summaryrefslogtreecommitdiffstats
path: root/src/intel/vulkan/anv_queue.c
blob: be7fd31008106db4e7244942d8b2215a578db4eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

/**
 * This file implements VkQueue, VkFence, and VkSemaphore
 */

#include <fcntl.h>
#include <unistd.h>
#include <sys/eventfd.h>

#include "anv_private.h"
#include "util/vk_util.h"

#include "genxml/gen7_pack.h"

VkResult
anv_device_execbuf(struct anv_device *device,
                   struct drm_i915_gem_execbuffer2 *execbuf,
                   struct anv_bo **execbuf_bos)
{
   int ret = anv_gem_execbuffer(device, execbuf);
   if (ret != 0) {
      /* We don't know the real error. */
      device->lost = true;
      return vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
   }

   struct drm_i915_gem_exec_object2 *objects =
      (void *)(uintptr_t)execbuf->buffers_ptr;
   for (uint32_t k = 0; k < execbuf->buffer_count; k++)
      execbuf_bos[k]->offset = objects[k].offset;

   return VK_SUCCESS;
}

VkResult
anv_device_submit_simple_batch(struct anv_device *device,
                               struct anv_batch *batch)
{
   struct drm_i915_gem_execbuffer2 execbuf;
   struct drm_i915_gem_exec_object2 exec2_objects[1];
   struct anv_bo bo, *exec_bos[1];
   VkResult result = VK_SUCCESS;
   uint32_t size;

   /* Kernel driver requires 8 byte aligned batch length */
   size = align_u32(batch->next - batch->start, 8);
   result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
   if (result != VK_SUCCESS)
      return result;

   memcpy(bo.map, batch->start, size);
   if (!device->info.has_llc)
      anv_flush_range(bo.map, size);

   exec_bos[0] = &bo;
   exec2_objects[0].handle = bo.gem_handle;
   exec2_objects[0].relocation_count = 0;
   exec2_objects[0].relocs_ptr = 0;
   exec2_objects[0].alignment = 0;
   exec2_objects[0].offset = bo.offset;
   exec2_objects[0].flags = 0;
   exec2_objects[0].rsvd1 = 0;
   exec2_objects[0].rsvd2 = 0;

   execbuf.buffers_ptr = (uintptr_t) exec2_objects;
   execbuf.buffer_count = 1;
   execbuf.batch_start_offset = 0;
   execbuf.batch_len = size;
   execbuf.cliprects_ptr = 0;
   execbuf.num_cliprects = 0;
   execbuf.DR1 = 0;
   execbuf.DR4 = 0;

   execbuf.flags =
      I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
   execbuf.rsvd1 = device->context_id;
   execbuf.rsvd2 = 0;

   result = anv_device_execbuf(device, &execbuf, exec_bos);
   if (result != VK_SUCCESS)
      goto fail;

   result = anv_device_wait(device, &bo, INT64_MAX);

 fail:
   anv_bo_pool_free(&device->batch_bo_pool, &bo);

   return result;
}

VkResult anv_QueueSubmit(
    VkQueue                                     _queue,
    uint32_t                                    submitCount,
    const VkSubmitInfo*                         pSubmits,
    VkFence                                     _fence)
{
   ANV_FROM_HANDLE(anv_queue, queue, _queue);
   ANV_FROM_HANDLE(anv_fence, fence, _fence);
   struct anv_device *device = queue->device;

   /* Query for device status prior to submitting.  Technically, we don't need
    * to do this.  However, if we have a client that's submitting piles of
    * garbage, we would rather break as early as possible to keep the GPU
    * hanging contained.  If we don't check here, we'll either be waiting for
    * the kernel to kick us or we'll have to wait until the client waits on a
    * fence before we actually know whether or not we've hung.
    */
   VkResult result = anv_device_query_status(device);
   if (result != VK_SUCCESS)
      return result;

   /* We lock around QueueSubmit for three main reasons:
    *
    *  1) When a block pool is resized, we create a new gem handle with a
    *     different size and, in the case of surface states, possibly a
    *     different center offset but we re-use the same anv_bo struct when
    *     we do so.  If this happens in the middle of setting up an execbuf,
    *     we could end up with our list of BOs out of sync with our list of
    *     gem handles.
    *
    *  2) The algorithm we use for building the list of unique buffers isn't
    *     thread-safe.  While the client is supposed to syncronize around
    *     QueueSubmit, this would be extremely difficult to debug if it ever
    *     came up in the wild due to a broken app.  It's better to play it
    *     safe and just lock around QueueSubmit.
    *
    *  3)  The anv_cmd_buffer_execbuf function may perform relocations in
    *      userspace.  Due to the fact that the surface state buffer is shared
    *      between batches, we can't afford to have that happen from multiple
    *      threads at the same time.  Even though the user is supposed to
    *      ensure this doesn't happen, we play it safe as in (2) above.
    *
    * Since the only other things that ever take the device lock such as block
    * pool resize only rarely happen, this will almost never be contended so
    * taking a lock isn't really an expensive operation in this case.
    */
   pthread_mutex_lock(&device->mutex);

   for (uint32_t i = 0; i < submitCount; i++) {
      for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
         ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
                         pSubmits[i].pCommandBuffers[j]);
         assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
         assert(!anv_batch_has_error(&cmd_buffer->batch));

         const VkSemaphore *in_semaphores = NULL, *out_semaphores = NULL;
         uint32_t num_in_semaphores = 0, num_out_semaphores = 0;
         if (j == 0) {
            /* Only the first batch gets the in semaphores */
            in_semaphores = pSubmits[i].pWaitSemaphores;
            num_in_semaphores = pSubmits[i].waitSemaphoreCount;
         }

         if (j == pSubmits[i].commandBufferCount - 1) {
            /* Only the last batch gets the out semaphores */
            out_semaphores = pSubmits[i].pSignalSemaphores;
            num_out_semaphores = pSubmits[i].signalSemaphoreCount;
         }

         result = anv_cmd_buffer_execbuf(device, cmd_buffer,
                                         in_semaphores, num_in_semaphores,
                                         out_semaphores, num_out_semaphores);
         if (result != VK_SUCCESS)
            goto out;
      }
   }

   if (fence) {
      struct anv_bo *fence_bo = &fence->bo;
      result = anv_device_execbuf(device, &fence->execbuf, &fence_bo);
      if (result != VK_SUCCESS)
         goto out;

      /* Update the fence and wake up any waiters */
      assert(fence->state == ANV_FENCE_STATE_RESET);
      fence->state = ANV_FENCE_STATE_SUBMITTED;
      pthread_cond_broadcast(&device->queue_submit);
   }

out:
   if (result != VK_SUCCESS) {
      /* In the case that something has gone wrong we may end up with an
       * inconsistent state from which it may not be trivial to recover.
       * For example, we might have computed address relocations and
       * any future attempt to re-submit this job will need to know about
       * this and avoid computing relocation addresses again.
       *
       * To avoid this sort of issues, we assume that if something was
       * wrong during submission we must already be in a really bad situation
       * anyway (such us being out of memory) and return
       * VK_ERROR_DEVICE_LOST to ensure that clients do not attempt to
       * submit the same job again to this device.
       */
      result = vk_errorf(VK_ERROR_DEVICE_LOST, "vkQueueSubmit() failed");
      device->lost = true;

      /* If we return VK_ERROR_DEVICE LOST here, we need to ensure that
       * vkWaitForFences() and vkGetFenceStatus() return a valid result
       * (VK_SUCCESS or VK_ERROR_DEVICE_LOST) in a finite amount of time.
       * Setting the fence status to SIGNALED ensures this will happen in
       * any case.
       */
      if (fence)
         fence->state = ANV_FENCE_STATE_SIGNALED;
   }

   pthread_mutex_unlock(&device->mutex);

   return result;
}

VkResult anv_QueueWaitIdle(
    VkQueue                                     _queue)
{
   ANV_FROM_HANDLE(anv_queue, queue, _queue);

   return anv_DeviceWaitIdle(anv_device_to_handle(queue->device));
}

VkResult anv_CreateFence(
    VkDevice                                    _device,
    const VkFenceCreateInfo*                    pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkFence*                                    pFence)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_bo fence_bo;
   struct anv_fence *fence;
   struct anv_batch batch;
   VkResult result;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);

   result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096);
   if (result != VK_SUCCESS)
      return result;

   /* Fences are small.  Just store the CPU data structure in the BO. */
   fence = fence_bo.map;
   fence->bo = fence_bo;

   /* Place the batch after the CPU data but on its own cache line. */
   const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE);
   batch.next = batch.start = fence->bo.map + batch_offset;
   batch.end = fence->bo.map + fence->bo.size;
   anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
   anv_batch_emit(&batch, GEN7_MI_NOOP, noop);

   if (!device->info.has_llc) {
      assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0);
      assert(batch.next - batch.start <= CACHELINE_SIZE);
      __builtin_ia32_mfence();
      __builtin_ia32_clflush(batch.start);
   }

   fence->exec2_objects[0].handle = fence->bo.gem_handle;
   fence->exec2_objects[0].relocation_count = 0;
   fence->exec2_objects[0].relocs_ptr = 0;
   fence->exec2_objects[0].alignment = 0;
   fence->exec2_objects[0].offset = fence->bo.offset;
   fence->exec2_objects[0].flags = 0;
   fence->exec2_objects[0].rsvd1 = 0;
   fence->exec2_objects[0].rsvd2 = 0;

   fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
   fence->execbuf.buffer_count = 1;
   fence->execbuf.batch_start_offset = batch.start - fence->bo.map;
   fence->execbuf.batch_len = batch.next - batch.start;
   fence->execbuf.cliprects_ptr = 0;
   fence->execbuf.num_cliprects = 0;
   fence->execbuf.DR1 = 0;
   fence->execbuf.DR4 = 0;

   fence->execbuf.flags =
      I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
   fence->execbuf.rsvd1 = device->context_id;
   fence->execbuf.rsvd2 = 0;

   if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
      fence->state = ANV_FENCE_STATE_SIGNALED;
   } else {
      fence->state = ANV_FENCE_STATE_RESET;
   }

   *pFence = anv_fence_to_handle(fence);

   return VK_SUCCESS;
}

void anv_DestroyFence(
    VkDevice                                    _device,
    VkFence                                     _fence,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_fence, fence, _fence);

   if (!fence)
      return;

   assert(fence->bo.map == fence);
   anv_bo_pool_free(&device->batch_bo_pool, &fence->bo);
}

VkResult anv_ResetFences(
    VkDevice                                    _device,
    uint32_t                                    fenceCount,
    const VkFence*                              pFences)
{
   for (uint32_t i = 0; i < fenceCount; i++) {
      ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
      fence->state = ANV_FENCE_STATE_RESET;
   }

   return VK_SUCCESS;
}

VkResult anv_GetFenceStatus(
    VkDevice                                    _device,
    VkFence                                     _fence)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_fence, fence, _fence);

   if (unlikely(device->lost))
      return VK_ERROR_DEVICE_LOST;

   switch (fence->state) {
   case ANV_FENCE_STATE_RESET:
      /* If it hasn't even been sent off to the GPU yet, it's not ready */
      return VK_NOT_READY;

   case ANV_FENCE_STATE_SIGNALED:
      /* It's been signaled, return success */
      return VK_SUCCESS;

   case ANV_FENCE_STATE_SUBMITTED: {
      VkResult result = anv_device_bo_busy(device, &fence->bo);
      if (result == VK_SUCCESS) {
         fence->state = ANV_FENCE_STATE_SIGNALED;
         return VK_SUCCESS;
      } else {
         return result;
      }
   }
   default:
      unreachable("Invalid fence status");
   }
}

#define NSEC_PER_SEC 1000000000
#define INT_TYPE_MAX(type) ((1ull << (sizeof(type) * 8 - 1)) - 1)

VkResult anv_WaitForFences(
    VkDevice                                    _device,
    uint32_t                                    fenceCount,
    const VkFence*                              pFences,
    VkBool32                                    waitAll,
    uint64_t                                    _timeout)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   int ret;

   if (unlikely(device->lost))
      return VK_ERROR_DEVICE_LOST;

   /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
    * to block indefinitely timeouts <= 0.  Unfortunately, this was broken
    * for a couple of kernel releases.  Since there's no way to know
    * whether or not the kernel we're using is one of the broken ones, the
    * best we can do is to clamp the timeout to INT64_MAX.  This limits the
    * maximum timeout from 584 years to 292 years - likely not a big deal.
    */
   int64_t timeout = MIN2(_timeout, INT64_MAX);

   VkResult result = VK_SUCCESS;
   uint32_t pending_fences = fenceCount;
   while (pending_fences) {
      pending_fences = 0;
      bool signaled_fences = false;
      for (uint32_t i = 0; i < fenceCount; i++) {
         ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
         switch (fence->state) {
         case ANV_FENCE_STATE_RESET:
            /* This fence hasn't been submitted yet, we'll catch it the next
             * time around.  Yes, this may mean we dead-loop but, short of
             * lots of locking and a condition variable, there's not much that
             * we can do about that.
             */
            pending_fences++;
            continue;

         case ANV_FENCE_STATE_SIGNALED:
            /* This fence is not pending.  If waitAll isn't set, we can return
             * early.  Otherwise, we have to keep going.
             */
            if (!waitAll) {
               result = VK_SUCCESS;
               goto done;
            }
            continue;

         case ANV_FENCE_STATE_SUBMITTED:
            /* These are the fences we really care about.  Go ahead and wait
             * on it until we hit a timeout.
             */
            result = anv_device_wait(device, &fence->bo, timeout);
            switch (result) {
            case VK_SUCCESS:
               fence->state = ANV_FENCE_STATE_SIGNALED;
               signaled_fences = true;
               if (!waitAll)
                  goto done;
               break;

            case VK_TIMEOUT:
               goto done;

            default:
               return result;
            }
         }
      }

      if (pending_fences && !signaled_fences) {
         /* If we've hit this then someone decided to vkWaitForFences before
          * they've actually submitted any of them to a queue.  This is a
          * fairly pessimal case, so it's ok to lock here and use a standard
          * pthreads condition variable.
          */
         pthread_mutex_lock(&device->mutex);

         /* It's possible that some of the fences have changed state since the
          * last time we checked.  Now that we have the lock, check for
          * pending fences again and don't wait if it's changed.
          */
         uint32_t now_pending_fences = 0;
         for (uint32_t i = 0; i < fenceCount; i++) {
            ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
            if (fence->state == ANV_FENCE_STATE_RESET)
               now_pending_fences++;
         }
         assert(now_pending_fences <= pending_fences);

         if (now_pending_fences == pending_fences) {
            struct timespec before;
            clock_gettime(CLOCK_MONOTONIC, &before);

            uint32_t abs_nsec = before.tv_nsec + timeout % NSEC_PER_SEC;
            uint64_t abs_sec = before.tv_sec + (abs_nsec / NSEC_PER_SEC) +
                               (timeout / NSEC_PER_SEC);
            abs_nsec %= NSEC_PER_SEC;

            /* Avoid roll-over in tv_sec on 32-bit systems if the user
             * provided timeout is UINT64_MAX
             */
            struct timespec abstime;
            abstime.tv_nsec = abs_nsec;
            abstime.tv_sec = MIN2(abs_sec, INT_TYPE_MAX(abstime.tv_sec));

            ret = pthread_cond_timedwait(&device->queue_submit,
                                         &device->mutex, &abstime);
            assert(ret != EINVAL);

            struct timespec after;
            clock_gettime(CLOCK_MONOTONIC, &after);
            uint64_t time_elapsed =
               ((uint64_t)after.tv_sec * NSEC_PER_SEC + after.tv_nsec) -
               ((uint64_t)before.tv_sec * NSEC_PER_SEC + before.tv_nsec);

            if (time_elapsed >= timeout) {
               pthread_mutex_unlock(&device->mutex);
               result = VK_TIMEOUT;
               goto done;
            }

            timeout -= time_elapsed;
         }

         pthread_mutex_unlock(&device->mutex);
      }
   }

done:
   if (unlikely(device->lost))
      return VK_ERROR_DEVICE_LOST;

   return result;
}

// Queue semaphore functions

VkResult anv_CreateSemaphore(
    VkDevice                                    _device,
    const VkSemaphoreCreateInfo*                pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSemaphore*                                pSemaphore)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_semaphore *semaphore;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO);

   semaphore = vk_alloc2(&device->alloc, pAllocator, sizeof(*semaphore), 8,
                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (semaphore == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   const VkExportSemaphoreCreateInfoKHX *export =
      vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO_KHX);
    VkExternalSemaphoreHandleTypeFlagsKHX handleTypes =
      export ? export->handleTypes : 0;

   if (handleTypes == 0) {
      /* The DRM execbuffer ioctl always execute in-oder so long as you stay
       * on the same ring.  Since we don't expose the blit engine as a DMA
       * queue, a dummy no-op semaphore is a perfectly valid implementation.
       */
      semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DUMMY;
   } else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHX) {
      assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHX);

      semaphore->permanent.type = ANV_SEMAPHORE_TYPE_BO;
      VkResult result = anv_bo_cache_alloc(device, &device->bo_cache,
                                           4096, &semaphore->permanent.bo);
      if (result != VK_SUCCESS) {
         vk_free2(&device->alloc, pAllocator, semaphore);
         return result;
      }

      /* If we're going to use this as a fence, we need to *not* have the
       * EXEC_OBJECT_ASYNC bit set.
       */
      assert(!(semaphore->permanent.bo->flags & EXEC_OBJECT_ASYNC));
   } else {
      assert(!"Unknown handle type");
      vk_free2(&device->alloc, pAllocator, semaphore);
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX);
   }

   semaphore->temporary.type = ANV_SEMAPHORE_TYPE_NONE;

   *pSemaphore = anv_semaphore_to_handle(semaphore);

   return VK_SUCCESS;
}

static void
anv_semaphore_impl_cleanup(struct anv_device *device,
                           struct anv_semaphore_impl *impl)
{
   switch (impl->type) {
   case ANV_SEMAPHORE_TYPE_NONE:
   case ANV_SEMAPHORE_TYPE_DUMMY:
      /* Dummy.  Nothing to do */
      return;

   case ANV_SEMAPHORE_TYPE_BO:
      anv_bo_cache_release(device, &device->bo_cache, impl->bo);
      return;
   }

   unreachable("Invalid semaphore type");
}

void anv_DestroySemaphore(
    VkDevice                                    _device,
    VkSemaphore                                 _semaphore,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_semaphore, semaphore, _semaphore);

   if (semaphore == NULL)
      return;

   anv_semaphore_impl_cleanup(device, &semaphore->temporary);
   anv_semaphore_impl_cleanup(device, &semaphore->permanent);

   vk_free2(&device->alloc, pAllocator, semaphore);
}

void anv_GetPhysicalDeviceExternalSemaphorePropertiesKHX(
    VkPhysicalDevice                            physicalDevice,
    const VkPhysicalDeviceExternalSemaphoreInfoKHX* pExternalSemaphoreInfo,
    VkExternalSemaphorePropertiesKHX*           pExternalSemaphoreProperties)
{
   switch (pExternalSemaphoreInfo->handleType) {
   case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHX:
      pExternalSemaphoreProperties->exportFromImportedHandleTypes =
         VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHX;
      pExternalSemaphoreProperties->compatibleHandleTypes =
         VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHX;
      pExternalSemaphoreProperties->externalSemaphoreFeatures =
         VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHX |
         VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHX;
      break;

   default:
      pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
      pExternalSemaphoreProperties->compatibleHandleTypes = 0;
      pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
   }
}

VkResult anv_ImportSemaphoreFdKHX(
    VkDevice                                    _device,
    const VkImportSemaphoreFdInfoKHX*           pImportSemaphoreFdInfo)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_semaphore, semaphore, pImportSemaphoreFdInfo->semaphore);

   switch (pImportSemaphoreFdInfo->handleType) {
   case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHX: {
      struct anv_bo *bo;
      VkResult result = anv_bo_cache_import(device, &device->bo_cache,
                                            pImportSemaphoreFdInfo->fd, 4096,
                                            &bo);
      if (result != VK_SUCCESS)
         return result;

      /* If we're going to use this as a fence, we need to *not* have the
       * EXEC_OBJECT_ASYNC bit set.
       */
      assert(!(bo->flags & EXEC_OBJECT_ASYNC));

      anv_semaphore_impl_cleanup(device, &semaphore->permanent);

      semaphore->permanent.type = ANV_SEMAPHORE_TYPE_BO;
      semaphore->permanent.bo = bo;

      return VK_SUCCESS;
   }

   default:
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX);
   }
}

VkResult anv_GetSemaphoreFdKHX(
    VkDevice                                    _device,
    VkSemaphore                                 _semaphore,
    VkExternalSemaphoreHandleTypeFlagBitsKHX    handleType,
    int*                                        pFd)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_semaphore, semaphore, _semaphore);

   switch (semaphore->permanent.type) {
   case ANV_SEMAPHORE_TYPE_BO:
      return anv_bo_cache_export(device, &device->bo_cache,
                                 semaphore->permanent.bo, pFd);

   default:
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX);
   }

   return VK_SUCCESS;
}