aboutsummaryrefslogtreecommitdiffstats
path: root/src/intel/vulkan/anv_queue.c
blob: dc476470b75e7201069bb78d6fa3be972e8e5f02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

/**
 * This file implements VkQueue, VkFence, and VkSemaphore
 */

#include <fcntl.h>
#include <unistd.h>

#include "anv_private.h"
#include "vk_util.h"

#include "genxml/gen7_pack.h"

uint64_t anv_gettime_ns(void)
{
   struct timespec current;
   clock_gettime(CLOCK_MONOTONIC, &current);
   return (uint64_t)current.tv_sec * NSEC_PER_SEC + current.tv_nsec;
}

uint64_t anv_get_absolute_timeout(uint64_t timeout)
{
   if (timeout == 0)
      return 0;
   uint64_t current_time = anv_gettime_ns();
   uint64_t max_timeout = (uint64_t) INT64_MAX - current_time;

   timeout = MIN2(max_timeout, timeout);

   return (current_time + timeout);
}

static int64_t anv_get_relative_timeout(uint64_t abs_timeout)
{
   uint64_t now = anv_gettime_ns();

   /* We don't want negative timeouts.
    *
    * DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is
    * supposed to block indefinitely timeouts < 0.  Unfortunately,
    * this was broken for a couple of kernel releases.  Since there's
    * no way to know whether or not the kernel we're using is one of
    * the broken ones, the best we can do is to clamp the timeout to
    * INT64_MAX.  This limits the maximum timeout from 584 years to
    * 292 years - likely not a big deal.
    */
   if (abs_timeout < now)
      return 0;

   uint64_t rel_timeout = abs_timeout - now;
   if (rel_timeout > (uint64_t) INT64_MAX)
      rel_timeout = INT64_MAX;

   return rel_timeout;
}

static struct anv_semaphore *anv_semaphore_ref(struct anv_semaphore *semaphore);
static void anv_semaphore_unref(struct anv_device *device, struct anv_semaphore *semaphore);
static void anv_semaphore_impl_cleanup(struct anv_device *device,
                                       struct anv_semaphore_impl *impl);

static void
anv_queue_submit_free(struct anv_device *device,
                      struct anv_queue_submit *submit)
{
   const VkAllocationCallbacks *alloc = submit->alloc;

   for (uint32_t i = 0; i < submit->temporary_semaphore_count; i++)
      anv_semaphore_impl_cleanup(device, &submit->temporary_semaphores[i]);
   for (uint32_t i = 0; i < submit->sync_fd_semaphore_count; i++)
      anv_semaphore_unref(device, submit->sync_fd_semaphores[i]);
   /* Execbuf does not consume the in_fence.  It's our job to close it. */
   if (submit->in_fence != -1)
      close(submit->in_fence);
   if (submit->out_fence != -1)
      close(submit->out_fence);
   vk_free(alloc, submit->fences);
   vk_free(alloc, submit->temporary_semaphores);
   vk_free(alloc, submit->fence_bos);
   vk_free(alloc, submit);
}

static VkResult
_anv_queue_submit(struct anv_queue *queue, struct anv_queue_submit **_submit)
{
   struct anv_queue_submit *submit = *_submit;
   VkResult result = anv_queue_execbuf(queue, submit);

   if (result == VK_SUCCESS) {
      /* Update signaled semaphores backed by syncfd. */
      for (uint32_t i = 0; i < submit->sync_fd_semaphore_count; i++) {
         struct anv_semaphore *semaphore = submit->sync_fd_semaphores[i];
         /* Out fences can't have temporary state because that would imply
          * that we imported a sync file and are trying to signal it.
          */
         assert(semaphore->temporary.type == ANV_SEMAPHORE_TYPE_NONE);
         struct anv_semaphore_impl *impl = &semaphore->permanent;

         assert(impl->type == ANV_SEMAPHORE_TYPE_SYNC_FILE);
         impl->fd = dup(submit->out_fence);
      }
   }

   return result;
}

VkResult
anv_queue_init(struct anv_device *device, struct anv_queue *queue)
{
   queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
   queue->device = device;
   queue->flags = 0;

   return VK_SUCCESS;
}

void
anv_queue_finish(struct anv_queue *queue)
{
}

static VkResult
anv_queue_submit_add_fence_bo(struct anv_queue_submit *submit,
                              struct anv_bo *bo,
                              bool signal)
{
   if (submit->fence_bo_count >= submit->fence_bo_array_length) {
      uint32_t new_len = MAX2(submit->fence_bo_array_length * 2, 64);

      submit->fence_bos =
         vk_realloc(submit->alloc,
                    submit->fence_bos, new_len * sizeof(*submit->fence_bos),
                    8, submit->alloc_scope);
      if (submit->fence_bos == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      submit->fence_bo_array_length = new_len;
   }

   /* Take advantage that anv_bo are allocated at 8 byte alignement so we can
    * use the lowest bit to store whether this is a BO we need to signal.
    */
   submit->fence_bos[submit->fence_bo_count++] = anv_pack_ptr(bo, 1, signal);

   return VK_SUCCESS;
}

static VkResult
anv_queue_submit_add_syncobj(struct anv_queue_submit* submit,
                             struct anv_device *device,
                             uint32_t handle, uint32_t flags)
{
   assert(flags != 0);

   if (submit->fence_count >= submit->fence_array_length) {
      uint32_t new_len = MAX2(submit->fence_array_length * 2, 64);

      submit->fences =
         vk_realloc(submit->alloc,
                    submit->fences, new_len * sizeof(*submit->fences),
                    8, submit->alloc_scope);
      if (submit->fences == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      submit->fence_array_length = new_len;
   }

   submit->fences[submit->fence_count++] = (struct drm_i915_gem_exec_fence) {
      .handle = handle,
      .flags = flags,
   };

   return VK_SUCCESS;
}

static VkResult
anv_queue_submit_add_sync_fd_fence(struct anv_queue_submit *submit,
                                   struct anv_semaphore *semaphore)
{
   if (submit->sync_fd_semaphore_count >= submit->sync_fd_semaphore_array_length) {
      uint32_t new_len = MAX2(submit->sync_fd_semaphore_array_length * 2, 64);
      struct anv_semaphore **new_semaphores =
         vk_realloc(submit->alloc, submit->sync_fd_semaphores,
                    new_len * sizeof(*submit->sync_fd_semaphores), 8,
                    submit->alloc_scope);
      if (new_semaphores == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      submit->sync_fd_semaphores = new_semaphores;
   }

   submit->sync_fd_semaphores[submit->sync_fd_semaphore_count++] =
      anv_semaphore_ref(semaphore);
   submit->need_out_fence = true;

   return VK_SUCCESS;
}

static struct anv_queue_submit *
anv_queue_submit_alloc(struct anv_device *device)
{
   const VkAllocationCallbacks *alloc = &device->alloc;
   VkSystemAllocationScope alloc_scope = VK_SYSTEM_ALLOCATION_SCOPE_COMMAND;

   struct anv_queue_submit *submit = vk_zalloc(alloc, sizeof(*submit), 8, alloc_scope);
   if (!submit)
      return NULL;

   submit->alloc = alloc;
   submit->alloc_scope = alloc_scope;
   submit->in_fence = -1;
   submit->out_fence = -1;

   return submit;
}

VkResult
anv_queue_submit_simple_batch(struct anv_queue *queue,
                              struct anv_batch *batch)
{
   struct anv_device *device = queue->device;
   struct anv_queue_submit *submit = anv_queue_submit_alloc(device);
   if (!submit)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   bool has_syncobj_wait = device->instance->physicalDevice.has_syncobj_wait;
   VkResult result;
   uint32_t syncobj;
   struct anv_bo *batch_bo, *sync_bo;

   if (has_syncobj_wait) {
      syncobj = anv_gem_syncobj_create(device, 0);
      if (!syncobj) {
         result = vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
         goto err_free_submit;
      }

      result = anv_queue_submit_add_syncobj(submit, device, syncobj,
                                            I915_EXEC_FENCE_SIGNAL);
   } else {
      result = anv_device_alloc_bo(device, 4096,
                                   ANV_BO_ALLOC_EXTERNAL |
                                   ANV_BO_ALLOC_IMPLICIT_SYNC,
                                   &sync_bo);
      if (result != VK_SUCCESS)
         goto err_free_submit;

      result = anv_queue_submit_add_fence_bo(submit, sync_bo, true /* signal */);
   }

   if (result != VK_SUCCESS)
      goto err_destroy_sync_primitive;

   if (batch) {
      uint32_t size = align_u32(batch->next - batch->start, 8);
      result = anv_bo_pool_alloc(&device->batch_bo_pool, size, &batch_bo);
      if (result != VK_SUCCESS)
         goto err_destroy_sync_primitive;

      memcpy(batch_bo->map, batch->start, size);
      if (!device->info.has_llc)
         gen_flush_range(batch_bo->map, size);

      submit->simple_bo = batch_bo;
      submit->simple_bo_size = size;
   }

   result = _anv_queue_submit(queue, &submit);

   if (result == VK_SUCCESS) {
      if (has_syncobj_wait) {
         if (anv_gem_syncobj_wait(device, &syncobj, 1,
                                  anv_get_absolute_timeout(INT64_MAX), true))
            result = anv_device_set_lost(device, "anv_gem_syncobj_wait failed: %m");
         anv_gem_syncobj_destroy(device, syncobj);
      } else {
         result = anv_device_wait(device, sync_bo,
                                  anv_get_relative_timeout(INT64_MAX));
         anv_device_release_bo(device, sync_bo);
      }
   }

   if (batch)
      anv_bo_pool_free(&device->batch_bo_pool, batch_bo);

   if (submit)
      anv_queue_submit_free(device, submit);

   return result;

 err_destroy_sync_primitive:
   if (has_syncobj_wait)
      anv_gem_syncobj_destroy(device, syncobj);
   else
      anv_device_release_bo(device, sync_bo);
 err_free_submit:
   if (submit)
      anv_queue_submit_free(device, submit);

   return result;
}

/* Transfer ownership of temporary semaphores from the VkSemaphore object to
 * the anv_queue_submit object. Those temporary semaphores are then freed in
 * anv_queue_submit_free() once the driver is finished with them.
 */
static VkResult
maybe_transfer_temporary_semaphore(struct anv_queue_submit *submit,
                                   struct anv_semaphore *semaphore,
                                   struct anv_semaphore_impl **out_impl)
{
   struct anv_semaphore_impl *impl = &semaphore->temporary;

   if (impl->type == ANV_SEMAPHORE_TYPE_NONE) {
      *out_impl = &semaphore->permanent;
      return VK_SUCCESS;
   }

   /*
    * There is a requirement to reset semaphore to their permanent state after
    * submission. From the Vulkan 1.0.53 spec:
    *
    *    "If the import is temporary, the implementation must restore the
    *    semaphore to its prior permanent state after submitting the next
    *    semaphore wait operation."
    *
    * In the case we defer the actual submission to a thread because of the
    * wait-before-submit behavior required for timeline semaphores, we need to
    * make copies of the temporary syncobj to ensure they stay alive until we
    * do the actual execbuffer ioctl.
    */
   if (submit->temporary_semaphore_count >= submit->temporary_semaphore_array_length) {
      uint32_t new_len = MAX2(submit->temporary_semaphore_array_length * 2, 8);
      /* Make sure that if the realloc fails, we still have the old semaphore
       * array around to properly clean things up on failure.
       */
      struct anv_semaphore_impl *new_array =
         vk_realloc(submit->alloc,
                    submit->temporary_semaphores,
                    new_len * sizeof(*submit->temporary_semaphores),
                    8, submit->alloc_scope);
      if (new_array == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      submit->temporary_semaphores = new_array;
      submit->temporary_semaphore_array_length = new_len;
   }

   /* Copy anv_semaphore_impl into anv_queue_submit. */
   submit->temporary_semaphores[submit->temporary_semaphore_count++] = *impl;
   *out_impl = &submit->temporary_semaphores[submit->temporary_semaphore_count - 1];

   /* Clear the incoming semaphore */
   impl->type = ANV_SEMAPHORE_TYPE_NONE;

   return VK_SUCCESS;
}

static VkResult
anv_queue_submit(struct anv_queue *queue,
                 struct anv_cmd_buffer *cmd_buffer,
                 const VkSemaphore *in_semaphores,
                 const uint64_t *in_values,
                 uint32_t num_in_semaphores,
                 const VkSemaphore *out_semaphores,
                 const uint64_t *out_values,
                 uint32_t num_out_semaphores,
                 VkFence _fence)
{
   ANV_FROM_HANDLE(anv_fence, fence, _fence);
   struct anv_device *device = queue->device;
   UNUSED struct anv_physical_device *pdevice = &device->instance->physicalDevice;
   struct anv_queue_submit *submit = anv_queue_submit_alloc(device);
   if (!submit)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   submit->cmd_buffer = cmd_buffer;

   VkResult result = VK_SUCCESS;

   for (uint32_t i = 0; i < num_in_semaphores; i++) {
      ANV_FROM_HANDLE(anv_semaphore, semaphore, in_semaphores[i]);
      struct anv_semaphore_impl *impl;

      result = maybe_transfer_temporary_semaphore(submit, semaphore, &impl);
      if (result != VK_SUCCESS)
         goto error;

      switch (impl->type) {
      case ANV_SEMAPHORE_TYPE_BO:
         assert(!pdevice->has_syncobj);
         result = anv_queue_submit_add_fence_bo(submit, impl->bo, false /* signal */);
         if (result != VK_SUCCESS)
            goto error;
         break;

      case ANV_SEMAPHORE_TYPE_SYNC_FILE:
         assert(!pdevice->has_syncobj);
         if (submit->in_fence == -1) {
            submit->in_fence = impl->fd;
            if (submit->in_fence == -1) {
               result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
               goto error;
            }
            impl->fd = -1;
         } else {
            int merge = anv_gem_sync_file_merge(device, submit->in_fence, impl->fd);
            if (merge == -1) {
               result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
               goto error;
            }
            close(impl->fd);
            close(submit->in_fence);
            impl->fd = -1;
            submit->in_fence = merge;
         }
         break;

      case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ: {
         result = anv_queue_submit_add_syncobj(submit, device,
                                               impl->syncobj,
                                               I915_EXEC_FENCE_WAIT);
         if (result != VK_SUCCESS)
            goto error;
         break;
      }

      default:
         break;
      }
   }

   for (uint32_t i = 0; i < num_out_semaphores; i++) {
      ANV_FROM_HANDLE(anv_semaphore, semaphore, out_semaphores[i]);

      /* Under most circumstances, out fences won't be temporary.  However,
       * the spec does allow it for opaque_fd.  From the Vulkan 1.0.53 spec:
       *
       *    "If the import is temporary, the implementation must restore the
       *    semaphore to its prior permanent state after submitting the next
       *    semaphore wait operation."
       *
       * The spec says nothing whatsoever about signal operations on
       * temporarily imported semaphores so it appears they are allowed.
       * There are also CTS tests that require this to work.
       */
      struct anv_semaphore_impl *impl =
         semaphore->temporary.type != ANV_SEMAPHORE_TYPE_NONE ?
         &semaphore->temporary : &semaphore->permanent;

      switch (impl->type) {
      case ANV_SEMAPHORE_TYPE_BO:
         assert(!pdevice->has_syncobj);
         result = anv_queue_submit_add_fence_bo(submit, impl->bo, true /* signal */);
         if (result != VK_SUCCESS)
            goto error;
         break;

      case ANV_SEMAPHORE_TYPE_SYNC_FILE:
         assert(!pdevice->has_syncobj);
         result = anv_queue_submit_add_sync_fd_fence(submit, semaphore);
         if (result != VK_SUCCESS)
            goto error;
         break;

      case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ: {
         result = anv_queue_submit_add_syncobj(submit, device, impl->syncobj,
                                               I915_EXEC_FENCE_SIGNAL);
         if (result != VK_SUCCESS)
            goto error;
         break;
      }

      default:
         break;
      }
   }

   if (fence) {
      /* Under most circumstances, out fences won't be temporary.  However,
       * the spec does allow it for opaque_fd.  From the Vulkan 1.0.53 spec:
       *
       *    "If the import is temporary, the implementation must restore the
       *    semaphore to its prior permanent state after submitting the next
       *    semaphore wait operation."
       *
       * The spec says nothing whatsoever about signal operations on
       * temporarily imported semaphores so it appears they are allowed.
       * There are also CTS tests that require this to work.
       */
      struct anv_fence_impl *impl =
         fence->temporary.type != ANV_FENCE_TYPE_NONE ?
         &fence->temporary : &fence->permanent;

      switch (impl->type) {
      case ANV_FENCE_TYPE_BO:
         result = anv_queue_submit_add_fence_bo(submit, impl->bo.bo, true /* signal */);
         if (result != VK_SUCCESS)
            goto error;
         break;

      case ANV_FENCE_TYPE_SYNCOBJ: {
         /*
          * For the same reason we reset the signaled binary syncobj above,
          * also reset the fence's syncobj so that they don't contain a
          * signaled dma-fence.
          */
         result = anv_queue_submit_add_syncobj(submit, device, impl->syncobj,
                                               I915_EXEC_FENCE_SIGNAL);
         if (result != VK_SUCCESS)
            goto error;
         break;
      }

      default:
         unreachable("Invalid fence type");
      }
   }

   result = _anv_queue_submit(queue, &submit);
   if (result != VK_SUCCESS)
      goto error;

   if (fence && fence->permanent.type == ANV_FENCE_TYPE_BO) {
      /* BO fences can't be shared, so they can't be temporary. */
      assert(fence->temporary.type == ANV_FENCE_TYPE_NONE);

      /* Once the execbuf has returned, we need to set the fence state to
       * SUBMITTED.  We can't do this before calling execbuf because
       * anv_GetFenceStatus does take the global device lock before checking
       * fence->state.
       *
       * We set the fence state to SUBMITTED regardless of whether or not the
       * execbuf succeeds because we need to ensure that vkWaitForFences() and
       * vkGetFenceStatus() return a valid result (VK_ERROR_DEVICE_LOST or
       * VK_SUCCESS) in a finite amount of time even if execbuf fails.
       */
      fence->permanent.bo.state = ANV_BO_FENCE_STATE_SUBMITTED;
   }

 error:
   if (submit)
      anv_queue_submit_free(device, submit);

   return result;
}

VkResult anv_QueueSubmit(
    VkQueue                                     _queue,
    uint32_t                                    submitCount,
    const VkSubmitInfo*                         pSubmits,
    VkFence                                     fence)
{
   ANV_FROM_HANDLE(anv_queue, queue, _queue);

   /* Query for device status prior to submitting.  Technically, we don't need
    * to do this.  However, if we have a client that's submitting piles of
    * garbage, we would rather break as early as possible to keep the GPU
    * hanging contained.  If we don't check here, we'll either be waiting for
    * the kernel to kick us or we'll have to wait until the client waits on a
    * fence before we actually know whether or not we've hung.
    */
   VkResult result = anv_device_query_status(queue->device);
   if (result != VK_SUCCESS)
      return result;

   if (fence && submitCount == 0) {
      /* If we don't have any command buffers, we need to submit a dummy
       * batch to give GEM something to wait on.  We could, potentially,
       * come up with something more efficient but this shouldn't be a
       * common case.
       */
      result = anv_queue_submit(queue, NULL, NULL, NULL, 0, NULL, NULL, 0, fence);
      goto out;
   }

   for (uint32_t i = 0; i < submitCount; i++) {
      /* Fence for this submit.  NULL for all but the last one */
      VkFence submit_fence = (i == submitCount - 1) ? fence : VK_NULL_HANDLE;

      const VkTimelineSemaphoreSubmitInfoKHR *timeline_info =
         vk_find_struct_const(pSubmits[i].pNext,
                              TIMELINE_SEMAPHORE_SUBMIT_INFO_KHR);
      const uint64_t *wait_values =
         timeline_info && timeline_info->waitSemaphoreValueCount ?
         timeline_info->pWaitSemaphoreValues : NULL;
      const uint64_t *signal_values =
         timeline_info && timeline_info->signalSemaphoreValueCount ?
         timeline_info->pSignalSemaphoreValues : NULL;

      if (pSubmits[i].commandBufferCount == 0) {
         /* If we don't have any command buffers, we need to submit a dummy
          * batch to give GEM something to wait on.  We could, potentially,
          * come up with something more efficient but this shouldn't be a
          * common case.
          */
         result = anv_queue_submit(queue, NULL,
                                   pSubmits[i].pWaitSemaphores,
                                   wait_values,
                                   pSubmits[i].waitSemaphoreCount,
                                   pSubmits[i].pSignalSemaphores,
                                   signal_values,
                                   pSubmits[i].signalSemaphoreCount,
                                   submit_fence);
         if (result != VK_SUCCESS)
            goto out;

         continue;
      }

      for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
         ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
                         pSubmits[i].pCommandBuffers[j]);
         assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
         assert(!anv_batch_has_error(&cmd_buffer->batch));

         /* Fence for this execbuf.  NULL for all but the last one */
         VkFence execbuf_fence =
            (j == pSubmits[i].commandBufferCount - 1) ?
            submit_fence : VK_NULL_HANDLE;

         const VkSemaphore *in_semaphores = NULL, *out_semaphores = NULL;
         const uint64_t *in_values = NULL, *out_values = NULL;
         uint32_t num_in_semaphores = 0, num_out_semaphores = 0;
         if (j == 0) {
            /* Only the first batch gets the in semaphores */
            in_semaphores = pSubmits[i].pWaitSemaphores;
            in_values = wait_values;
            num_in_semaphores = pSubmits[i].waitSemaphoreCount;
         }

         if (j == pSubmits[i].commandBufferCount - 1) {
            /* Only the last batch gets the out semaphores */
            out_semaphores = pSubmits[i].pSignalSemaphores;
            out_values = signal_values;
            num_out_semaphores = pSubmits[i].signalSemaphoreCount;
         }

         result = anv_queue_submit(queue, cmd_buffer,
                                   in_semaphores, in_values, num_in_semaphores,
                                   out_semaphores, out_values, num_out_semaphores,
                                   execbuf_fence);
         if (result != VK_SUCCESS)
            goto out;
      }
   }

out:
   if (result != VK_SUCCESS && result != VK_ERROR_DEVICE_LOST) {
      /* In the case that something has gone wrong we may end up with an
       * inconsistent state from which it may not be trivial to recover.
       * For example, we might have computed address relocations and
       * any future attempt to re-submit this job will need to know about
       * this and avoid computing relocation addresses again.
       *
       * To avoid this sort of issues, we assume that if something was
       * wrong during submission we must already be in a really bad situation
       * anyway (such us being out of memory) and return
       * VK_ERROR_DEVICE_LOST to ensure that clients do not attempt to
       * submit the same job again to this device.
       *
       * We skip doing this on VK_ERROR_DEVICE_LOST because
       * anv_device_set_lost() would have been called already by a callee of
       * anv_queue_submit().
       */
      result = anv_device_set_lost(queue->device, "vkQueueSubmit() failed");
   }

   return result;
}

VkResult anv_QueueWaitIdle(
    VkQueue                                     _queue)
{
   ANV_FROM_HANDLE(anv_queue, queue, _queue);

   if (anv_device_is_lost(queue->device))
      return VK_ERROR_DEVICE_LOST;

   return anv_queue_submit_simple_batch(queue, NULL);
}

VkResult anv_CreateFence(
    VkDevice                                    _device,
    const VkFenceCreateInfo*                    pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkFence*                                    pFence)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_fence *fence;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);

   fence = vk_zalloc2(&device->alloc, pAllocator, sizeof(*fence), 8,
                      VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (fence == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   if (device->instance->physicalDevice.has_syncobj_wait) {
      fence->permanent.type = ANV_FENCE_TYPE_SYNCOBJ;

      uint32_t create_flags = 0;
      if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT)
         create_flags |= DRM_SYNCOBJ_CREATE_SIGNALED;

      fence->permanent.syncobj = anv_gem_syncobj_create(device, create_flags);
      if (!fence->permanent.syncobj)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
   } else {
      fence->permanent.type = ANV_FENCE_TYPE_BO;

      VkResult result = anv_bo_pool_alloc(&device->batch_bo_pool, 4096,
                                          &fence->permanent.bo.bo);
      if (result != VK_SUCCESS)
         return result;

      if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
         fence->permanent.bo.state = ANV_BO_FENCE_STATE_SIGNALED;
      } else {
         fence->permanent.bo.state = ANV_BO_FENCE_STATE_RESET;
      }
   }

   *pFence = anv_fence_to_handle(fence);

   return VK_SUCCESS;
}

static void
anv_fence_impl_cleanup(struct anv_device *device,
                       struct anv_fence_impl *impl)
{
   switch (impl->type) {
   case ANV_FENCE_TYPE_NONE:
      /* Dummy.  Nothing to do */
      break;

   case ANV_FENCE_TYPE_BO:
      anv_bo_pool_free(&device->batch_bo_pool, impl->bo.bo);
      break;

   case ANV_FENCE_TYPE_SYNCOBJ:
      anv_gem_syncobj_destroy(device, impl->syncobj);
      break;

   case ANV_FENCE_TYPE_WSI:
      impl->fence_wsi->destroy(impl->fence_wsi);
      break;

   default:
      unreachable("Invalid fence type");
   }

   impl->type = ANV_FENCE_TYPE_NONE;
}

void anv_DestroyFence(
    VkDevice                                    _device,
    VkFence                                     _fence,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_fence, fence, _fence);

   if (!fence)
      return;

   anv_fence_impl_cleanup(device, &fence->temporary);
   anv_fence_impl_cleanup(device, &fence->permanent);

   vk_free2(&device->alloc, pAllocator, fence);
}

VkResult anv_ResetFences(
    VkDevice                                    _device,
    uint32_t                                    fenceCount,
    const VkFence*                              pFences)
{
   ANV_FROM_HANDLE(anv_device, device, _device);

   for (uint32_t i = 0; i < fenceCount; i++) {
      ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);

      /* From the Vulkan 1.0.53 spec:
       *
       *    "If any member of pFences currently has its payload imported with
       *    temporary permanence, that fence’s prior permanent payload is
       *    first restored. The remaining operations described therefore
       *    operate on the restored payload.
       */
      if (fence->temporary.type != ANV_FENCE_TYPE_NONE)
         anv_fence_impl_cleanup(device, &fence->temporary);

      struct anv_fence_impl *impl = &fence->permanent;

      switch (impl->type) {
      case ANV_FENCE_TYPE_BO:
         impl->bo.state = ANV_BO_FENCE_STATE_RESET;
         break;

      case ANV_FENCE_TYPE_SYNCOBJ:
         anv_gem_syncobj_reset(device, impl->syncobj);
         break;

      default:
         unreachable("Invalid fence type");
      }
   }

   return VK_SUCCESS;
}

VkResult anv_GetFenceStatus(
    VkDevice                                    _device,
    VkFence                                     _fence)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_fence, fence, _fence);

   if (anv_device_is_lost(device))
      return VK_ERROR_DEVICE_LOST;

   struct anv_fence_impl *impl =
      fence->temporary.type != ANV_FENCE_TYPE_NONE ?
      &fence->temporary : &fence->permanent;

   switch (impl->type) {
   case ANV_FENCE_TYPE_BO:
      /* BO fences don't support import/export */
      assert(fence->temporary.type == ANV_FENCE_TYPE_NONE);
      switch (impl->bo.state) {
      case ANV_BO_FENCE_STATE_RESET:
         /* If it hasn't even been sent off to the GPU yet, it's not ready */
         return VK_NOT_READY;

      case ANV_BO_FENCE_STATE_SIGNALED:
         /* It's been signaled, return success */
         return VK_SUCCESS;

      case ANV_BO_FENCE_STATE_SUBMITTED: {
         VkResult result = anv_device_bo_busy(device, impl->bo.bo);
         if (result == VK_SUCCESS) {
            impl->bo.state = ANV_BO_FENCE_STATE_SIGNALED;
            return VK_SUCCESS;
         } else {
            return result;
         }
      }
      default:
         unreachable("Invalid fence status");
      }

   case ANV_FENCE_TYPE_SYNCOBJ: {
      int ret = anv_gem_syncobj_wait(device, &impl->syncobj, 1, 0, true);
      if (ret == -1) {
         if (errno == ETIME) {
            return VK_NOT_READY;
         } else {
            /* We don't know the real error. */
            return anv_device_set_lost(device, "drm_syncobj_wait failed: %m");
         }
      } else {
         return VK_SUCCESS;
      }
   }

   default:
      unreachable("Invalid fence type");
   }
}

static VkResult
anv_wait_for_syncobj_fences(struct anv_device *device,
                            uint32_t fenceCount,
                            const VkFence *pFences,
                            bool waitAll,
                            uint64_t abs_timeout_ns)
{
   uint32_t *syncobjs = vk_zalloc(&device->alloc,
                                  sizeof(*syncobjs) * fenceCount, 8,
                                  VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
   if (!syncobjs)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   for (uint32_t i = 0; i < fenceCount; i++) {
      ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
      assert(fence->permanent.type == ANV_FENCE_TYPE_SYNCOBJ);

      struct anv_fence_impl *impl =
         fence->temporary.type != ANV_FENCE_TYPE_NONE ?
         &fence->temporary : &fence->permanent;

      assert(impl->type == ANV_FENCE_TYPE_SYNCOBJ);
      syncobjs[i] = impl->syncobj;
   }

   /* The gem_syncobj_wait ioctl may return early due to an inherent
    * limitation in the way it computes timeouts.  Loop until we've actually
    * passed the timeout.
    */
   int ret;
   do {
      ret = anv_gem_syncobj_wait(device, syncobjs, fenceCount,
                                 abs_timeout_ns, waitAll);
   } while (ret == -1 && errno == ETIME && anv_gettime_ns() < abs_timeout_ns);

   vk_free(&device->alloc, syncobjs);

   if (ret == -1) {
      if (errno == ETIME) {
         return VK_TIMEOUT;
      } else {
         /* We don't know the real error. */
         return anv_device_set_lost(device, "drm_syncobj_wait failed: %m");
      }
   } else {
      return VK_SUCCESS;
   }
}

static VkResult
anv_wait_for_bo_fences(struct anv_device *device,
                       uint32_t fenceCount,
                       const VkFence *pFences,
                       bool waitAll,
                       uint64_t abs_timeout_ns)
{
   VkResult result = VK_SUCCESS;
   uint32_t pending_fences = fenceCount;
   while (pending_fences) {
      pending_fences = 0;
      bool signaled_fences = false;
      for (uint32_t i = 0; i < fenceCount; i++) {
         ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);

         /* This function assumes that all fences are BO fences and that they
          * have no temporary state.  Since BO fences will never be exported,
          * this should be a safe assumption.
          */
         assert(fence->permanent.type == ANV_FENCE_TYPE_BO);
         assert(fence->temporary.type == ANV_FENCE_TYPE_NONE);
         struct anv_fence_impl *impl = &fence->permanent;

         switch (impl->bo.state) {
         case ANV_BO_FENCE_STATE_RESET:
            /* This fence hasn't been submitted yet, we'll catch it the next
             * time around.  Yes, this may mean we dead-loop but, short of
             * lots of locking and a condition variable, there's not much that
             * we can do about that.
             */
            pending_fences++;
            continue;

         case ANV_BO_FENCE_STATE_SIGNALED:
            /* This fence is not pending.  If waitAll isn't set, we can return
             * early.  Otherwise, we have to keep going.
             */
            if (!waitAll) {
               result = VK_SUCCESS;
               goto done;
            }
            continue;

         case ANV_BO_FENCE_STATE_SUBMITTED:
            /* These are the fences we really care about.  Go ahead and wait
             * on it until we hit a timeout.
             */
            result = anv_device_wait(device, impl->bo.bo,
                                     anv_get_relative_timeout(abs_timeout_ns));
            switch (result) {
            case VK_SUCCESS:
               impl->bo.state = ANV_BO_FENCE_STATE_SIGNALED;
               signaled_fences = true;
               if (!waitAll)
                  goto done;
               break;

            case VK_TIMEOUT:
               goto done;

            default:
               return result;
            }
         }
      }

      if (pending_fences && !signaled_fences) {
         /* If we've hit this then someone decided to vkWaitForFences before
          * they've actually submitted any of them to a queue.  This is a
          * fairly pessimal case, so it's ok to lock here and use a standard
          * pthreads condition variable.
          */
         pthread_mutex_lock(&device->mutex);

         /* It's possible that some of the fences have changed state since the
          * last time we checked.  Now that we have the lock, check for
          * pending fences again and don't wait if it's changed.
          */
         uint32_t now_pending_fences = 0;
         for (uint32_t i = 0; i < fenceCount; i++) {
            ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
            if (fence->permanent.bo.state == ANV_BO_FENCE_STATE_RESET)
               now_pending_fences++;
         }
         assert(now_pending_fences <= pending_fences);

         if (now_pending_fences == pending_fences) {
            struct timespec abstime = {
               .tv_sec = abs_timeout_ns / NSEC_PER_SEC,
               .tv_nsec = abs_timeout_ns % NSEC_PER_SEC,
            };

            ASSERTED int ret;
            ret = pthread_cond_timedwait(&device->queue_submit,
                                         &device->mutex, &abstime);
            assert(ret != EINVAL);
            if (anv_gettime_ns() >= abs_timeout_ns) {
               pthread_mutex_unlock(&device->mutex);
               result = VK_TIMEOUT;
               goto done;
            }
         }

         pthread_mutex_unlock(&device->mutex);
      }
   }

done:
   if (anv_device_is_lost(device))
      return VK_ERROR_DEVICE_LOST;

   return result;
}

static VkResult
anv_wait_for_wsi_fence(struct anv_device *device,
                       const VkFence _fence,
                       uint64_t abs_timeout)
{
   ANV_FROM_HANDLE(anv_fence, fence, _fence);
   struct anv_fence_impl *impl = &fence->permanent;

   return impl->fence_wsi->wait(impl->fence_wsi, abs_timeout);
}

static VkResult
anv_wait_for_fences(struct anv_device *device,
                    uint32_t fenceCount,
                    const VkFence *pFences,
                    bool waitAll,
                    uint64_t abs_timeout)
{
   VkResult result = VK_SUCCESS;

   if (fenceCount <= 1 || waitAll) {
      for (uint32_t i = 0; i < fenceCount; i++) {
         ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
         switch (fence->permanent.type) {
         case ANV_FENCE_TYPE_BO:
            result = anv_wait_for_bo_fences(device, 1, &pFences[i],
                                            true, abs_timeout);
            break;
         case ANV_FENCE_TYPE_SYNCOBJ:
            result = anv_wait_for_syncobj_fences(device, 1, &pFences[i],
                                                 true, abs_timeout);
            break;
         case ANV_FENCE_TYPE_WSI:
            result = anv_wait_for_wsi_fence(device, pFences[i], abs_timeout);
            break;
         case ANV_FENCE_TYPE_NONE:
            result = VK_SUCCESS;
            break;
         }
         if (result != VK_SUCCESS)
            return result;
      }
   } else {
      do {
         for (uint32_t i = 0; i < fenceCount; i++) {
            if (anv_wait_for_fences(device, 1, &pFences[i], true, 0) == VK_SUCCESS)
               return VK_SUCCESS;
         }
      } while (anv_gettime_ns() < abs_timeout);
      result = VK_TIMEOUT;
   }
   return result;
}

static bool anv_all_fences_syncobj(uint32_t fenceCount, const VkFence *pFences)
{
   for (uint32_t i = 0; i < fenceCount; ++i) {
      ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
      if (fence->permanent.type != ANV_FENCE_TYPE_SYNCOBJ)
         return false;
   }
   return true;
}

static bool anv_all_fences_bo(uint32_t fenceCount, const VkFence *pFences)
{
   for (uint32_t i = 0; i < fenceCount; ++i) {
      ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
      if (fence->permanent.type != ANV_FENCE_TYPE_BO)
         return false;
   }
   return true;
}

VkResult anv_WaitForFences(
    VkDevice                                    _device,
    uint32_t                                    fenceCount,
    const VkFence*                              pFences,
    VkBool32                                    waitAll,
    uint64_t                                    timeout)
{
   ANV_FROM_HANDLE(anv_device, device, _device);

   if (anv_device_is_lost(device))
      return VK_ERROR_DEVICE_LOST;

   uint64_t abs_timeout = anv_get_absolute_timeout(timeout);
   if (anv_all_fences_syncobj(fenceCount, pFences)) {
      return anv_wait_for_syncobj_fences(device, fenceCount, pFences,
                                         waitAll, abs_timeout);
   } else if (anv_all_fences_bo(fenceCount, pFences)) {
      return anv_wait_for_bo_fences(device, fenceCount, pFences,
                                    waitAll, abs_timeout);
   } else {
      return anv_wait_for_fences(device, fenceCount, pFences,
                                 waitAll, abs_timeout);
   }
}

void anv_GetPhysicalDeviceExternalFenceProperties(
    VkPhysicalDevice                            physicalDevice,
    const VkPhysicalDeviceExternalFenceInfo*    pExternalFenceInfo,
    VkExternalFenceProperties*                  pExternalFenceProperties)
{
   ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);

   switch (pExternalFenceInfo->handleType) {
   case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
   case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
      if (device->has_syncobj_wait) {
         pExternalFenceProperties->exportFromImportedHandleTypes =
            VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT |
            VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
         pExternalFenceProperties->compatibleHandleTypes =
            VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT |
            VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
         pExternalFenceProperties->externalFenceFeatures =
            VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT |
            VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT;
         return;
      }
      break;

   default:
      break;
   }

   pExternalFenceProperties->exportFromImportedHandleTypes = 0;
   pExternalFenceProperties->compatibleHandleTypes = 0;
   pExternalFenceProperties->externalFenceFeatures = 0;
}

VkResult anv_ImportFenceFdKHR(
    VkDevice                                    _device,
    const VkImportFenceFdInfoKHR*               pImportFenceFdInfo)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_fence, fence, pImportFenceFdInfo->fence);
   int fd = pImportFenceFdInfo->fd;

   assert(pImportFenceFdInfo->sType ==
          VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR);

   struct anv_fence_impl new_impl = {
      .type = ANV_FENCE_TYPE_NONE,
   };

   switch (pImportFenceFdInfo->handleType) {
   case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
      new_impl.type = ANV_FENCE_TYPE_SYNCOBJ;

      new_impl.syncobj = anv_gem_syncobj_fd_to_handle(device, fd);
      if (!new_impl.syncobj)
         return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);

      break;

   case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
      /* Sync files are a bit tricky.  Because we want to continue using the
       * syncobj implementation of WaitForFences, we don't use the sync file
       * directly but instead import it into a syncobj.
       */
      new_impl.type = ANV_FENCE_TYPE_SYNCOBJ;

      new_impl.syncobj = anv_gem_syncobj_create(device, 0);
      if (!new_impl.syncobj)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      if (anv_gem_syncobj_import_sync_file(device, new_impl.syncobj, fd)) {
         anv_gem_syncobj_destroy(device, new_impl.syncobj);
         return vk_errorf(device->instance, NULL,
                          VK_ERROR_INVALID_EXTERNAL_HANDLE,
                          "syncobj sync file import failed: %m");
      }
      break;

   default:
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
   }

   /* From the Vulkan 1.0.53 spec:
    *
    *    "Importing a fence payload from a file descriptor transfers
    *    ownership of the file descriptor from the application to the
    *    Vulkan implementation. The application must not perform any
    *    operations on the file descriptor after a successful import."
    *
    * If the import fails, we leave the file descriptor open.
    */
   close(fd);

   if (pImportFenceFdInfo->flags & VK_FENCE_IMPORT_TEMPORARY_BIT) {
      anv_fence_impl_cleanup(device, &fence->temporary);
      fence->temporary = new_impl;
   } else {
      anv_fence_impl_cleanup(device, &fence->permanent);
      fence->permanent = new_impl;
   }

   return VK_SUCCESS;
}

VkResult anv_GetFenceFdKHR(
    VkDevice                                    _device,
    const VkFenceGetFdInfoKHR*                  pGetFdInfo,
    int*                                        pFd)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_fence, fence, pGetFdInfo->fence);

   assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_FENCE_GET_FD_INFO_KHR);

   struct anv_fence_impl *impl =
      fence->temporary.type != ANV_FENCE_TYPE_NONE ?
      &fence->temporary : &fence->permanent;

   assert(impl->type == ANV_FENCE_TYPE_SYNCOBJ);
   switch (pGetFdInfo->handleType) {
   case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT: {
      int fd = anv_gem_syncobj_handle_to_fd(device, impl->syncobj);
      if (fd < 0)
         return vk_error(VK_ERROR_TOO_MANY_OBJECTS);

      *pFd = fd;
      break;
   }

   case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT: {
      int fd = anv_gem_syncobj_export_sync_file(device, impl->syncobj);
      if (fd < 0)
         return vk_error(VK_ERROR_TOO_MANY_OBJECTS);

      *pFd = fd;
      break;
   }

   default:
      unreachable("Invalid fence export handle type");
   }

   /* From the Vulkan 1.0.53 spec:
    *
    *    "Export operations have the same transference as the specified handle
    *    type’s import operations. [...] If the fence was using a
    *    temporarily imported payload, the fence’s prior permanent payload
    *    will be restored.
    */
   if (impl == &fence->temporary)
      anv_fence_impl_cleanup(device, impl);

   return VK_SUCCESS;
}

// Queue semaphore functions

VkResult anv_CreateSemaphore(
    VkDevice                                    _device,
    const VkSemaphoreCreateInfo*                pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSemaphore*                                pSemaphore)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_semaphore *semaphore;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO);

   semaphore = vk_alloc(&device->alloc, sizeof(*semaphore), 8,
                        VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
   if (semaphore == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   p_atomic_set(&semaphore->refcount, 1);

   const VkExportSemaphoreCreateInfo *export =
      vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO);
    VkExternalSemaphoreHandleTypeFlags handleTypes =
      export ? export->handleTypes : 0;

   if (handleTypes == 0) {
      /* The DRM execbuffer ioctl always execute in-oder so long as you stay
       * on the same ring.  Since we don't expose the blit engine as a DMA
       * queue, a dummy no-op semaphore is a perfectly valid implementation.
       */
      semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DUMMY;
   } else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) {
      assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT);
      if (device->instance->physicalDevice.has_syncobj) {
         semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ;
         semaphore->permanent.syncobj = anv_gem_syncobj_create(device, 0);
         if (!semaphore->permanent.syncobj) {
            vk_free2(&device->alloc, pAllocator, semaphore);
            return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
         }
      } else {
         semaphore->permanent.type = ANV_SEMAPHORE_TYPE_BO;
         VkResult result = anv_device_alloc_bo(device, 4096,
                                               ANV_BO_ALLOC_EXTERNAL |
                                               ANV_BO_ALLOC_IMPLICIT_SYNC,
                                               &semaphore->permanent.bo);
         if (result != VK_SUCCESS) {
            vk_free2(&device->alloc, pAllocator, semaphore);
            return result;
         }

         /* If we're going to use this as a fence, we need to *not* have the
          * EXEC_OBJECT_ASYNC bit set.
          */
         assert(!(semaphore->permanent.bo->flags & EXEC_OBJECT_ASYNC));
      }
   } else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT) {
      assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT);
      if (device->instance->physicalDevice.has_syncobj) {
         semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ;
         semaphore->permanent.syncobj = anv_gem_syncobj_create(device, 0);
      } else {
         semaphore->permanent.type = ANV_SEMAPHORE_TYPE_SYNC_FILE;
         semaphore->permanent.fd = -1;
      }
   } else {
      assert(!"Unknown handle type");
      vk_free2(&device->alloc, pAllocator, semaphore);
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
   }

   semaphore->temporary.type = ANV_SEMAPHORE_TYPE_NONE;

   *pSemaphore = anv_semaphore_to_handle(semaphore);

   return VK_SUCCESS;
}

static void
anv_semaphore_impl_cleanup(struct anv_device *device,
                           struct anv_semaphore_impl *impl)
{
   switch (impl->type) {
   case ANV_SEMAPHORE_TYPE_NONE:
   case ANV_SEMAPHORE_TYPE_DUMMY:
      /* Dummy.  Nothing to do */
      break;

   case ANV_SEMAPHORE_TYPE_BO:
      anv_device_release_bo(device, impl->bo);
      break;

   case ANV_SEMAPHORE_TYPE_SYNC_FILE:
      close(impl->fd);
      break;

   case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ:
      anv_gem_syncobj_destroy(device, impl->syncobj);
      break;

   default:
      unreachable("Invalid semaphore type");
   }

   impl->type = ANV_SEMAPHORE_TYPE_NONE;
}

void
anv_semaphore_reset_temporary(struct anv_device *device,
                              struct anv_semaphore *semaphore)
{
   if (semaphore->temporary.type == ANV_SEMAPHORE_TYPE_NONE)
      return;

   anv_semaphore_impl_cleanup(device, &semaphore->temporary);
}

static struct anv_semaphore *
anv_semaphore_ref(struct anv_semaphore *semaphore)
{
   assert(semaphore->refcount);
   p_atomic_inc(&semaphore->refcount);
   return semaphore;
}

static void
anv_semaphore_unref(struct anv_device *device, struct anv_semaphore *semaphore)
{
   if (!p_atomic_dec_zero(&semaphore->refcount))
      return;

   anv_semaphore_impl_cleanup(device, &semaphore->temporary);
   anv_semaphore_impl_cleanup(device, &semaphore->permanent);
   vk_free(&device->alloc, semaphore);
}

void anv_DestroySemaphore(
    VkDevice                                    _device,
    VkSemaphore                                 _semaphore,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_semaphore, semaphore, _semaphore);

   if (semaphore == NULL)
      return;

   anv_semaphore_unref(device, semaphore);
}

void anv_GetPhysicalDeviceExternalSemaphoreProperties(
    VkPhysicalDevice                            physicalDevice,
    const VkPhysicalDeviceExternalSemaphoreInfo* pExternalSemaphoreInfo,
    VkExternalSemaphoreProperties*               pExternalSemaphoreProperties)
{
   ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);

   switch (pExternalSemaphoreInfo->handleType) {
   case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
      pExternalSemaphoreProperties->exportFromImportedHandleTypes =
         VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
      pExternalSemaphoreProperties->compatibleHandleTypes =
         VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
      pExternalSemaphoreProperties->externalSemaphoreFeatures =
         VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
         VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
      return;

   case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
      if (device->has_exec_fence) {
         pExternalSemaphoreProperties->exportFromImportedHandleTypes =
            VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
         pExternalSemaphoreProperties->compatibleHandleTypes =
            VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
         pExternalSemaphoreProperties->externalSemaphoreFeatures =
            VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
            VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
         return;
      }
      break;

   default:
      break;
   }

   pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
   pExternalSemaphoreProperties->compatibleHandleTypes = 0;
   pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
}

VkResult anv_ImportSemaphoreFdKHR(
    VkDevice                                    _device,
    const VkImportSemaphoreFdInfoKHR*           pImportSemaphoreFdInfo)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_semaphore, semaphore, pImportSemaphoreFdInfo->semaphore);
   int fd = pImportSemaphoreFdInfo->fd;

   struct anv_semaphore_impl new_impl = {
      .type = ANV_SEMAPHORE_TYPE_NONE,
   };

   switch (pImportSemaphoreFdInfo->handleType) {
   case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
      if (device->instance->physicalDevice.has_syncobj) {
         new_impl.type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ;

         new_impl.syncobj = anv_gem_syncobj_fd_to_handle(device, fd);
         if (!new_impl.syncobj)
            return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
      } else {
         new_impl.type = ANV_SEMAPHORE_TYPE_BO;

         VkResult result = anv_device_import_bo(device, fd,
                                                ANV_BO_ALLOC_EXTERNAL |
                                                ANV_BO_ALLOC_IMPLICIT_SYNC,
                                                &new_impl.bo);
         if (result != VK_SUCCESS)
            return result;

         if (new_impl.bo->size < 4096) {
            anv_device_release_bo(device, new_impl.bo);
            return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
         }

         /* If we're going to use this as a fence, we need to *not* have the
          * EXEC_OBJECT_ASYNC bit set.
          */
         assert(!(new_impl.bo->flags & EXEC_OBJECT_ASYNC));
      }

      /* From the Vulkan spec:
       *
       *    "Importing semaphore state from a file descriptor transfers
       *    ownership of the file descriptor from the application to the
       *    Vulkan implementation. The application must not perform any
       *    operations on the file descriptor after a successful import."
       *
       * If the import fails, we leave the file descriptor open.
       */
      close(fd);
      break;

   case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
      if (device->instance->physicalDevice.has_syncobj) {
         new_impl = (struct anv_semaphore_impl) {
            .type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
            .syncobj = anv_gem_syncobj_create(device, 0),
         };
         if (!new_impl.syncobj)
            return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
         if (anv_gem_syncobj_import_sync_file(device, new_impl.syncobj, fd)) {
            anv_gem_syncobj_destroy(device, new_impl.syncobj);
            return vk_errorf(device->instance, NULL,
                             VK_ERROR_INVALID_EXTERNAL_HANDLE,
                             "syncobj sync file import failed: %m");
         }
         /* Ownership of the FD is transfered to Anv. Since we don't need it
          * anymore because the associated fence has been put into a syncobj,
          * we must close the FD.
          */
         close(fd);
      } else {
         new_impl = (struct anv_semaphore_impl) {
            .type = ANV_SEMAPHORE_TYPE_SYNC_FILE,
            .fd = fd,
         };
      }
      break;

   default:
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
   }

   if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT) {
      anv_semaphore_impl_cleanup(device, &semaphore->temporary);
      semaphore->temporary = new_impl;
   } else {
      anv_semaphore_impl_cleanup(device, &semaphore->permanent);
      semaphore->permanent = new_impl;
   }

   return VK_SUCCESS;
}

VkResult anv_GetSemaphoreFdKHR(
    VkDevice                                    _device,
    const VkSemaphoreGetFdInfoKHR*              pGetFdInfo,
    int*                                        pFd)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_semaphore, semaphore, pGetFdInfo->semaphore);
   VkResult result;
   int fd;

   assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR);

   struct anv_semaphore_impl *impl =
      semaphore->temporary.type != ANV_SEMAPHORE_TYPE_NONE ?
      &semaphore->temporary : &semaphore->permanent;

   switch (impl->type) {
   case ANV_SEMAPHORE_TYPE_BO:
      result = anv_device_export_bo(device, impl->bo, pFd);
      if (result != VK_SUCCESS)
         return result;
      break;

   case ANV_SEMAPHORE_TYPE_SYNC_FILE: {
      /* There's a potential race here with vkQueueSubmit if you are trying
       * to export a semaphore Fd while the queue submit is still happening.
       * This can happen if we see all dependencies get resolved via timeline
       * semaphore waits completing before the execbuf completes and we
       * process the resulting out fence.  To work around this, take a lock
       * around grabbing the fd.
       */
      pthread_mutex_lock(&device->mutex);

      /* From the Vulkan 1.0.53 spec:
       *
       *    "...exporting a semaphore payload to a handle with copy
       *    transference has the same side effects on the source
       *    semaphore’s payload as executing a semaphore wait operation."
       *
       * In other words, it may still be a SYNC_FD semaphore, but it's now
       * considered to have been waited on and no longer has a sync file
       * attached.
       */
      int fd = impl->fd;
      impl->fd = -1;

      pthread_mutex_unlock(&device->mutex);

      /* There are two reasons why this could happen:
       *
       *  1) The user is trying to export without submitting something that
       *     signals the semaphore.  If this is the case, it's their bug so
       *     what we return here doesn't matter.
       *
       *  2) The kernel didn't give us a file descriptor.  The most likely
       *     reason for this is running out of file descriptors.
       */
      if (fd < 0)
         return vk_error(VK_ERROR_TOO_MANY_OBJECTS);

      *pFd = fd;
      return VK_SUCCESS;
   }

   case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ:
      if (pGetFdInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT)
         fd = anv_gem_syncobj_export_sync_file(device, impl->syncobj);
      else {
         assert(pGetFdInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT);
         fd = anv_gem_syncobj_handle_to_fd(device, impl->syncobj);
      }
      if (fd < 0)
         return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
      *pFd = fd;
      break;

   default:
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
   }

   /* From the Vulkan 1.0.53 spec:
    *
    *    "Export operations have the same transference as the specified handle
    *    type’s import operations. [...] If the semaphore was using a
    *    temporarily imported payload, the semaphore’s prior permanent payload
    *    will be restored.
    */
   if (impl == &semaphore->temporary)
      anv_semaphore_impl_cleanup(device, impl);

   return VK_SUCCESS;
}