summaryrefslogtreecommitdiffstats
path: root/src/intel/vulkan/anv_queue.c
blob: c6b2e01c6281fb11342bbd2d7143d62dde8ea932 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

/**
 * This file implements VkQueue, VkFence, and VkSemaphore
 */

#include <fcntl.h>
#include <unistd.h>
#include <sys/eventfd.h>

#include "anv_private.h"
#include "vk_util.h"

#include "genxml/gen7_pack.h"

VkResult
anv_device_execbuf(struct anv_device *device,
                   struct drm_i915_gem_execbuffer2 *execbuf,
                   struct anv_bo **execbuf_bos)
{
   int ret = anv_gem_execbuffer(device, execbuf);
   if (ret != 0) {
      /* We don't know the real error. */
      device->lost = true;
      return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
                       "execbuf2 failed: %m");
   }

   struct drm_i915_gem_exec_object2 *objects =
      (void *)(uintptr_t)execbuf->buffers_ptr;
   for (uint32_t k = 0; k < execbuf->buffer_count; k++)
      execbuf_bos[k]->offset = objects[k].offset;

   return VK_SUCCESS;
}

VkResult
anv_device_submit_simple_batch(struct anv_device *device,
                               struct anv_batch *batch)
{
   struct drm_i915_gem_execbuffer2 execbuf;
   struct drm_i915_gem_exec_object2 exec2_objects[1];
   struct anv_bo bo, *exec_bos[1];
   VkResult result = VK_SUCCESS;
   uint32_t size;

   /* Kernel driver requires 8 byte aligned batch length */
   size = align_u32(batch->next - batch->start, 8);
   result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
   if (result != VK_SUCCESS)
      return result;

   memcpy(bo.map, batch->start, size);
   if (!device->info.has_llc)
      gen_flush_range(bo.map, size);

   exec_bos[0] = &bo;
   exec2_objects[0].handle = bo.gem_handle;
   exec2_objects[0].relocation_count = 0;
   exec2_objects[0].relocs_ptr = 0;
   exec2_objects[0].alignment = 0;
   exec2_objects[0].offset = bo.offset;
   exec2_objects[0].flags = 0;
   exec2_objects[0].rsvd1 = 0;
   exec2_objects[0].rsvd2 = 0;

   execbuf.buffers_ptr = (uintptr_t) exec2_objects;
   execbuf.buffer_count = 1;
   execbuf.batch_start_offset = 0;
   execbuf.batch_len = size;
   execbuf.cliprects_ptr = 0;
   execbuf.num_cliprects = 0;
   execbuf.DR1 = 0;
   execbuf.DR4 = 0;

   execbuf.flags =
      I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
   execbuf.rsvd1 = device->context_id;
   execbuf.rsvd2 = 0;

   result = anv_device_execbuf(device, &execbuf, exec_bos);
   if (result != VK_SUCCESS)
      goto fail;

   result = anv_device_wait(device, &bo, INT64_MAX);

 fail:
   anv_bo_pool_free(&device->batch_bo_pool, &bo);

   return result;
}

VkResult anv_QueueSubmit(
    VkQueue                                     _queue,
    uint32_t                                    submitCount,
    const VkSubmitInfo*                         pSubmits,
    VkFence                                     fence)
{
   ANV_FROM_HANDLE(anv_queue, queue, _queue);
   struct anv_device *device = queue->device;

   /* Query for device status prior to submitting.  Technically, we don't need
    * to do this.  However, if we have a client that's submitting piles of
    * garbage, we would rather break as early as possible to keep the GPU
    * hanging contained.  If we don't check here, we'll either be waiting for
    * the kernel to kick us or we'll have to wait until the client waits on a
    * fence before we actually know whether or not we've hung.
    */
   VkResult result = anv_device_query_status(device);
   if (result != VK_SUCCESS)
      return result;

   /* We lock around QueueSubmit for three main reasons:
    *
    *  1) When a block pool is resized, we create a new gem handle with a
    *     different size and, in the case of surface states, possibly a
    *     different center offset but we re-use the same anv_bo struct when
    *     we do so.  If this happens in the middle of setting up an execbuf,
    *     we could end up with our list of BOs out of sync with our list of
    *     gem handles.
    *
    *  2) The algorithm we use for building the list of unique buffers isn't
    *     thread-safe.  While the client is supposed to syncronize around
    *     QueueSubmit, this would be extremely difficult to debug if it ever
    *     came up in the wild due to a broken app.  It's better to play it
    *     safe and just lock around QueueSubmit.
    *
    *  3)  The anv_cmd_buffer_execbuf function may perform relocations in
    *      userspace.  Due to the fact that the surface state buffer is shared
    *      between batches, we can't afford to have that happen from multiple
    *      threads at the same time.  Even though the user is supposed to
    *      ensure this doesn't happen, we play it safe as in (2) above.
    *
    * Since the only other things that ever take the device lock such as block
    * pool resize only rarely happen, this will almost never be contended so
    * taking a lock isn't really an expensive operation in this case.
    */
   pthread_mutex_lock(&device->mutex);

   if (fence && submitCount == 0) {
      /* If we don't have any command buffers, we need to submit a dummy
       * batch to give GEM something to wait on.  We could, potentially,
       * come up with something more efficient but this shouldn't be a
       * common case.
       */
      result = anv_cmd_buffer_execbuf(device, NULL, NULL, 0, NULL, 0, fence);
      goto out;
   }

   for (uint32_t i = 0; i < submitCount; i++) {
      /* Fence for this submit.  NULL for all but the last one */
      VkFence submit_fence = (i == submitCount - 1) ? fence : VK_NULL_HANDLE;

      if (pSubmits[i].commandBufferCount == 0) {
         /* If we don't have any command buffers, we need to submit a dummy
          * batch to give GEM something to wait on.  We could, potentially,
          * come up with something more efficient but this shouldn't be a
          * common case.
          */
         result = anv_cmd_buffer_execbuf(device, NULL,
                                         pSubmits[i].pWaitSemaphores,
                                         pSubmits[i].waitSemaphoreCount,
                                         pSubmits[i].pSignalSemaphores,
                                         pSubmits[i].signalSemaphoreCount,
                                         submit_fence);
         if (result != VK_SUCCESS)
            goto out;

         continue;
      }

      for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
         ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
                         pSubmits[i].pCommandBuffers[j]);
         assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
         assert(!anv_batch_has_error(&cmd_buffer->batch));

         /* Fence for this execbuf.  NULL for all but the last one */
         VkFence execbuf_fence =
            (j == pSubmits[i].commandBufferCount - 1) ?
            submit_fence : VK_NULL_HANDLE;

         const VkSemaphore *in_semaphores = NULL, *out_semaphores = NULL;
         uint32_t num_in_semaphores = 0, num_out_semaphores = 0;
         if (j == 0) {
            /* Only the first batch gets the in semaphores */
            in_semaphores = pSubmits[i].pWaitSemaphores;
            num_in_semaphores = pSubmits[i].waitSemaphoreCount;
         }

         if (j == pSubmits[i].commandBufferCount - 1) {
            /* Only the last batch gets the out semaphores */
            out_semaphores = pSubmits[i].pSignalSemaphores;
            num_out_semaphores = pSubmits[i].signalSemaphoreCount;
         }

         result = anv_cmd_buffer_execbuf(device, cmd_buffer,
                                         in_semaphores, num_in_semaphores,
                                         out_semaphores, num_out_semaphores,
                                         execbuf_fence);
         if (result != VK_SUCCESS)
            goto out;
      }
   }

   pthread_cond_broadcast(&device->queue_submit);

out:
   if (result != VK_SUCCESS) {
      /* In the case that something has gone wrong we may end up with an
       * inconsistent state from which it may not be trivial to recover.
       * For example, we might have computed address relocations and
       * any future attempt to re-submit this job will need to know about
       * this and avoid computing relocation addresses again.
       *
       * To avoid this sort of issues, we assume that if something was
       * wrong during submission we must already be in a really bad situation
       * anyway (such us being out of memory) and return
       * VK_ERROR_DEVICE_LOST to ensure that clients do not attempt to
       * submit the same job again to this device.
       */
      result = vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
                         "vkQueueSubmit() failed");
      device->lost = true;
   }

   pthread_mutex_unlock(&device->mutex);

   return result;
}

VkResult anv_QueueWaitIdle(
    VkQueue                                     _queue)
{
   ANV_FROM_HANDLE(anv_queue, queue, _queue);

   return anv_DeviceWaitIdle(anv_device_to_handle(queue->device));
}

VkResult anv_CreateFence(
    VkDevice                                    _device,
    const VkFenceCreateInfo*                    pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkFence*                                    pFence)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_fence *fence;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);

   fence = vk_zalloc2(&device->alloc, pAllocator, sizeof(*fence), 8,
                      VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (fence == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   if (device->instance->physicalDevice.has_syncobj_wait) {
      fence->permanent.type = ANV_FENCE_TYPE_SYNCOBJ;

      uint32_t create_flags = 0;
      if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT)
         create_flags |= DRM_SYNCOBJ_CREATE_SIGNALED;

      fence->permanent.syncobj = anv_gem_syncobj_create(device, create_flags);
      if (!fence->permanent.syncobj)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
   } else {
      fence->permanent.type = ANV_FENCE_TYPE_BO;

      VkResult result = anv_bo_pool_alloc(&device->batch_bo_pool,
                                          &fence->permanent.bo.bo, 4096);
      if (result != VK_SUCCESS)
         return result;

      if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
         fence->permanent.bo.state = ANV_BO_FENCE_STATE_SIGNALED;
      } else {
         fence->permanent.bo.state = ANV_BO_FENCE_STATE_RESET;
      }
   }

   *pFence = anv_fence_to_handle(fence);

   return VK_SUCCESS;
}

static void
anv_fence_impl_cleanup(struct anv_device *device,
                       struct anv_fence_impl *impl)
{
   switch (impl->type) {
   case ANV_FENCE_TYPE_NONE:
      /* Dummy.  Nothing to do */
      return;

   case ANV_FENCE_TYPE_BO:
      anv_bo_pool_free(&device->batch_bo_pool, &impl->bo.bo);
      return;

   case ANV_FENCE_TYPE_SYNCOBJ:
      anv_gem_syncobj_destroy(device, impl->syncobj);
      return;
   }

   unreachable("Invalid fence type");
}

void anv_DestroyFence(
    VkDevice                                    _device,
    VkFence                                     _fence,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_fence, fence, _fence);

   if (!fence)
      return;

   anv_fence_impl_cleanup(device, &fence->temporary);
   anv_fence_impl_cleanup(device, &fence->permanent);

   vk_free2(&device->alloc, pAllocator, fence);
}

VkResult anv_ResetFences(
    VkDevice                                    _device,
    uint32_t                                    fenceCount,
    const VkFence*                              pFences)
{
   ANV_FROM_HANDLE(anv_device, device, _device);

   for (uint32_t i = 0; i < fenceCount; i++) {
      ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);

      /* From the Vulkan 1.0.53 spec:
       *
       *    "If any member of pFences currently has its payload imported with
       *    temporary permanence, that fence’s prior permanent payload is
       *    first restored. The remaining operations described therefore
       *    operate on the restored payload.
       */
      if (fence->temporary.type != ANV_FENCE_TYPE_NONE) {
         anv_fence_impl_cleanup(device, &fence->temporary);
         fence->temporary.type = ANV_FENCE_TYPE_NONE;
      }

      struct anv_fence_impl *impl = &fence->permanent;

      switch (impl->type) {
      case ANV_FENCE_TYPE_BO:
         impl->bo.state = ANV_BO_FENCE_STATE_RESET;
         break;

      case ANV_FENCE_TYPE_SYNCOBJ:
         anv_gem_syncobj_reset(device, impl->syncobj);
         break;

      default:
         unreachable("Invalid fence type");
      }
   }

   return VK_SUCCESS;
}

VkResult anv_GetFenceStatus(
    VkDevice                                    _device,
    VkFence                                     _fence)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_fence, fence, _fence);

   if (unlikely(device->lost))
      return VK_ERROR_DEVICE_LOST;

   struct anv_fence_impl *impl =
      fence->temporary.type != ANV_FENCE_TYPE_NONE ?
      &fence->temporary : &fence->permanent;

   switch (impl->type) {
   case ANV_FENCE_TYPE_BO:
      /* BO fences don't support import/export */
      assert(fence->temporary.type == ANV_FENCE_TYPE_NONE);
      switch (impl->bo.state) {
      case ANV_BO_FENCE_STATE_RESET:
         /* If it hasn't even been sent off to the GPU yet, it's not ready */
         return VK_NOT_READY;

      case ANV_BO_FENCE_STATE_SIGNALED:
         /* It's been signaled, return success */
         return VK_SUCCESS;

      case ANV_BO_FENCE_STATE_SUBMITTED: {
         VkResult result = anv_device_bo_busy(device, &impl->bo.bo);
         if (result == VK_SUCCESS) {
            impl->bo.state = ANV_BO_FENCE_STATE_SIGNALED;
            return VK_SUCCESS;
         } else {
            return result;
         }
      }
      default:
         unreachable("Invalid fence status");
      }

   case ANV_FENCE_TYPE_SYNCOBJ: {
      int ret = anv_gem_syncobj_wait(device, &impl->syncobj, 1, 0, true);
      if (ret == -1) {
         if (errno == ETIME) {
            return VK_NOT_READY;
         } else {
            /* We don't know the real error. */
            device->lost = true;
            return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
                             "drm_syncobj_wait failed: %m");
         }
      } else {
         return VK_SUCCESS;
      }
   }

   default:
      unreachable("Invalid fence type");
   }
}

#define NSEC_PER_SEC 1000000000
#define INT_TYPE_MAX(type) ((1ull << (sizeof(type) * 8 - 1)) - 1)

static uint64_t
gettime_ns(void)
{
   struct timespec current;
   clock_gettime(CLOCK_MONOTONIC, &current);
   return (uint64_t)current.tv_sec * NSEC_PER_SEC + current.tv_nsec;
}

static VkResult
anv_wait_for_syncobj_fences(struct anv_device *device,
                            uint32_t fenceCount,
                            const VkFence *pFences,
                            bool waitAll,
                            uint64_t _timeout)
{
   uint32_t *syncobjs = vk_zalloc(&device->alloc,
                                  sizeof(*syncobjs) * fenceCount, 8,
                                  VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
   if (!syncobjs)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   for (uint32_t i = 0; i < fenceCount; i++) {
      ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
      assert(fence->permanent.type == ANV_FENCE_TYPE_SYNCOBJ);

      struct anv_fence_impl *impl =
         fence->temporary.type != ANV_FENCE_TYPE_NONE ?
         &fence->temporary : &fence->permanent;

      assert(impl->type == ANV_FENCE_TYPE_SYNCOBJ);
      syncobjs[i] = impl->syncobj;
   }

   int64_t abs_timeout_ns = 0;
   if (_timeout > 0) {
      uint64_t current_ns = gettime_ns();

      /* Add but saturate to INT32_MAX */
      if (current_ns + _timeout < current_ns)
         abs_timeout_ns = INT64_MAX;
      else if (current_ns + _timeout > INT64_MAX)
         abs_timeout_ns = INT64_MAX;
      else
         abs_timeout_ns = current_ns + _timeout;
   }

   /* The gem_syncobj_wait ioctl may return early due to an inherent
    * limitation in the way it computes timeouts.  Loop until we've actually
    * passed the timeout.
    */
   int ret;
   do {
      ret = anv_gem_syncobj_wait(device, syncobjs, fenceCount,
                                 abs_timeout_ns, waitAll);
   } while (ret == -1 && errno == ETIME && gettime_ns() < abs_timeout_ns);

   vk_free(&device->alloc, syncobjs);

   if (ret == -1) {
      if (errno == ETIME) {
         return VK_TIMEOUT;
      } else {
         /* We don't know the real error. */
         device->lost = true;
         return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
                          "drm_syncobj_wait failed: %m");
      }
   } else {
      return VK_SUCCESS;
   }
}

static VkResult
anv_wait_for_bo_fences(struct anv_device *device,
                       uint32_t fenceCount,
                       const VkFence *pFences,
                       bool waitAll,
                       uint64_t _timeout)
{
   int ret;

   /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
    * to block indefinitely timeouts <= 0.  Unfortunately, this was broken
    * for a couple of kernel releases.  Since there's no way to know
    * whether or not the kernel we're using is one of the broken ones, the
    * best we can do is to clamp the timeout to INT64_MAX.  This limits the
    * maximum timeout from 584 years to 292 years - likely not a big deal.
    */
   int64_t timeout = MIN2(_timeout, INT64_MAX);

   VkResult result = VK_SUCCESS;
   uint32_t pending_fences = fenceCount;
   while (pending_fences) {
      pending_fences = 0;
      bool signaled_fences = false;
      for (uint32_t i = 0; i < fenceCount; i++) {
         ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);

         /* This function assumes that all fences are BO fences and that they
          * have no temporary state.  Since BO fences will never be exported,
          * this should be a safe assumption.
          */
         assert(fence->permanent.type == ANV_FENCE_TYPE_BO);
         assert(fence->temporary.type == ANV_FENCE_TYPE_NONE);
         struct anv_fence_impl *impl = &fence->permanent;

         switch (impl->bo.state) {
         case ANV_BO_FENCE_STATE_RESET:
            /* This fence hasn't been submitted yet, we'll catch it the next
             * time around.  Yes, this may mean we dead-loop but, short of
             * lots of locking and a condition variable, there's not much that
             * we can do about that.
             */
            pending_fences++;
            continue;

         case ANV_BO_FENCE_STATE_SIGNALED:
            /* This fence is not pending.  If waitAll isn't set, we can return
             * early.  Otherwise, we have to keep going.
             */
            if (!waitAll) {
               result = VK_SUCCESS;
               goto done;
            }
            continue;

         case ANV_BO_FENCE_STATE_SUBMITTED:
            /* These are the fences we really care about.  Go ahead and wait
             * on it until we hit a timeout.
             */
            result = anv_device_wait(device, &impl->bo.bo, timeout);
            switch (result) {
            case VK_SUCCESS:
               impl->bo.state = ANV_BO_FENCE_STATE_SIGNALED;
               signaled_fences = true;
               if (!waitAll)
                  goto done;
               break;

            case VK_TIMEOUT:
               goto done;

            default:
               return result;
            }
         }
      }

      if (pending_fences && !signaled_fences) {
         /* If we've hit this then someone decided to vkWaitForFences before
          * they've actually submitted any of them to a queue.  This is a
          * fairly pessimal case, so it's ok to lock here and use a standard
          * pthreads condition variable.
          */
         pthread_mutex_lock(&device->mutex);

         /* It's possible that some of the fences have changed state since the
          * last time we checked.  Now that we have the lock, check for
          * pending fences again and don't wait if it's changed.
          */
         uint32_t now_pending_fences = 0;
         for (uint32_t i = 0; i < fenceCount; i++) {
            ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
            if (fence->permanent.bo.state == ANV_BO_FENCE_STATE_RESET)
               now_pending_fences++;
         }
         assert(now_pending_fences <= pending_fences);

         if (now_pending_fences == pending_fences) {
            struct timespec before;
            clock_gettime(CLOCK_MONOTONIC, &before);

            uint32_t abs_nsec = before.tv_nsec + timeout % NSEC_PER_SEC;
            uint64_t abs_sec = before.tv_sec + (abs_nsec / NSEC_PER_SEC) +
                               (timeout / NSEC_PER_SEC);
            abs_nsec %= NSEC_PER_SEC;

            /* Avoid roll-over in tv_sec on 32-bit systems if the user
             * provided timeout is UINT64_MAX
             */
            struct timespec abstime;
            abstime.tv_nsec = abs_nsec;
            abstime.tv_sec = MIN2(abs_sec, INT_TYPE_MAX(abstime.tv_sec));

            ret = pthread_cond_timedwait(&device->queue_submit,
                                         &device->mutex, &abstime);
            assert(ret != EINVAL);

            struct timespec after;
            clock_gettime(CLOCK_MONOTONIC, &after);
            uint64_t time_elapsed =
               ((uint64_t)after.tv_sec * NSEC_PER_SEC + after.tv_nsec) -
               ((uint64_t)before.tv_sec * NSEC_PER_SEC + before.tv_nsec);

            if (time_elapsed >= timeout) {
               pthread_mutex_unlock(&device->mutex);
               result = VK_TIMEOUT;
               goto done;
            }

            timeout -= time_elapsed;
         }

         pthread_mutex_unlock(&device->mutex);
      }
   }

done:
   if (unlikely(device->lost))
      return VK_ERROR_DEVICE_LOST;

   return result;
}

VkResult anv_WaitForFences(
    VkDevice                                    _device,
    uint32_t                                    fenceCount,
    const VkFence*                              pFences,
    VkBool32                                    waitAll,
    uint64_t                                    timeout)
{
   ANV_FROM_HANDLE(anv_device, device, _device);

   if (unlikely(device->lost))
      return VK_ERROR_DEVICE_LOST;

   if (device->instance->physicalDevice.has_syncobj_wait) {
      return anv_wait_for_syncobj_fences(device, fenceCount, pFences,
                                         waitAll, timeout);
   } else {
      return anv_wait_for_bo_fences(device, fenceCount, pFences,
                                    waitAll, timeout);
   }
}

void anv_GetPhysicalDeviceExternalFencePropertiesKHR(
    VkPhysicalDevice                            physicalDevice,
    const VkPhysicalDeviceExternalFenceInfoKHR* pExternalFenceInfo,
    VkExternalFencePropertiesKHR*               pExternalFenceProperties)
{
   ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);

   switch (pExternalFenceInfo->handleType) {
   case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
   case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR:
      if (device->has_syncobj_wait) {
         pExternalFenceProperties->exportFromImportedHandleTypes =
            VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR |
            VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR;
         pExternalFenceProperties->compatibleHandleTypes =
            VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR |
            VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR;
         pExternalFenceProperties->externalFenceFeatures =
            VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT_KHR |
            VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT_KHR;
         return;
      }
      break;

   default:
      break;
   }

   pExternalFenceProperties->exportFromImportedHandleTypes = 0;
   pExternalFenceProperties->compatibleHandleTypes = 0;
   pExternalFenceProperties->externalFenceFeatures = 0;
}

VkResult anv_ImportFenceFdKHR(
    VkDevice                                    _device,
    const VkImportFenceFdInfoKHR*               pImportFenceFdInfo)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_fence, fence, pImportFenceFdInfo->fence);
   int fd = pImportFenceFdInfo->fd;

   assert(pImportFenceFdInfo->sType ==
          VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR);

   struct anv_fence_impl new_impl = {
      .type = ANV_FENCE_TYPE_NONE,
   };

   switch (pImportFenceFdInfo->handleType) {
   case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
      new_impl.type = ANV_FENCE_TYPE_SYNCOBJ;

      new_impl.syncobj = anv_gem_syncobj_fd_to_handle(device, fd);
      if (!new_impl.syncobj)
         return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);

      break;

   case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR:
      /* Sync files are a bit tricky.  Because we want to continue using the
       * syncobj implementation of WaitForFences, we don't use the sync file
       * directly but instead import it into a syncobj.
       */
      new_impl.type = ANV_FENCE_TYPE_SYNCOBJ;

      new_impl.syncobj = anv_gem_syncobj_create(device, 0);
      if (!new_impl.syncobj)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      if (anv_gem_syncobj_import_sync_file(device, new_impl.syncobj, fd)) {
         anv_gem_syncobj_destroy(device, new_impl.syncobj);
         return vk_errorf(device->instance, NULL,
                          VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
                          "syncobj sync file import failed: %m");
      }
      break;

   default:
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
   }

   /* From the Vulkan 1.0.53 spec:
    *
    *    "Importing a fence payload from a file descriptor transfers
    *    ownership of the file descriptor from the application to the
    *    Vulkan implementation. The application must not perform any
    *    operations on the file descriptor after a successful import."
    *
    * If the import fails, we leave the file descriptor open.
    */
   close(fd);

   if (pImportFenceFdInfo->flags & VK_FENCE_IMPORT_TEMPORARY_BIT_KHR) {
      anv_fence_impl_cleanup(device, &fence->temporary);
      fence->temporary = new_impl;
   } else {
      anv_fence_impl_cleanup(device, &fence->permanent);
      fence->permanent = new_impl;
   }

   return VK_SUCCESS;
}

VkResult anv_GetFenceFdKHR(
    VkDevice                                    _device,
    const VkFenceGetFdInfoKHR*                  pGetFdInfo,
    int*                                        pFd)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_fence, fence, pGetFdInfo->fence);

   assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_FENCE_GET_FD_INFO_KHR);

   struct anv_fence_impl *impl =
      fence->temporary.type != ANV_FENCE_TYPE_NONE ?
      &fence->temporary : &fence->permanent;

   assert(impl->type == ANV_FENCE_TYPE_SYNCOBJ);
   switch (pGetFdInfo->handleType) {
   case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR: {
      int fd = anv_gem_syncobj_handle_to_fd(device, impl->syncobj);
      if (fd < 0)
         return vk_error(VK_ERROR_TOO_MANY_OBJECTS);

      *pFd = fd;
      break;
   }

   case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR: {
      int fd = anv_gem_syncobj_export_sync_file(device, impl->syncobj);
      if (fd < 0)
         return vk_error(VK_ERROR_TOO_MANY_OBJECTS);

      *pFd = fd;
      break;
   }

   default:
      unreachable("Invalid fence export handle type");
   }

   /* From the Vulkan 1.0.53 spec:
    *
    *    "Export operations have the same transference as the specified handle
    *    type’s import operations. [...] If the fence was using a
    *    temporarily imported payload, the fence’s prior permanent payload
    *    will be restored.
    */
   if (impl == &fence->temporary)
      anv_fence_impl_cleanup(device, impl);

   return VK_SUCCESS;
}

// Queue semaphore functions

VkResult anv_CreateSemaphore(
    VkDevice                                    _device,
    const VkSemaphoreCreateInfo*                pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSemaphore*                                pSemaphore)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_semaphore *semaphore;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO);

   semaphore = vk_alloc2(&device->alloc, pAllocator, sizeof(*semaphore), 8,
                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (semaphore == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   const VkExportSemaphoreCreateInfoKHR *export =
      vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO_KHR);
    VkExternalSemaphoreHandleTypeFlagsKHR handleTypes =
      export ? export->handleTypes : 0;

   if (handleTypes == 0) {
      /* The DRM execbuffer ioctl always execute in-oder so long as you stay
       * on the same ring.  Since we don't expose the blit engine as a DMA
       * queue, a dummy no-op semaphore is a perfectly valid implementation.
       */
      semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DUMMY;
   } else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR) {
      assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR);
      if (device->instance->physicalDevice.has_syncobj) {
         semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ;
         semaphore->permanent.syncobj = anv_gem_syncobj_create(device, 0);
         if (!semaphore->permanent.syncobj) {
            vk_free2(&device->alloc, pAllocator, semaphore);
            return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
         }
      } else {
         semaphore->permanent.type = ANV_SEMAPHORE_TYPE_BO;
         VkResult result = anv_bo_cache_alloc(device, &device->bo_cache,
                                              4096, &semaphore->permanent.bo);
         if (result != VK_SUCCESS) {
            vk_free2(&device->alloc, pAllocator, semaphore);
            return result;
         }

         /* If we're going to use this as a fence, we need to *not* have the
          * EXEC_OBJECT_ASYNC bit set.
          */
         assert(!(semaphore->permanent.bo->flags & EXEC_OBJECT_ASYNC));
      }
   } else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR) {
      assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR);

      semaphore->permanent.type = ANV_SEMAPHORE_TYPE_SYNC_FILE;
      semaphore->permanent.fd = -1;
   } else {
      assert(!"Unknown handle type");
      vk_free2(&device->alloc, pAllocator, semaphore);
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
   }

   semaphore->temporary.type = ANV_SEMAPHORE_TYPE_NONE;

   *pSemaphore = anv_semaphore_to_handle(semaphore);

   return VK_SUCCESS;
}

static void
anv_semaphore_impl_cleanup(struct anv_device *device,
                           struct anv_semaphore_impl *impl)
{
   switch (impl->type) {
   case ANV_SEMAPHORE_TYPE_NONE:
   case ANV_SEMAPHORE_TYPE_DUMMY:
      /* Dummy.  Nothing to do */
      return;

   case ANV_SEMAPHORE_TYPE_BO:
      anv_bo_cache_release(device, &device->bo_cache, impl->bo);
      return;

   case ANV_SEMAPHORE_TYPE_SYNC_FILE:
      close(impl->fd);
      return;

   case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ:
      anv_gem_syncobj_destroy(device, impl->syncobj);
      return;
   }

   unreachable("Invalid semaphore type");
}

void
anv_semaphore_reset_temporary(struct anv_device *device,
                              struct anv_semaphore *semaphore)
{
   if (semaphore->temporary.type == ANV_SEMAPHORE_TYPE_NONE)
      return;

   anv_semaphore_impl_cleanup(device, &semaphore->temporary);
   semaphore->temporary.type = ANV_SEMAPHORE_TYPE_NONE;
}

void anv_DestroySemaphore(
    VkDevice                                    _device,
    VkSemaphore                                 _semaphore,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_semaphore, semaphore, _semaphore);

   if (semaphore == NULL)
      return;

   anv_semaphore_impl_cleanup(device, &semaphore->temporary);
   anv_semaphore_impl_cleanup(device, &semaphore->permanent);

   vk_free2(&device->alloc, pAllocator, semaphore);
}

void anv_GetPhysicalDeviceExternalSemaphorePropertiesKHR(
    VkPhysicalDevice                            physicalDevice,
    const VkPhysicalDeviceExternalSemaphoreInfoKHR* pExternalSemaphoreInfo,
    VkExternalSemaphorePropertiesKHR*           pExternalSemaphoreProperties)
{
   ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);

   switch (pExternalSemaphoreInfo->handleType) {
   case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
      pExternalSemaphoreProperties->exportFromImportedHandleTypes =
         VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR;
      pExternalSemaphoreProperties->compatibleHandleTypes =
         VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR;
      pExternalSemaphoreProperties->externalSemaphoreFeatures =
         VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHR |
         VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR;
      return;

   case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR:
      if (device->has_exec_fence) {
         pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
         pExternalSemaphoreProperties->compatibleHandleTypes =
            VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR;
         pExternalSemaphoreProperties->externalSemaphoreFeatures =
            VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHR |
            VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR;
         return;
      }
      break;

   default:
      break;
   }

   pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
   pExternalSemaphoreProperties->compatibleHandleTypes = 0;
   pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
}

VkResult anv_ImportSemaphoreFdKHR(
    VkDevice                                    _device,
    const VkImportSemaphoreFdInfoKHR*           pImportSemaphoreFdInfo)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_semaphore, semaphore, pImportSemaphoreFdInfo->semaphore);
   int fd = pImportSemaphoreFdInfo->fd;

   struct anv_semaphore_impl new_impl = {
      .type = ANV_SEMAPHORE_TYPE_NONE,
   };

   switch (pImportSemaphoreFdInfo->handleType) {
   case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
      if (device->instance->physicalDevice.has_syncobj) {
         new_impl.type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ;

         new_impl.syncobj = anv_gem_syncobj_fd_to_handle(device, fd);
         if (!new_impl.syncobj)
            return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
      } else {
         new_impl.type = ANV_SEMAPHORE_TYPE_BO;

         VkResult result = anv_bo_cache_import(device, &device->bo_cache,
                                               fd, &new_impl.bo);
         if (result != VK_SUCCESS)
            return result;

         if (new_impl.bo->size < 4096) {
            anv_bo_cache_release(device, &device->bo_cache, new_impl.bo);
            return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
         }

         /* If we're going to use this as a fence, we need to *not* have the
          * EXEC_OBJECT_ASYNC bit set.
          */
         assert(!(new_impl.bo->flags & EXEC_OBJECT_ASYNC));
      }

      /* From the Vulkan spec:
       *
       *    "Importing semaphore state from a file descriptor transfers
       *    ownership of the file descriptor from the application to the
       *    Vulkan implementation. The application must not perform any
       *    operations on the file descriptor after a successful import."
       *
       * If the import fails, we leave the file descriptor open.
       */
      close(fd);
      break;

   case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR:
      new_impl = (struct anv_semaphore_impl) {
         .type = ANV_SEMAPHORE_TYPE_SYNC_FILE,
         .fd = fd,
      };
      break;

   default:
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
   }

   if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT_KHR) {
      anv_semaphore_impl_cleanup(device, &semaphore->temporary);
      semaphore->temporary = new_impl;
   } else {
      anv_semaphore_impl_cleanup(device, &semaphore->permanent);
      semaphore->permanent = new_impl;
   }

   return VK_SUCCESS;
}

VkResult anv_GetSemaphoreFdKHR(
    VkDevice                                    _device,
    const VkSemaphoreGetFdInfoKHR*              pGetFdInfo,
    int*                                        pFd)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_semaphore, semaphore, pGetFdInfo->semaphore);
   VkResult result;
   int fd;

   assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR);

   struct anv_semaphore_impl *impl =
      semaphore->temporary.type != ANV_SEMAPHORE_TYPE_NONE ?
      &semaphore->temporary : &semaphore->permanent;

   switch (impl->type) {
   case ANV_SEMAPHORE_TYPE_BO:
      result = anv_bo_cache_export(device, &device->bo_cache, impl->bo, pFd);
      if (result != VK_SUCCESS)
         return result;
      break;

   case ANV_SEMAPHORE_TYPE_SYNC_FILE:
      /* There are two reasons why this could happen:
       *
       *  1) The user is trying to export without submitting something that
       *     signals the semaphore.  If this is the case, it's their bug so
       *     what we return here doesn't matter.
       *
       *  2) The kernel didn't give us a file descriptor.  The most likely
       *     reason for this is running out of file descriptors.
       */
      if (impl->fd < 0)
         return vk_error(VK_ERROR_TOO_MANY_OBJECTS);

      *pFd = impl->fd;

      /* From the Vulkan 1.0.53 spec:
       *
       *    "...exporting a semaphore payload to a handle with copy
       *    transference has the same side effects on the source
       *    semaphore’s payload as executing a semaphore wait operation."
       *
       * In other words, it may still be a SYNC_FD semaphore, but it's now
       * considered to have been waited on and no longer has a sync file
       * attached.
       */
      impl->fd = -1;
      return VK_SUCCESS;

   case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ:
      fd = anv_gem_syncobj_handle_to_fd(device, impl->syncobj);
      if (fd < 0)
         return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
      *pFd = fd;
      break;

   default:
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
   }

   /* From the Vulkan 1.0.53 spec:
    *
    *    "Export operations have the same transference as the specified handle
    *    type’s import operations. [...] If the semaphore was using a
    *    temporarily imported payload, the semaphore’s prior permanent payload
    *    will be restored.
    */
   if (impl == &semaphore->temporary)
      anv_semaphore_impl_cleanup(device, impl);

   return VK_SUCCESS;
}