if the memory touched is not
* currently active for rendering. The weird bit is that it is not the
* MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
* rendering hangs such that the next stalling command after the
* MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
*
* It is unclear exactly why this hang occurs. Both MI commands come with
* warnings about the 3D pipeline but that doesn't seem to fully explain
* it. My (Jason's) best theory is that it has something to do with the
* fact that we're using a GPU state register as our temporary and that
* something with reading/writing it is causing problems.
*
* In order to work around this issue, we emit a PIPE_CONTROL with the
* command streamer stall bit set.
*/
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
#endif
for (uint32_t i = 0; i < size; i += 4) {
const struct anv_address src_addr =
(struct anv_address) { src, src_offset + i};
const struct anv_address dst_addr =
(struct anv_address) { dst, dst_offset + i};
#if GEN_GEN >= 8
anv_batch_emit(&cmd_buffer->batch, GENX(MI_COPY_MEM_MEM), cp) {
cp.DestinationMemoryAddress = dst_addr;
cp.SourceMemoryAddress = src_addr;
}
#else
/* IVB does not have a general purpose register for command streamer
* commands. Therefore, we use an alternate temporary register.
*/
#define TEMP_REG 0x2440 /* GEN7_3DPRIM_BASE_VERTEX */
anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), load) {
load.RegisterAddress = TEMP_REG;
load.MemoryAddress = src_addr;
}
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), store) {
store.RegisterAddress = TEMP_REG;
store.MemoryAddress = dst_addr;
}
#undef TEMP_REG
#endif
}
return;
}
void
genX(cmd_buffer_so_memcpy)(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *dst, uint32_t dst_offset,
struct anv_bo *src, uint32_t src_offset,
uint32_t size)
{
if (size == 0)
return;
assert(dst_offset + size <= dst->size);
assert(src_offset + size <= src->size);
/* The maximum copy block size is 4 32-bit components at a time. */
unsigned bs = 16;
bs = gcd_pow2_u64(bs, src_offset);
bs = gcd_pow2_u64(bs, dst_offset);
bs = gcd_pow2_u64(bs, size);
enum isl_format format;
switch (bs) {
case 4: format = ISL_FORMAT_R32_UINT; break;
case 8: format = ISL_FORMAT_R32G32_UINT; break;
case 16: format = ISL_FORMAT_R32G32B32A32_UINT; break;
default:
unreachable("Invalid size");
}
if (!cmd_buffer->state.current_l3_config) {
const struct gen_l3_config *cfg =
gen_get_default_l3_config(&cmd_buffer->device->info);
genX(cmd_buffer_config_l3)(cmd_buffer, cfg);
}
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
genX(flush_pipeline_select_3d)(cmd_buffer);
uint32_t *dw;
dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(3DSTATE_VERTEX_BUFFERS));
GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, dw + 1,
&(struct GENX(VERTEX_BUFFER_STATE)) {
.VertexBufferIndex = 32, /* Reserved for this */
.AddressModifyEnable = true,
.BufferStartingAddress = { src, src_offset },
.BufferPitch = bs,
#if (GEN_GEN >= 8)
.MemoryObjectControlState = GENX(MOCS),
.BufferSize = size,
#else
.VertexBufferMemoryObjectControlState = GENX(MOCS),
.EndAddress = { src, src_offset + size - 1 },
#endif
});
dw = anv_batch_emitn(&cmd_buffer->batch, 3, GENX(3DSTATE_VERTEX_ELEMENTS));
GENX(VERTEX_ELEMENT_STATE_pack)(&cmd_buffer->batch, dw + 1,
&(struct GENX(VERTEX_ELEMENT_STATE)) {
.VertexBufferIndex = 32,
.Valid = true,
.SourceElementFormat = format,
.SourceElementOffset = 0,
.Component0Control = (bs >= 4) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
.Component1Control = (bs >= 8) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
.Component2Control = (bs >= 12) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
.Component3Control = (bs >= 16) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
});
#if GEN_GEN >= 8
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_SGVS), sgvs);
#endif
/* Disable all shader stages */
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VS), vs);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HS), hs);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_TE), te);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DS), DS);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_GS), gs);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_PS), gs);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SBE), sbe) {
sbe.VertexURBEntryReadOffset = 1;
sbe.NumberofSFOutputAttributes = 1;
sbe.VertexURBEntryReadLength = 1;
#if GEN_GEN >= 8
sbe.ForceVertexURBEntryReadLength = true;
sbe.ForceVertexURBEntryReadOffset = true;
#endif
#if GEN_GEN >= 9
for (unsigned i = 0; i < 32; i++)
sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
#endif
}
/* Emit URB setup. We tell it that the VS is active because we want it to
* allocate space for the VS. Even though one isn't run, we need VUEs to
* store the data that VF is going to pass to SOL.
*/
const unsigned entry_size[4] = { DIV_ROUND_UP(32, 64), 1, 1, 1 };
genX(emit_urb_setup)(cmd_buffer->device, &cmd_buffer->batch,
cmd_buffer->state.current_l3_config,
VK_SHADER_STAGE_VERTEX_BIT, entry_size);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
sob.SOBufferIndex = 0;
sob.SOBufferObjectControlState = GENX(MOCS);
sob.SurfaceBaseAddress = (struct anv_address) { dst, dst_offset };
#if GEN_GEN >= 8
sob.SOBufferEnable = true;
sob.SurfaceSize = size / 4 - 1;
#else
sob.SurfacePitch = bs;
sob.SurfaceEndAddress = sob.SurfaceBaseAddress;
sob.SurfaceEndAddress.offset += size;
#endif
#if GEN_GEN >= 8
/* As SOL writes out data, it updates the SO_WRITE_OFFSET registers with
* the end position of the stream. We need to reset this value to 0 at
* the beginning of the run or else SOL will start at the offset from
* the previous draw.
*/
sob.StreamOffsetWriteEnable = true;
sob.StreamOffset = 0;
#endif
}
#if GEN_GEN <= 7
/* The hardware can do this for us on BDW+ (see above) */
anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), load) {
load.RegisterOffset = GENX(SO_WRITE_OFFSET0_num);
load.DataDWord = 0;
}
#endif
dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(3DSTATE_SO_DECL_LIST),
.StreamtoBufferSelects0 = (1 << 0),
.NumEntries0 = 1);
GENX(SO_DECL_ENTRY_pack)(&cmd_buffer->batch, dw + 3,
&(struct GENX(SO_DECL_ENTRY)) {
.Stream0Decl = {
.OutputBufferSlot = 0,
.RegisterIndex = 0,
.ComponentMask = (1 << (bs / 4)) - 1,
},
});
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STREAMOUT), so) {
so.SOFunctionEnable = true;
so.RenderingDisable = true;
so.Stream0VertexReadOffset = 0;
so.Stream0VertexReadLength = DIV_ROUND_UP(32, 64);
#if GEN_GEN >= 8
so.Buffer0SurfacePitch = bs;
#else
so.SOBufferEnable0 = true;
#endif
}
#if GEN_GEN >= 8
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
topo.PrimitiveTopologyType = _3DPRIM_POINTLIST;
}
#endif
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_STATISTICS), vf) {
vf.StatisticsEnable = false;
}
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.VertexAccessType = SEQUENTIAL;
prim.PrimitiveTopologyType = _3DPRIM_POINTLIST;
prim.VertexCountPerInstance = size / bs;
prim.StartVertexLocation = 0;
prim.InstanceCount = 1;
prim.StartInstanceLocation = 0;
prim.BaseVertexLocation = 0;
}
cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
}
|