aboutsummaryrefslogtreecommitdiffstats
path: root/src/intel/vulkan/anv_queue.c
blob: f6e3fdd6177cf960aea352a260d26fa49df5d9b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

/**
 * This file implements VkQueue, VkFence, and VkSemaphore
 */

#include <errno.h>
#include <fcntl.h>
#include <unistd.h>

#include "anv_private.h"
#include "vk_util.h"

#include "genxml/gen7_pack.h"

uint64_t anv_gettime_ns(void)
{
   struct timespec current;
   clock_gettime(CLOCK_MONOTONIC, &current);
   return (uint64_t)current.tv_sec * NSEC_PER_SEC + current.tv_nsec;
}

uint64_t anv_get_absolute_timeout(uint64_t timeout)
{
   if (timeout == 0)
      return 0;
   uint64_t current_time = anv_gettime_ns();
   uint64_t max_timeout = (uint64_t) INT64_MAX - current_time;

   timeout = MIN2(max_timeout, timeout);

   return (current_time + timeout);
}

static int64_t anv_get_relative_timeout(uint64_t abs_timeout)
{
   uint64_t now = anv_gettime_ns();

   /* We don't want negative timeouts.
    *
    * DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is
    * supposed to block indefinitely timeouts < 0.  Unfortunately,
    * this was broken for a couple of kernel releases.  Since there's
    * no way to know whether or not the kernel we're using is one of
    * the broken ones, the best we can do is to clamp the timeout to
    * INT64_MAX.  This limits the maximum timeout from 584 years to
    * 292 years - likely not a big deal.
    */
   if (abs_timeout < now)
      return 0;

   uint64_t rel_timeout = abs_timeout - now;
   if (rel_timeout > (uint64_t) INT64_MAX)
      rel_timeout = INT64_MAX;

   return rel_timeout;
}

static struct anv_semaphore *anv_semaphore_ref(struct anv_semaphore *semaphore);
static void anv_semaphore_unref(struct anv_device *device, struct anv_semaphore *semaphore);
static void anv_semaphore_impl_cleanup(struct anv_device *device,
                                       struct anv_semaphore_impl *impl);

static void
anv_queue_submit_free(struct anv_device *device,
                      struct anv_queue_submit *submit)
{
   const VkAllocationCallbacks *alloc = submit->alloc;

   for (uint32_t i = 0; i < submit->temporary_semaphore_count; i++)
      anv_semaphore_impl_cleanup(device, &submit->temporary_semaphores[i]);
   for (uint32_t i = 0; i < submit->sync_fd_semaphore_count; i++)
      anv_semaphore_unref(device, submit->sync_fd_semaphores[i]);
   /* Execbuf does not consume the in_fence.  It's our job to close it. */
   if (submit->in_fence != -1)
      close(submit->in_fence);
   if (submit->out_fence != -1)
      close(submit->out_fence);
   vk_free(alloc, submit->fences);
   vk_free(alloc, submit->temporary_semaphores);
   vk_free(alloc, submit->wait_timelines);
   vk_free(alloc, submit->wait_timeline_values);
   vk_free(alloc, submit->signal_timelines);
   vk_free(alloc, submit->signal_timeline_values);
   vk_free(alloc, submit->fence_bos);
   vk_free(alloc, submit);
}

static bool
anv_queue_submit_ready_locked(struct anv_queue_submit *submit)
{
   for (uint32_t i = 0; i < submit->wait_timeline_count; i++) {
      if (submit->wait_timeline_values[i] > submit->wait_timelines[i]->highest_pending)
         return false;
   }

   return true;
}

static VkResult
anv_timeline_init(struct anv_device *device,
                  struct anv_timeline *timeline,
                  uint64_t initial_value)
{
   timeline->highest_past =
      timeline->highest_pending = initial_value;
   list_inithead(&timeline->points);
   list_inithead(&timeline->free_points);

   return VK_SUCCESS;
}

static void
anv_timeline_finish(struct anv_device *device,
                    struct anv_timeline *timeline)
{
   list_for_each_entry_safe(struct anv_timeline_point, point,
                            &timeline->free_points, link) {
      list_del(&point->link);
      anv_device_release_bo(device, point->bo);
      vk_free(&device->vk.alloc, point);
   }
   list_for_each_entry_safe(struct anv_timeline_point, point,
                            &timeline->points, link) {
      list_del(&point->link);
      anv_device_release_bo(device, point->bo);
      vk_free(&device->vk.alloc, point);
   }
}

static VkResult
anv_timeline_add_point_locked(struct anv_device *device,
                              struct anv_timeline *timeline,
                              uint64_t value,
                              struct anv_timeline_point **point)
{
   VkResult result = VK_SUCCESS;

   if (list_is_empty(&timeline->free_points)) {
      *point =
         vk_zalloc(&device->vk.alloc, sizeof(**point),
                   8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
      if (!(*point))
         result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      if (result == VK_SUCCESS) {
         result = anv_device_alloc_bo(device, 4096,
                                      ANV_BO_ALLOC_EXTERNAL |
                                      ANV_BO_ALLOC_IMPLICIT_SYNC,
                                      0 /* explicit_address */,
                                      &(*point)->bo);
         if (result != VK_SUCCESS)
            vk_free(&device->vk.alloc, *point);
      }
   } else {
      *point = list_first_entry(&timeline->free_points,
                                struct anv_timeline_point, link);
      list_del(&(*point)->link);
   }

   if (result == VK_SUCCESS) {
      (*point)->serial = value;
      list_addtail(&(*point)->link, &timeline->points);
   }

   return result;
}

static VkResult
anv_timeline_gc_locked(struct anv_device *device,
                       struct anv_timeline *timeline)
{
   list_for_each_entry_safe(struct anv_timeline_point, point,
                            &timeline->points, link) {
      /* timeline->higest_pending is only incremented once submission has
       * happened. If this point has a greater serial, it means the point
       * hasn't been submitted yet.
       */
      if (point->serial > timeline->highest_pending)
         return VK_SUCCESS;

      /* If someone is waiting on this time point, consider it busy and don't
       * try to recycle it. There's a slim possibility that it's no longer
       * busy by the time we look at it but we would be recycling it out from
       * under a waiter and that can lead to weird races.
       *
       * We walk the list in-order so if this time point is still busy so is
       * every following time point
       */
      assert(point->waiting >= 0);
      if (point->waiting)
         return VK_SUCCESS;

      /* Garbage collect any signaled point. */
      VkResult result = anv_device_bo_busy(device, point->bo);
      if (result == VK_NOT_READY) {
         /* We walk the list in-order so if this time point is still busy so
          * is every following time point
          */
         return VK_SUCCESS;
      } else if (result != VK_SUCCESS) {
         return result;
      }

      assert(timeline->highest_past < point->serial);
      timeline->highest_past = point->serial;

      list_del(&point->link);
      list_add(&point->link, &timeline->free_points);
   }

   return VK_SUCCESS;
}

static VkResult anv_queue_submit_add_fence_bo(struct anv_queue_submit *submit,
                                              struct anv_bo *bo,
                                              bool signal);

static VkResult
anv_queue_submit_timeline_locked(struct anv_queue *queue,
                                 struct anv_queue_submit *submit)
{
   VkResult result;

   for (uint32_t i = 0; i < submit->wait_timeline_count; i++) {
      struct anv_timeline *timeline = submit->wait_timelines[i];
      uint64_t wait_value = submit->wait_timeline_values[i];

      if (timeline->highest_past >= wait_value)
         continue;

      list_for_each_entry(struct anv_timeline_point, point, &timeline->points, link) {
         if (point->serial < wait_value)
            continue;
         result = anv_queue_submit_add_fence_bo(submit, point->bo, false);
         if (result != VK_SUCCESS)
            return result;
         break;
      }
   }
   for (uint32_t i = 0; i < submit->signal_timeline_count; i++) {
      struct anv_timeline *timeline = submit->signal_timelines[i];
      uint64_t signal_value = submit->signal_timeline_values[i];
      struct anv_timeline_point *point;

      result = anv_timeline_add_point_locked(queue->device, timeline,
                                             signal_value, &point);
      if (result != VK_SUCCESS)
         return result;

      result = anv_queue_submit_add_fence_bo(submit, point->bo, true);
      if (result != VK_SUCCESS)
         return result;
   }

   result = anv_queue_execbuf_locked(queue, submit);

   if (result == VK_SUCCESS) {
      /* Update the pending values in the timeline objects. */
      for (uint32_t i = 0; i < submit->signal_timeline_count; i++) {
         struct anv_timeline *timeline = submit->signal_timelines[i];
         uint64_t signal_value = submit->signal_timeline_values[i];

         assert(signal_value > timeline->highest_pending);
         timeline->highest_pending = signal_value;
      }

      /* Update signaled semaphores backed by syncfd. */
      for (uint32_t i = 0; i < submit->sync_fd_semaphore_count; i++) {
         struct anv_semaphore *semaphore = submit->sync_fd_semaphores[i];
         /* Out fences can't have temporary state because that would imply
          * that we imported a sync file and are trying to signal it.
          */
         assert(semaphore->temporary.type == ANV_SEMAPHORE_TYPE_NONE);
         struct anv_semaphore_impl *impl = &semaphore->permanent;

         assert(impl->type == ANV_SEMAPHORE_TYPE_SYNC_FILE);
         impl->fd = dup(submit->out_fence);
      }
   } else {
      /* Unblock any waiter by signaling the points, the application will get
       * a device lost error code.
       */
      for (uint32_t i = 0; i < submit->signal_timeline_count; i++) {
         struct anv_timeline *timeline = submit->signal_timelines[i];
         uint64_t signal_value = submit->signal_timeline_values[i];

         assert(signal_value > timeline->highest_pending);
         timeline->highest_past = timeline->highest_pending = signal_value;
      }
   }

   return result;
}

static VkResult
anv_queue_submit_deferred_locked(struct anv_queue *queue, uint32_t *advance)
{
   VkResult result = VK_SUCCESS;

   /* Go through all the queued submissions and submit then until we find one
    * that's waiting on a point that hasn't materialized yet.
    */
   list_for_each_entry_safe(struct anv_queue_submit, submit,
                            &queue->queued_submits, link) {
      if (!anv_queue_submit_ready_locked(submit))
         break;

      (*advance)++;
      list_del(&submit->link);

      result = anv_queue_submit_timeline_locked(queue, submit);

      anv_queue_submit_free(queue->device, submit);

      if (result != VK_SUCCESS)
         break;
   }

   return result;
}

static VkResult
anv_device_submit_deferred_locked(struct anv_device *device)
{
   uint32_t advance = 0;
   return anv_queue_submit_deferred_locked(&device->queue, &advance);
}

static VkResult
_anv_queue_submit(struct anv_queue *queue, struct anv_queue_submit **_submit,
                  bool flush_queue)
{
   struct anv_queue_submit *submit = *_submit;

   /* Wait before signal behavior means we might keep alive the
    * anv_queue_submit object a bit longer, so transfer the ownership to the
    * anv_queue.
    */
   *_submit = NULL;

   pthread_mutex_lock(&queue->device->mutex);
   list_addtail(&submit->link, &queue->queued_submits);
   VkResult result = anv_device_submit_deferred_locked(queue->device);
   if (flush_queue) {
      while (result == VK_SUCCESS && !list_is_empty(&queue->queued_submits)) {
         int ret = pthread_cond_wait(&queue->device->queue_submit,
                                     &queue->device->mutex);
         if (ret != 0) {
            result = anv_device_set_lost(queue->device, "wait timeout");
            break;
         }

         result = anv_device_submit_deferred_locked(queue->device);
      }
   }
   pthread_mutex_unlock(&queue->device->mutex);
   return result;
}

VkResult
anv_queue_init(struct anv_device *device, struct anv_queue *queue)
{
   vk_object_base_init(&device->vk, &queue->base, VK_OBJECT_TYPE_QUEUE);
   queue->device = device;
   queue->flags = 0;

   list_inithead(&queue->queued_submits);

   return VK_SUCCESS;
}

void
anv_queue_finish(struct anv_queue *queue)
{
   vk_object_base_finish(&queue->base);
}

static VkResult
anv_queue_submit_add_fence_bo(struct anv_queue_submit *submit,
                              struct anv_bo *bo,
                              bool signal)
{
   if (submit->fence_bo_count >= submit->fence_bo_array_length) {
      uint32_t new_len = MAX2(submit->fence_bo_array_length * 2, 64);

      submit->fence_bos =
         vk_realloc(submit->alloc,
                    submit->fence_bos, new_len * sizeof(*submit->fence_bos),
                    8, submit->alloc_scope);
      if (submit->fence_bos == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      submit->fence_bo_array_length = new_len;
   }

   /* Take advantage that anv_bo are allocated at 8 byte alignement so we can
    * use the lowest bit to store whether this is a BO we need to signal.
    */
   submit->fence_bos[submit->fence_bo_count++] = anv_pack_ptr(bo, 1, signal);

   return VK_SUCCESS;
}

static VkResult
anv_queue_submit_add_syncobj(struct anv_queue_submit* submit,
                             struct anv_device *device,
                             uint32_t handle, uint32_t flags)
{
   assert(flags != 0);

   if (submit->fence_count >= submit->fence_array_length) {
      uint32_t new_len = MAX2(submit->fence_array_length * 2, 64);

      submit->fences =
         vk_realloc(submit->alloc,
                    submit->fences, new_len * sizeof(*submit->fences),
                    8, submit->alloc_scope);
      if (submit->fences == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      submit->fence_array_length = new_len;
   }

   submit->fences[submit->fence_count++] = (struct drm_i915_gem_exec_fence) {
      .handle = handle,
      .flags = flags,
   };

   return VK_SUCCESS;
}

static VkResult
anv_queue_submit_add_sync_fd_fence(struct anv_queue_submit *submit,
                                   struct anv_semaphore *semaphore)
{
   if (submit->sync_fd_semaphore_count >= submit->sync_fd_semaphore_array_length) {
      uint32_t new_len = MAX2(submit->sync_fd_semaphore_array_length * 2, 64);
      struct anv_semaphore **new_semaphores =
         vk_realloc(submit->alloc, submit->sync_fd_semaphores,
                    new_len * sizeof(*submit->sync_fd_semaphores), 8,
                    submit->alloc_scope);
      if (new_semaphores == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      submit->sync_fd_semaphores = new_semaphores;
   }

   submit->sync_fd_semaphores[submit->sync_fd_semaphore_count++] =
      anv_semaphore_ref(semaphore);
   submit->need_out_fence = true;

   return VK_SUCCESS;
}

static VkResult
anv_queue_submit_add_timeline_wait(struct anv_queue_submit* submit,
                                   struct anv_device *device,
                                   struct anv_timeline *timeline,
                                   uint64_t value)
{
   if (submit->wait_timeline_count >= submit->wait_timeline_array_length) {
      uint32_t new_len = MAX2(submit->wait_timeline_array_length * 2, 64);

      submit->wait_timelines =
         vk_realloc(submit->alloc,
                    submit->wait_timelines, new_len * sizeof(*submit->wait_timelines),
                    8, submit->alloc_scope);
      if (submit->wait_timelines == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      submit->wait_timeline_values =
         vk_realloc(submit->alloc,
                    submit->wait_timeline_values, new_len * sizeof(*submit->wait_timeline_values),
                    8, submit->alloc_scope);
      if (submit->wait_timeline_values == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      submit->wait_timeline_array_length = new_len;
   }

   submit->wait_timelines[submit->wait_timeline_count] = timeline;
   submit->wait_timeline_values[submit->wait_timeline_count] = value;

   submit->wait_timeline_count++;

   return VK_SUCCESS;
}

static VkResult
anv_queue_submit_add_timeline_signal(struct anv_queue_submit* submit,
                                     struct anv_device *device,
                                     struct anv_timeline *timeline,
                                     uint64_t value)
{
   assert(timeline->highest_pending < value);

   if (submit->signal_timeline_count >= submit->signal_timeline_array_length) {
      uint32_t new_len = MAX2(submit->signal_timeline_array_length * 2, 64);

      submit->signal_timelines =
         vk_realloc(submit->alloc,
                    submit->signal_timelines, new_len * sizeof(*submit->signal_timelines),
                    8, submit->alloc_scope);
      if (submit->signal_timelines == NULL)
            return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      submit->signal_timeline_values =
         vk_realloc(submit->alloc,
                    submit->signal_timeline_values, new_len * sizeof(*submit->signal_timeline_values),
                    8, submit->alloc_scope);
      if (submit->signal_timeline_values == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      submit->signal_timeline_array_length = new_len;
   }

   submit->signal_timelines[submit->signal_timeline_count] = timeline;
   submit->signal_timeline_values[submit->signal_timeline_count] = value;

   submit->signal_timeline_count++;

   return VK_SUCCESS;
}

static struct anv_queue_submit *
anv_queue_submit_alloc(struct anv_device *device, int perf_query_pass)
{
   const VkAllocationCallbacks *alloc = &device->vk.alloc;
   VkSystemAllocationScope alloc_scope = VK_SYSTEM_ALLOCATION_SCOPE_DEVICE;

   struct anv_queue_submit *submit = vk_zalloc(alloc, sizeof(*submit), 8, alloc_scope);
   if (!submit)
      return NULL;

   submit->alloc = alloc;
   submit->alloc_scope = alloc_scope;
   submit->in_fence = -1;
   submit->out_fence = -1;
   submit->perf_query_pass = perf_query_pass;

   return submit;
}

VkResult
anv_queue_submit_simple_batch(struct anv_queue *queue,
                              struct anv_batch *batch)
{
   if (queue->device->no_hw)
      return VK_SUCCESS;

   struct anv_device *device = queue->device;
   struct anv_queue_submit *submit = anv_queue_submit_alloc(device, -1);
   if (!submit)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   bool has_syncobj_wait = device->physical->has_syncobj_wait;
   VkResult result;
   uint32_t syncobj;
   struct anv_bo *batch_bo, *sync_bo;

   if (has_syncobj_wait) {
      syncobj = anv_gem_syncobj_create(device, 0);
      if (!syncobj) {
         result = vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
         goto err_free_submit;
      }

      result = anv_queue_submit_add_syncobj(submit, device, syncobj,
                                            I915_EXEC_FENCE_SIGNAL);
   } else {
      result = anv_device_alloc_bo(device, 4096,
                                   ANV_BO_ALLOC_EXTERNAL |
                                   ANV_BO_ALLOC_IMPLICIT_SYNC,
                                   0 /* explicit_address */,
                                   &sync_bo);
      if (result != VK_SUCCESS)
         goto err_free_submit;

      result = anv_queue_submit_add_fence_bo(submit, sync_bo, true /* signal */);
   }

   if (result != VK_SUCCESS)
      goto err_destroy_sync_primitive;

   if (batch) {
      uint32_t size = align_u32(batch->next - batch->start, 8);
      result = anv_bo_pool_alloc(&device->batch_bo_pool, size, &batch_bo);
      if (result != VK_SUCCESS)
         goto err_destroy_sync_primitive;

      memcpy(batch_bo->map, batch->start, size);
      if (!device->info.has_llc)
         gen_flush_range(batch_bo->map, size);

      submit->simple_bo = batch_bo;
      submit->simple_bo_size = size;
   }

   result = _anv_queue_submit(queue, &submit, true);

   if (result == VK_SUCCESS) {
      if (has_syncobj_wait) {
         if (anv_gem_syncobj_wait(device, &syncobj, 1,
                                  anv_get_absolute_timeout(INT64_MAX), true))
            result = anv_device_set_lost(device, "anv_gem_syncobj_wait failed: %m");
         anv_gem_syncobj_destroy(device, syncobj);
      } else {
         result = anv_device_wait(device, sync_bo,
                                  anv_get_relative_timeout(INT64_MAX));
         anv_device_release_bo(device, sync_bo);
      }
   }

   if (batch)
      anv_bo_pool_free(&device->batch_bo_pool, batch_bo);

   if (submit)
      anv_queue_submit_free(device, submit);

   return result;

 err_destroy_sync_primitive:
   if (has_syncobj_wait)
      anv_gem_syncobj_destroy(device, syncobj);
   else
      anv_device_release_bo(device, sync_bo);
 err_free_submit:
   if (submit)
      anv_queue_submit_free(device, submit);

   return result;
}

/* Transfer ownership of temporary semaphores from the VkSemaphore object to
 * the anv_queue_submit object. Those temporary semaphores are then freed in
 * anv_queue_submit_free() once the driver is finished with them.
 */
static VkResult
maybe_transfer_temporary_semaphore(struct anv_queue_submit *submit,
                                   struct anv_semaphore *semaphore,
                                   struct anv_semaphore_impl **out_impl)
{
   struct anv_semaphore_impl *impl = &semaphore->temporary;

   if (impl->type == ANV_SEMAPHORE_TYPE_NONE) {
      *out_impl = &semaphore->permanent;
      return VK_SUCCESS;
   }

   /* BO backed timeline semaphores cannot be temporary. */
   assert(impl->type != ANV_SEMAPHORE_TYPE_TIMELINE);

   /*
    * There is a requirement to reset semaphore to their permanent state after
    * submission. From the Vulkan 1.0.53 spec:
    *
    *    "If the import is temporary, the implementation must restore the
    *    semaphore to its prior permanent state after submitting the next
    *    semaphore wait operation."
    *
    * In the case we defer the actual submission to a thread because of the
    * wait-before-submit behavior required for timeline semaphores, we need to
    * make copies of the temporary syncobj to ensure they stay alive until we
    * do the actual execbuffer ioctl.
    */
   if (submit->temporary_semaphore_count >= submit->temporary_semaphore_array_length) {
      uint32_t new_len = MAX2(submit->temporary_semaphore_array_length * 2, 8);
      /* Make sure that if the realloc fails, we still have the old semaphore
       * array around to properly clean things up on failure.
       */
      struct anv_semaphore_impl *new_array =
         vk_realloc(submit->alloc,
                    submit->temporary_semaphores,
                    new_len * sizeof(*submit->temporary_semaphores),
                    8, submit->alloc_scope);
      if (new_array == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      submit->temporary_semaphores = new_array;
      submit->temporary_semaphore_array_length = new_len;
   }

   /* Copy anv_semaphore_impl into anv_queue_submit. */
   submit->temporary_semaphores[submit->temporary_semaphore_count++] = *impl;
   *out_impl = &submit->temporary_semaphores[submit->temporary_semaphore_count - 1];

   /* Clear the incoming semaphore */
   impl->type = ANV_SEMAPHORE_TYPE_NONE;

   return VK_SUCCESS;
}

static VkResult
anv_queue_submit(struct anv_queue *queue,
                 struct anv_cmd_buffer *cmd_buffer,
                 const VkSemaphore *in_semaphores,
                 const uint64_t *in_values,
                 uint32_t num_in_semaphores,
                 const VkSemaphore *out_semaphores,
                 const uint64_t *out_values,
                 uint32_t num_out_semaphores,
                 struct anv_bo *wsi_signal_bo,
                 VkFence _fence,
                 int perf_query_pass)
{
   ANV_FROM_HANDLE(anv_fence, fence, _fence);
   struct anv_device *device = queue->device;
   UNUSED struct anv_physical_device *pdevice = device->physical;
   struct anv_queue_submit *submit = anv_queue_submit_alloc(device, perf_query_pass);
   if (!submit)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   submit->cmd_buffer = cmd_buffer;

   VkResult result = VK_SUCCESS;

   for (uint32_t i = 0; i < num_in_semaphores; i++) {
      ANV_FROM_HANDLE(anv_semaphore, semaphore, in_semaphores[i]);
      struct anv_semaphore_impl *impl;

      result = maybe_transfer_temporary_semaphore(submit, semaphore, &impl);
      if (result != VK_SUCCESS)
         goto error;

      switch (impl->type) {
      case ANV_SEMAPHORE_TYPE_BO:
         assert(!pdevice->has_syncobj);
         result = anv_queue_submit_add_fence_bo(submit, impl->bo, false /* signal */);
         if (result != VK_SUCCESS)
            goto error;
         break;

      case ANV_SEMAPHORE_TYPE_WSI_BO:
         /* When using a window-system buffer as a semaphore, always enable
          * EXEC_OBJECT_WRITE.  This gives us a WaR hazard with the display or
          * compositor's read of the buffer and enforces that we don't start
          * rendering until they are finished.  This is exactly the
          * synchronization we want with vkAcquireNextImage.
          */
         result = anv_queue_submit_add_fence_bo(submit, impl->bo, true /* signal */);
         if (result != VK_SUCCESS)
            goto error;
         break;

      case ANV_SEMAPHORE_TYPE_SYNC_FILE:
         assert(!pdevice->has_syncobj);
         if (submit->in_fence == -1) {
            submit->in_fence = impl->fd;
            if (submit->in_fence == -1) {
               result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
               goto error;
            }
            impl->fd = -1;
         } else {
            int merge = anv_gem_sync_file_merge(device, submit->in_fence, impl->fd);
            if (merge == -1) {
               result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
               goto error;
            }
            close(impl->fd);
            close(submit->in_fence);
            impl->fd = -1;
            submit->in_fence = merge;
         }
         break;

      case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ: {
         result = anv_queue_submit_add_syncobj(submit, device,
                                               impl->syncobj,
                                               I915_EXEC_FENCE_WAIT);
         if (result != VK_SUCCESS)
            goto error;
         break;
      }

      case ANV_SEMAPHORE_TYPE_TIMELINE:
         result = anv_queue_submit_add_timeline_wait(submit, device,
                                                     &impl->timeline,
                                                     in_values ? in_values[i] : 0);
         if (result != VK_SUCCESS)
            goto error;
         break;

      default:
         break;
      }
   }

   for (uint32_t i = 0; i < num_out_semaphores; i++) {
      ANV_FROM_HANDLE(anv_semaphore, semaphore, out_semaphores[i]);

      /* Under most circumstances, out fences won't be temporary.  However,
       * the spec does allow it for opaque_fd.  From the Vulkan 1.0.53 spec:
       *
       *    "If the import is temporary, the implementation must restore the
       *    semaphore to its prior permanent state after submitting the next
       *    semaphore wait operation."
       *
       * The spec says nothing whatsoever about signal operations on
       * temporarily imported semaphores so it appears they are allowed.
       * There are also CTS tests that require this to work.
       */
      struct anv_semaphore_impl *impl =
         semaphore->temporary.type != ANV_SEMAPHORE_TYPE_NONE ?
         &semaphore->temporary : &semaphore->permanent;

      switch (impl->type) {
      case ANV_SEMAPHORE_TYPE_BO:
         assert(!pdevice->has_syncobj);
         result = anv_queue_submit_add_fence_bo(submit, impl->bo, true /* signal */);
         if (result != VK_SUCCESS)
            goto error;
         break;

      case ANV_SEMAPHORE_TYPE_SYNC_FILE:
         assert(!pdevice->has_syncobj);
         result = anv_queue_submit_add_sync_fd_fence(submit, semaphore);
         if (result != VK_SUCCESS)
            goto error;
         break;

      case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ: {
         result = anv_queue_submit_add_syncobj(submit, device, impl->syncobj,
                                               I915_EXEC_FENCE_SIGNAL);
         if (result != VK_SUCCESS)
            goto error;
         break;
      }

      case ANV_SEMAPHORE_TYPE_TIMELINE:
         result = anv_queue_submit_add_timeline_signal(submit, device,
                                                       &impl->timeline,
                                                       out_values ? out_values[i] : 0);
         if (result != VK_SUCCESS)
            goto error;
         break;

      default:
         break;
      }
   }

   if (wsi_signal_bo) {
      result = anv_queue_submit_add_fence_bo(submit, wsi_signal_bo, true /* signal */);
      if (result != VK_SUCCESS)
         goto error;
   }

   if (fence) {
      /* Under most circumstances, out fences won't be temporary.  However,
       * the spec does allow it for opaque_fd.  From the Vulkan 1.0.53 spec:
       *
       *    "If the import is temporary, the implementation must restore the
       *    semaphore to its prior permanent state after submitting the next
       *    semaphore wait operation."
       *
       * The spec says nothing whatsoever about signal operations on
       * temporarily imported semaphores so it appears they are allowed.
       * There are also CTS tests that require this to work.
       */
      struct anv_fence_impl *impl =
         fence->temporary.type != ANV_FENCE_TYPE_NONE ?
         &fence->temporary : &fence->permanent;

      switch (impl->type) {
      case ANV_FENCE_TYPE_BO:
         result = anv_queue_submit_add_fence_bo(submit, impl->bo.bo, true /* signal */);
         if (result != VK_SUCCESS)
            goto error;
         break;

      case ANV_FENCE_TYPE_SYNCOBJ: {
         /*
          * For the same reason we reset the signaled binary syncobj above,
          * also reset the fence's syncobj so that they don't contain a
          * signaled dma-fence.
          */
         result = anv_queue_submit_add_syncobj(submit, device, impl->syncobj,
                                               I915_EXEC_FENCE_SIGNAL);
         if (result != VK_SUCCESS)
            goto error;
         break;
      }

      default:
         unreachable("Invalid fence type");
      }
   }

   result = _anv_queue_submit(queue, &submit, false);
   if (result != VK_SUCCESS)
      goto error;

   if (fence && fence->permanent.type == ANV_FENCE_TYPE_BO) {
      /* If we have permanent BO fence, the only type of temporary possible
       * would be BO_WSI (because BO fences are not shareable). The Vulkan spec
       * also requires that the fence passed to vkQueueSubmit() be :
       *
       *    * unsignaled
       *    * not be associated with any other queue command that has not yet
       *      completed execution on that queue
       *
       * So the only acceptable type for the temporary is NONE.
       */
      assert(fence->temporary.type == ANV_FENCE_TYPE_NONE);

      /* Once the execbuf has returned, we need to set the fence state to
       * SUBMITTED.  We can't do this before calling execbuf because
       * anv_GetFenceStatus does take the global device lock before checking
       * fence->state.
       *
       * We set the fence state to SUBMITTED regardless of whether or not the
       * execbuf succeeds because we need to ensure that vkWaitForFences() and
       * vkGetFenceStatus() return a valid result (VK_ERROR_DEVICE_LOST or
       * VK_SUCCESS) in a finite amount of time even if execbuf fails.
       */
      fence->permanent.bo.state = ANV_BO_FENCE_STATE_SUBMITTED;
   }

 error:
   if (submit)
      anv_queue_submit_free(device, submit);

   return result;
}

VkResult anv_QueueSubmit(
    VkQueue                                     _queue,
    uint32_t                                    submitCount,
    const VkSubmitInfo*                         pSubmits,
    VkFence                                     fence)
{
   ANV_FROM_HANDLE(anv_queue, queue, _queue);

   if (queue->device->no_hw)
      return VK_SUCCESS;

   /* Query for device status prior to submitting.  Technically, we don't need
    * to do this.  However, if we have a client that's submitting piles of
    * garbage, we would rather break as early as possible to keep the GPU
    * hanging contained.  If we don't check here, we'll either be waiting for
    * the kernel to kick us or we'll have to wait until the client waits on a
    * fence before we actually know whether or not we've hung.
    */
   VkResult result = anv_device_query_status(queue->device);
   if (result != VK_SUCCESS)
      return result;

   if (fence && submitCount == 0) {
      /* If we don't have any command buffers, we need to submit a dummy
       * batch to give GEM something to wait on.  We could, potentially,
       * come up with something more efficient but this shouldn't be a
       * common case.
       */
      result = anv_queue_submit(queue, NULL, NULL, NULL, 0, NULL, NULL, 0,
                                NULL, fence, -1);
      goto out;
   }

   for (uint32_t i = 0; i < submitCount; i++) {
      /* Fence for this submit.  NULL for all but the last one */
      VkFence submit_fence = (i == submitCount - 1) ? fence : VK_NULL_HANDLE;

      const struct wsi_memory_signal_submit_info *mem_signal_info =
         vk_find_struct_const(pSubmits[i].pNext,
                              WSI_MEMORY_SIGNAL_SUBMIT_INFO_MESA);
      struct anv_bo *wsi_signal_bo =
         mem_signal_info && mem_signal_info->memory != VK_NULL_HANDLE ?
         anv_device_memory_from_handle(mem_signal_info->memory)->bo : NULL;

      const VkTimelineSemaphoreSubmitInfoKHR *timeline_info =
         vk_find_struct_const(pSubmits[i].pNext,
                              TIMELINE_SEMAPHORE_SUBMIT_INFO_KHR);
      const VkPerformanceQuerySubmitInfoKHR *perf_info =
         vk_find_struct_const(pSubmits[i].pNext,
                              PERFORMANCE_QUERY_SUBMIT_INFO_KHR);
      const uint64_t *wait_values =
         timeline_info && timeline_info->waitSemaphoreValueCount ?
         timeline_info->pWaitSemaphoreValues : NULL;
      const uint64_t *signal_values =
         timeline_info && timeline_info->signalSemaphoreValueCount ?
         timeline_info->pSignalSemaphoreValues : NULL;

      if (pSubmits[i].commandBufferCount == 0) {
         /* If we don't have any command buffers, we need to submit a dummy
          * batch to give GEM something to wait on.  We could, potentially,
          * come up with something more efficient but this shouldn't be a
          * common case.
          */
         result = anv_queue_submit(queue, NULL,
                                   pSubmits[i].pWaitSemaphores,
                                   wait_values,
                                   pSubmits[i].waitSemaphoreCount,
                                   pSubmits[i].pSignalSemaphores,
                                   signal_values,
                                   pSubmits[i].signalSemaphoreCount,
                                   wsi_signal_bo,
                                   submit_fence,
                                   -1);
         if (result != VK_SUCCESS)
            goto out;

         continue;
      }

      for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
         ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
                         pSubmits[i].pCommandBuffers[j]);
         assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
         assert(!anv_batch_has_error(&cmd_buffer->batch));

         /* Fence for this execbuf.  NULL for all but the last one */
         VkFence execbuf_fence =
            (j == pSubmits[i].commandBufferCount - 1) ?
            submit_fence : VK_NULL_HANDLE;

         const VkSemaphore *in_semaphores = NULL, *out_semaphores = NULL;
         const uint64_t *in_values = NULL, *out_values = NULL;
         uint32_t num_in_semaphores = 0, num_out_semaphores = 0;
         if (j == 0) {
            /* Only the first batch gets the in semaphores */
            in_semaphores = pSubmits[i].pWaitSemaphores;
            in_values = wait_values;
            num_in_semaphores = pSubmits[i].waitSemaphoreCount;
         }

         if (j == pSubmits[i].commandBufferCount - 1) {
            /* Only the last batch gets the out semaphores */
            out_semaphores = pSubmits[i].pSignalSemaphores;
            out_values = signal_values;
            num_out_semaphores = pSubmits[i].signalSemaphoreCount;
         }

         result = anv_queue_submit(queue, cmd_buffer,
                                   in_semaphores, in_values, num_in_semaphores,
                                   out_semaphores, out_values, num_out_semaphores,
                                   wsi_signal_bo, execbuf_fence,
                                   perf_info ? perf_info->counterPassIndex : 0);
         if (result != VK_SUCCESS)
            goto out;
      }
   }

out:
   if (result != VK_SUCCESS && result != VK_ERROR_DEVICE_LOST) {
      /* In the case that something has gone wrong we may end up with an
       * inconsistent state from which it may not be trivial to recover.
       * For example, we might have computed address relocations and
       * any future attempt to re-submit this job will need to know about
       * this and avoid computing relocation addresses again.
       *
       * To avoid this sort of issues, we assume that if something was
       * wrong during submission we must already be in a really bad situation
       * anyway (such us being out of memory) and return
       * VK_ERROR_DEVICE_LOST to ensure that clients do not attempt to
       * submit the same job again to this device.
       *
       * We skip doing this on VK_ERROR_DEVICE_LOST because
       * anv_device_set_lost() would have been called already by a callee of
       * anv_queue_submit().
       */
      result = anv_device_set_lost(queue->device, "vkQueueSubmit() failed");
   }

   return result;
}

VkResult anv_QueueWaitIdle(
    VkQueue                                     _queue)
{
   ANV_FROM_HANDLE(anv_queue, queue, _queue);

   if (anv_device_is_lost(queue->device))
      return VK_ERROR_DEVICE_LOST;

   return anv_queue_submit_simple_batch(queue, NULL);
}

VkResult anv_CreateFence(
    VkDevice                                    _device,
    const VkFenceCreateInfo*                    pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkFence*                                    pFence)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_fence *fence;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);

   fence = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*fence), 8,
                      VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (fence == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   vk_object_base_init(&device->vk, &fence->base, VK_OBJECT_TYPE_FENCE);

   if (device->physical->has_syncobj_wait) {
      fence->permanent.type = ANV_FENCE_TYPE_SYNCOBJ;

      uint32_t create_flags = 0;
      if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT)
         create_flags |= DRM_SYNCOBJ_CREATE_SIGNALED;

      fence->permanent.syncobj = anv_gem_syncobj_create(device, create_flags);
      if (!fence->permanent.syncobj)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
   } else {
      fence->permanent.type = ANV_FENCE_TYPE_BO;

      VkResult result = anv_bo_pool_alloc(&device->batch_bo_pool, 4096,
                                          &fence->permanent.bo.bo);
      if (result != VK_SUCCESS)
         return result;

      if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
         fence->permanent.bo.state = ANV_BO_FENCE_STATE_SIGNALED;
      } else {
         fence->permanent.bo.state = ANV_BO_FENCE_STATE_RESET;
      }
   }

   *pFence = anv_fence_to_handle(fence);

   return VK_SUCCESS;
}

static void
anv_fence_impl_cleanup(struct anv_device *device,
                       struct anv_fence_impl *impl)
{
   switch (impl->type) {
   case ANV_FENCE_TYPE_NONE:
      /* Dummy.  Nothing to do */
      break;

   case ANV_FENCE_TYPE_BO:
      anv_bo_pool_free(&device->batch_bo_pool, impl->bo.bo);
      break;

   case ANV_FENCE_TYPE_WSI_BO:
      anv_device_release_bo(device, impl->bo.bo);
      break;

   case ANV_FENCE_TYPE_SYNCOBJ:
      anv_gem_syncobj_destroy(device, impl->syncobj);
      break;

   case ANV_FENCE_TYPE_WSI:
      impl->fence_wsi->destroy(impl->fence_wsi);
      break;

   default:
      unreachable("Invalid fence type");
   }

   impl->type = ANV_FENCE_TYPE_NONE;
}

void
anv_fence_reset_temporary(struct anv_device *device,
                          struct anv_fence *fence)
{
   if (fence->temporary.type == ANV_FENCE_TYPE_NONE)
      return;

   anv_fence_impl_cleanup(device, &fence->temporary);
}

void anv_DestroyFence(
    VkDevice                                    _device,
    VkFence                                     _fence,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_fence, fence, _fence);

   if (!fence)
      return;

   anv_fence_impl_cleanup(device, &fence->temporary);
   anv_fence_impl_cleanup(device, &fence->permanent);

   vk_object_base_finish(&fence->base);
   vk_free2(&device->vk.alloc, pAllocator, fence);
}

VkResult anv_ResetFences(
    VkDevice                                    _device,
    uint32_t                                    fenceCount,
    const VkFence*                              pFences)
{
   ANV_FROM_HANDLE(anv_device, device, _device);

   for (uint32_t i = 0; i < fenceCount; i++) {
      ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);

      /* From the Vulkan 1.0.53 spec:
       *
       *    "If any member of pFences currently has its payload imported with
       *    temporary permanence, that fence’s prior permanent payload is
       *    first restored. The remaining operations described therefore
       *    operate on the restored payload.
       */
      anv_fence_reset_temporary(device, fence);

      struct anv_fence_impl *impl = &fence->permanent;

      switch (impl->type) {
      case ANV_FENCE_TYPE_BO:
         impl->bo.state = ANV_BO_FENCE_STATE_RESET;
         break;

      case ANV_FENCE_TYPE_SYNCOBJ:
         anv_gem_syncobj_reset(device, impl->syncobj);
         break;

      default:
         unreachable("Invalid fence type");
      }
   }

   return VK_SUCCESS;
}

VkResult anv_GetFenceStatus(
    VkDevice                                    _device,
    VkFence                                     _fence)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_fence, fence, _fence);

   if (anv_device_is_lost(device))
      return VK_ERROR_DEVICE_LOST;

   struct anv_fence_impl *impl =
      fence->temporary.type != ANV_FENCE_TYPE_NONE ?
      &fence->temporary : &fence->permanent;

   switch (impl->type) {
   case ANV_FENCE_TYPE_BO:
   case ANV_FENCE_TYPE_WSI_BO:
      switch (impl->bo.state) {
      case ANV_BO_FENCE_STATE_RESET:
         /* If it hasn't even been sent off to the GPU yet, it's not ready */
         return VK_NOT_READY;

      case ANV_BO_FENCE_STATE_SIGNALED:
         /* It's been signaled, return success */
         return VK_SUCCESS;

      case ANV_BO_FENCE_STATE_SUBMITTED: {
         VkResult result = anv_device_bo_busy(device, impl->bo.bo);
         if (result == VK_SUCCESS) {
            impl->bo.state = ANV_BO_FENCE_STATE_SIGNALED;
            return VK_SUCCESS;
         } else {
            return result;
         }
      }
      default:
         unreachable("Invalid fence status");
      }

   case ANV_FENCE_TYPE_SYNCOBJ: {
      int ret = anv_gem_syncobj_wait(device, &impl->syncobj, 1, 0, true);
      if (ret == -1) {
         if (errno == ETIME) {
            return VK_NOT_READY;
         } else {
            /* We don't know the real error. */
            return anv_device_set_lost(device, "drm_syncobj_wait failed: %m");
         }
      } else {
         return VK_SUCCESS;
      }
   }

   default:
      unreachable("Invalid fence type");
   }
}

static VkResult
anv_wait_for_syncobj_fences(struct anv_device *device,
                            uint32_t fenceCount,
                            const VkFence *pFences,
                            bool waitAll,
                            uint64_t abs_timeout_ns)
{
   uint32_t *syncobjs = vk_zalloc(&device->vk.alloc,
                                  sizeof(*syncobjs) * fenceCount, 8,
                                  VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
   if (!syncobjs)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   for (uint32_t i = 0; i < fenceCount; i++) {
      ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
      assert(fence->permanent.type == ANV_FENCE_TYPE_SYNCOBJ);

      struct anv_fence_impl *impl =
         fence->temporary.type != ANV_FENCE_TYPE_NONE ?
         &fence->temporary : &fence->permanent;

      assert(impl->type == ANV_FENCE_TYPE_SYNCOBJ);
      syncobjs[i] = impl->syncobj;
   }

   /* The gem_syncobj_wait ioctl may return early due to an inherent
    * limitation in the way it computes timeouts.  Loop until we've actually
    * passed the timeout.
    */
   int ret;
   do {
      ret = anv_gem_syncobj_wait(device, syncobjs, fenceCount,
                                 abs_timeout_ns, waitAll);
   } while (ret == -1 && errno == ETIME && anv_gettime_ns() < abs_timeout_ns);

   vk_free(&device->vk.alloc, syncobjs);

   if (ret == -1) {
      if (errno == ETIME) {
         return VK_TIMEOUT;
      } else {
         /* We don't know the real error. */
         return anv_device_set_lost(device, "drm_syncobj_wait failed: %m");
      }
   } else {
      return VK_SUCCESS;
   }
}

static VkResult
anv_wait_for_bo_fences(struct anv_device *device,
                       uint32_t fenceCount,
                       const VkFence *pFences,
                       bool waitAll,
                       uint64_t abs_timeout_ns)
{
   VkResult result = VK_SUCCESS;
   uint32_t pending_fences = fenceCount;
   while (pending_fences) {
      pending_fences = 0;
      bool signaled_fences = false;
      for (uint32_t i = 0; i < fenceCount; i++) {
         ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);

         struct anv_fence_impl *impl =
            fence->temporary.type != ANV_FENCE_TYPE_NONE ?
            &fence->temporary : &fence->permanent;
         assert(impl->type == ANV_FENCE_TYPE_BO ||
                impl->type == ANV_FENCE_TYPE_WSI_BO);

         switch (impl->bo.state) {
         case ANV_BO_FENCE_STATE_RESET:
            /* This fence hasn't been submitted yet, we'll catch it the next
             * time around.  Yes, this may mean we dead-loop but, short of
             * lots of locking and a condition variable, there's not much that
             * we can do about that.
             */
            pending_fences++;
            continue;

         case ANV_BO_FENCE_STATE_SIGNALED:
            /* This fence is not pending.  If waitAll isn't set, we can return
             * early.  Otherwise, we have to keep going.
             */
            if (!waitAll) {
               result = VK_SUCCESS;
               goto done;
            }
            continue;

         case ANV_BO_FENCE_STATE_SUBMITTED:
            /* These are the fences we really care about.  Go ahead and wait
             * on it until we hit a timeout.
             */
            result = anv_device_wait(device, impl->bo.bo,
                                     anv_get_relative_timeout(abs_timeout_ns));
            switch (result) {
            case VK_SUCCESS:
               impl->bo.state = ANV_BO_FENCE_STATE_SIGNALED;
               signaled_fences = true;
               if (!waitAll)
                  goto done;
               break;

            case VK_TIMEOUT:
               goto done;

            default:
               return result;
            }
         }
      }

      if (pending_fences && !signaled_fences) {
         /* If we've hit this then someone decided to vkWaitForFences before
          * they've actually submitted any of them to a queue.  This is a
          * fairly pessimal case, so it's ok to lock here and use a standard
          * pthreads condition variable.
          */
         pthread_mutex_lock(&device->mutex);

         /* It's possible that some of the fences have changed state since the
          * last time we checked.  Now that we have the lock, check for
          * pending fences again and don't wait if it's changed.
          */
         uint32_t now_pending_fences = 0;
         for (uint32_t i = 0; i < fenceCount; i++) {
            ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
            if (fence->permanent.bo.state == ANV_BO_FENCE_STATE_RESET)
               now_pending_fences++;
         }
         assert(now_pending_fences <= pending_fences);

         if (now_pending_fences == pending_fences) {
            struct timespec abstime = {
               .tv_sec = abs_timeout_ns / NSEC_PER_SEC,
               .tv_nsec = abs_timeout_ns % NSEC_PER_SEC,
            };

            ASSERTED int ret;
            ret = pthread_cond_timedwait(&device->queue_submit,
                                         &device->mutex, &abstime);
            assert(ret != EINVAL);
            if (anv_gettime_ns() >= abs_timeout_ns) {
               pthread_mutex_unlock(&device->mutex);
               result = VK_TIMEOUT;
               goto done;
            }
         }

         pthread_mutex_unlock(&device->mutex);
      }
   }

done:
   if (anv_device_is_lost(device))
      return VK_ERROR_DEVICE_LOST;

   return result;
}

static VkResult
anv_wait_for_wsi_fence(struct anv_device *device,
                       struct anv_fence_impl *impl,
                       uint64_t abs_timeout)
{
   return impl->fence_wsi->wait(impl->fence_wsi, abs_timeout);
}

static VkResult
anv_wait_for_fences(struct anv_device *device,
                    uint32_t fenceCount,
                    const VkFence *pFences,
                    bool waitAll,
                    uint64_t abs_timeout)
{
   VkResult result = VK_SUCCESS;

   if (fenceCount <= 1 || waitAll) {
      for (uint32_t i = 0; i < fenceCount; i++) {
         ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
         struct anv_fence_impl *impl =
            fence->temporary.type != ANV_FENCE_TYPE_NONE ?
            &fence->temporary : &fence->permanent;

         switch (impl->type) {
         case ANV_FENCE_TYPE_BO:
         case ANV_FENCE_TYPE_WSI_BO:
            result = anv_wait_for_bo_fences(device, 1, &pFences[i],
                                            true, abs_timeout);
            break;
         case ANV_FENCE_TYPE_SYNCOBJ:
            result = anv_wait_for_syncobj_fences(device, 1, &pFences[i],
                                                 true, abs_timeout);
            break;
         case ANV_FENCE_TYPE_WSI:
            result = anv_wait_for_wsi_fence(device, impl, abs_timeout);
            break;
         case ANV_FENCE_TYPE_NONE:
            result = VK_SUCCESS;
            break;
         }
         if (result != VK_SUCCESS)
            return result;
      }
   } else {
      do {
         for (uint32_t i = 0; i < fenceCount; i++) {
            if (anv_wait_for_fences(device, 1, &pFences[i], true, 0) == VK_SUCCESS)
               return VK_SUCCESS;
         }
      } while (anv_gettime_ns() < abs_timeout);
      result = VK_TIMEOUT;
   }
   return result;
}

static bool anv_all_fences_syncobj(uint32_t fenceCount, const VkFence *pFences)
{
   for (uint32_t i = 0; i < fenceCount; ++i) {
      ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
      struct anv_fence_impl *impl =
         fence->temporary.type != ANV_FENCE_TYPE_NONE ?
         &fence->temporary : &fence->permanent;
      if (impl->type != ANV_FENCE_TYPE_SYNCOBJ)
         return false;
   }
   return true;
}

static bool anv_all_fences_bo(uint32_t fenceCount, const VkFence *pFences)
{
   for (uint32_t i = 0; i < fenceCount; ++i) {
      ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
      struct anv_fence_impl *impl =
         fence->temporary.type != ANV_FENCE_TYPE_NONE ?
         &fence->temporary : &fence->permanent;
      if (impl->type != ANV_FENCE_TYPE_BO &&
          impl->type != ANV_FENCE_TYPE_WSI_BO)
         return false;
   }
   return true;
}

VkResult anv_WaitForFences(
    VkDevice                                    _device,
    uint32_t                                    fenceCount,
    const VkFence*                              pFences,
    VkBool32                                    waitAll,
    uint64_t                                    timeout)
{
   ANV_FROM_HANDLE(anv_device, device, _device);

   if (device->no_hw)
      return VK_SUCCESS;

   if (anv_device_is_lost(device))
      return VK_ERROR_DEVICE_LOST;

   uint64_t abs_timeout = anv_get_absolute_timeout(timeout);
   if (anv_all_fences_syncobj(fenceCount, pFences)) {
      return anv_wait_for_syncobj_fences(device, fenceCount, pFences,
                                         waitAll, abs_timeout);
   } else if (anv_all_fences_bo(fenceCount, pFences)) {
      return anv_wait_for_bo_fences(device, fenceCount, pFences,
                                    waitAll, abs_timeout);
   } else {
      return anv_wait_for_fences(device, fenceCount, pFences,
                                 waitAll, abs_timeout);
   }
}

void anv_GetPhysicalDeviceExternalFenceProperties(
    VkPhysicalDevice                            physicalDevice,
    const VkPhysicalDeviceExternalFenceInfo*    pExternalFenceInfo,
    VkExternalFenceProperties*                  pExternalFenceProperties)
{
   ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);

   switch (pExternalFenceInfo->handleType) {
   case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
   case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
      if (device->has_syncobj_wait) {
         pExternalFenceProperties->exportFromImportedHandleTypes =
            VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT |
            VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
         pExternalFenceProperties->compatibleHandleTypes =
            VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT |
            VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
         pExternalFenceProperties->externalFenceFeatures =
            VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT |
            VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT;
         return;
      }
      break;

   default:
      break;
   }

   pExternalFenceProperties->exportFromImportedHandleTypes = 0;
   pExternalFenceProperties->compatibleHandleTypes = 0;
   pExternalFenceProperties->externalFenceFeatures = 0;
}

VkResult anv_ImportFenceFdKHR(
    VkDevice                                    _device,
    const VkImportFenceFdInfoKHR*               pImportFenceFdInfo)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_fence, fence, pImportFenceFdInfo->fence);
   int fd = pImportFenceFdInfo->fd;

   assert(pImportFenceFdInfo->sType ==
          VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR);

   struct anv_fence_impl new_impl = {
      .type = ANV_FENCE_TYPE_NONE,
   };

   switch (pImportFenceFdInfo->handleType) {
   case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
      new_impl.type = ANV_FENCE_TYPE_SYNCOBJ;

      new_impl.syncobj = anv_gem_syncobj_fd_to_handle(device, fd);
      if (!new_impl.syncobj)
         return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);

      break;

   case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
      /* Sync files are a bit tricky.  Because we want to continue using the
       * syncobj implementation of WaitForFences, we don't use the sync file
       * directly but instead import it into a syncobj.
       */
      new_impl.type = ANV_FENCE_TYPE_SYNCOBJ;

      new_impl.syncobj = anv_gem_syncobj_create(device, 0);
      if (!new_impl.syncobj)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      if (anv_gem_syncobj_import_sync_file(device, new_impl.syncobj, fd)) {
         anv_gem_syncobj_destroy(device, new_impl.syncobj);
         return vk_errorf(device, NULL, VK_ERROR_INVALID_EXTERNAL_HANDLE,
                          "syncobj sync file import failed: %m");
      }
      break;

   default:
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
   }

   /* From the Vulkan 1.0.53 spec:
    *
    *    "Importing a fence payload from a file descriptor transfers
    *    ownership of the file descriptor from the application to the
    *    Vulkan implementation. The application must not perform any
    *    operations on the file descriptor after a successful import."
    *
    * If the import fails, we leave the file descriptor open.
    */
   close(fd);

   if (pImportFenceFdInfo->flags & VK_FENCE_IMPORT_TEMPORARY_BIT) {
      anv_fence_impl_cleanup(device, &fence->temporary);
      fence->temporary = new_impl;
   } else {
      anv_fence_impl_cleanup(device, &fence->permanent);
      fence->permanent = new_impl;
   }

   return VK_SUCCESS;
}

VkResult anv_GetFenceFdKHR(
    VkDevice                                    _device,
    const VkFenceGetFdInfoKHR*                  pGetFdInfo,
    int*                                        pFd)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_fence, fence, pGetFdInfo->fence);

   assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_FENCE_GET_FD_INFO_KHR);

   struct anv_fence_impl *impl =
      fence->temporary.type != ANV_FENCE_TYPE_NONE ?
      &fence->temporary : &fence->permanent;

   assert(impl->type == ANV_FENCE_TYPE_SYNCOBJ);
   switch (pGetFdInfo->handleType) {
   case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT: {
      int fd = anv_gem_syncobj_handle_to_fd(device, impl->syncobj);
      if (fd < 0)
         return vk_error(VK_ERROR_TOO_MANY_OBJECTS);

      *pFd = fd;
      break;
   }

   case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT: {
      int fd = anv_gem_syncobj_export_sync_file(device, impl->syncobj);
      if (fd < 0)
         return vk_error(VK_ERROR_TOO_MANY_OBJECTS);

      *pFd = fd;
      break;
   }

   default:
      unreachable("Invalid fence export handle type");
   }

   /* From the Vulkan 1.0.53 spec:
    *
    *    "Export operations have the same transference as the specified handle
    *    type’s import operations. [...] If the fence was using a
    *    temporarily imported payload, the fence’s prior permanent payload
    *    will be restored.
    */
   if (impl == &fence->temporary)
      anv_fence_impl_cleanup(device, impl);

   return VK_SUCCESS;
}

// Queue semaphore functions

static VkSemaphoreTypeKHR
get_semaphore_type(const void *pNext, uint64_t *initial_value)
{
   const VkSemaphoreTypeCreateInfoKHR *type_info =
      vk_find_struct_const(pNext, SEMAPHORE_TYPE_CREATE_INFO_KHR);

   if (!type_info)
      return VK_SEMAPHORE_TYPE_BINARY_KHR;

   if (initial_value)
      *initial_value = type_info->initialValue;
   return type_info->semaphoreType;
}

static VkResult
binary_semaphore_create(struct anv_device *device,
                        struct anv_semaphore_impl *impl,
                        bool exportable)
{
   if (device->physical->has_syncobj) {
      impl->type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ;
      impl->syncobj = anv_gem_syncobj_create(device, 0);
      if (!impl->syncobj)
            return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      return VK_SUCCESS;
   } else {
      impl->type = ANV_SEMAPHORE_TYPE_BO;
      VkResult result =
         anv_device_alloc_bo(device, 4096,
                             ANV_BO_ALLOC_EXTERNAL |
                             ANV_BO_ALLOC_IMPLICIT_SYNC,
                             0 /* explicit_address */,
                             &impl->bo);
      /* If we're going to use this as a fence, we need to *not* have the
       * EXEC_OBJECT_ASYNC bit set.
       */
      assert(!(impl->bo->flags & EXEC_OBJECT_ASYNC));
      return result;
   }
}

static VkResult
timeline_semaphore_create(struct anv_device *device,
                          struct anv_semaphore_impl *impl,
                          uint64_t initial_value)
{
   impl->type = ANV_SEMAPHORE_TYPE_TIMELINE;
   anv_timeline_init(device, &impl->timeline, initial_value);
   return VK_SUCCESS;
}

VkResult anv_CreateSemaphore(
    VkDevice                                    _device,
    const VkSemaphoreCreateInfo*                pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSemaphore*                                pSemaphore)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_semaphore *semaphore;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO);

   uint64_t timeline_value = 0;
   VkSemaphoreTypeKHR sem_type = get_semaphore_type(pCreateInfo->pNext, &timeline_value);

   semaphore = vk_alloc(&device->vk.alloc, sizeof(*semaphore), 8,
                        VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
   if (semaphore == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   vk_object_base_init(&device->vk, &semaphore->base, VK_OBJECT_TYPE_SEMAPHORE);

   p_atomic_set(&semaphore->refcount, 1);

   const VkExportSemaphoreCreateInfo *export =
      vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO);
    VkExternalSemaphoreHandleTypeFlags handleTypes =
      export ? export->handleTypes : 0;
   VkResult result;

   if (handleTypes == 0) {
      if (sem_type == VK_SEMAPHORE_TYPE_BINARY_KHR)
         result = binary_semaphore_create(device, &semaphore->permanent, false);
      else
         result = timeline_semaphore_create(device, &semaphore->permanent, timeline_value);
      if (result != VK_SUCCESS) {
         vk_free2(&device->vk.alloc, pAllocator, semaphore);
         return result;
      }
   } else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) {
      assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT);
      assert(sem_type == VK_SEMAPHORE_TYPE_BINARY_KHR);
      result = binary_semaphore_create(device, &semaphore->permanent, true);
      if (result != VK_SUCCESS) {
         vk_free2(&device->vk.alloc, pAllocator, semaphore);
         return result;
      }
   } else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT) {
      assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT);
      assert(sem_type == VK_SEMAPHORE_TYPE_BINARY_KHR);
      if (device->physical->has_syncobj) {
         semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ;
         semaphore->permanent.syncobj = anv_gem_syncobj_create(device, 0);
         if (!semaphore->permanent.syncobj) {
            vk_free2(&device->vk.alloc, pAllocator, semaphore);
            return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
         }
      } else {
         semaphore->permanent.type = ANV_SEMAPHORE_TYPE_SYNC_FILE;
         semaphore->permanent.fd = -1;
      }
   } else {
      assert(!"Unknown handle type");
      vk_free2(&device->vk.alloc, pAllocator, semaphore);
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
   }

   semaphore->temporary.type = ANV_SEMAPHORE_TYPE_NONE;

   *pSemaphore = anv_semaphore_to_handle(semaphore);

   return VK_SUCCESS;
}

static void
anv_semaphore_impl_cleanup(struct anv_device *device,
                           struct anv_semaphore_impl *impl)
{
   switch (impl->type) {
   case ANV_SEMAPHORE_TYPE_NONE:
   case ANV_SEMAPHORE_TYPE_DUMMY:
      /* Dummy.  Nothing to do */
      break;

   case ANV_SEMAPHORE_TYPE_BO:
   case ANV_SEMAPHORE_TYPE_WSI_BO:
      anv_device_release_bo(device, impl->bo);
      break;

   case ANV_SEMAPHORE_TYPE_SYNC_FILE:
      if (impl->fd >= 0)
         close(impl->fd);
      break;

   case ANV_SEMAPHORE_TYPE_TIMELINE:
      anv_timeline_finish(device, &impl->timeline);
      break;

   case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ:
      anv_gem_syncobj_destroy(device, impl->syncobj);
      break;

   default:
      unreachable("Invalid semaphore type");
   }

   impl->type = ANV_SEMAPHORE_TYPE_NONE;
}

void
anv_semaphore_reset_temporary(struct anv_device *device,
                              struct anv_semaphore *semaphore)
{
   if (semaphore->temporary.type == ANV_SEMAPHORE_TYPE_NONE)
      return;

   anv_semaphore_impl_cleanup(device, &semaphore->temporary);
}

static struct anv_semaphore *
anv_semaphore_ref(struct anv_semaphore *semaphore)
{
   assert(semaphore->refcount);
   p_atomic_inc(&semaphore->refcount);
   return semaphore;
}

static void
anv_semaphore_unref(struct anv_device *device, struct anv_semaphore *semaphore)
{
   if (!p_atomic_dec_zero(&semaphore->refcount))
      return;

   anv_semaphore_impl_cleanup(device, &semaphore->temporary);
   anv_semaphore_impl_cleanup(device, &semaphore->permanent);

   vk_object_base_finish(&semaphore->base);
   vk_free(&device->vk.alloc, semaphore);
}

void anv_DestroySemaphore(
    VkDevice                                    _device,
    VkSemaphore                                 _semaphore,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_semaphore, semaphore, _semaphore);

   if (semaphore == NULL)
      return;

   anv_semaphore_unref(device, semaphore);
}

void anv_GetPhysicalDeviceExternalSemaphoreProperties(
    VkPhysicalDevice                            physicalDevice,
    const VkPhysicalDeviceExternalSemaphoreInfo* pExternalSemaphoreInfo,
    VkExternalSemaphoreProperties*               pExternalSemaphoreProperties)
{
   ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);

   VkSemaphoreTypeKHR sem_type =
      get_semaphore_type(pExternalSemaphoreInfo->pNext, NULL);

   switch (pExternalSemaphoreInfo->handleType) {
   case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
      /* Timeline semaphores are not exportable. */
      if (sem_type == VK_SEMAPHORE_TYPE_TIMELINE_KHR)
         break;
      pExternalSemaphoreProperties->exportFromImportedHandleTypes =
         VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
      pExternalSemaphoreProperties->compatibleHandleTypes =
         VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
      pExternalSemaphoreProperties->externalSemaphoreFeatures =
         VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
         VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
      return;

   case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
      if (sem_type == VK_SEMAPHORE_TYPE_TIMELINE_KHR)
         break;
      if (!device->has_exec_fence)
         break;
      pExternalSemaphoreProperties->exportFromImportedHandleTypes =
         VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
      pExternalSemaphoreProperties->compatibleHandleTypes =
         VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
      pExternalSemaphoreProperties->externalSemaphoreFeatures =
         VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
         VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
      return;

   default:
      break;
   }

   pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
   pExternalSemaphoreProperties->compatibleHandleTypes = 0;
   pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
}

VkResult anv_ImportSemaphoreFdKHR(
    VkDevice                                    _device,
    const VkImportSemaphoreFdInfoKHR*           pImportSemaphoreFdInfo)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_semaphore, semaphore, pImportSemaphoreFdInfo->semaphore);
   int fd = pImportSemaphoreFdInfo->fd;

   struct anv_semaphore_impl new_impl = {
      .type = ANV_SEMAPHORE_TYPE_NONE,
   };

   switch (pImportSemaphoreFdInfo->handleType) {
   case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
      if (device->physical->has_syncobj) {
         new_impl.type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ;

         new_impl.syncobj = anv_gem_syncobj_fd_to_handle(device, fd);
         if (!new_impl.syncobj)
            return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
      } else {
         new_impl.type = ANV_SEMAPHORE_TYPE_BO;

         VkResult result = anv_device_import_bo(device, fd,
                                                ANV_BO_ALLOC_EXTERNAL |
                                                ANV_BO_ALLOC_IMPLICIT_SYNC,
                                                0 /* client_address */,
                                                &new_impl.bo);
         if (result != VK_SUCCESS)
            return result;

         if (new_impl.bo->size < 4096) {
            anv_device_release_bo(device, new_impl.bo);
            return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
         }

         /* If we're going to use this as a fence, we need to *not* have the
          * EXEC_OBJECT_ASYNC bit set.
          */
         assert(!(new_impl.bo->flags & EXEC_OBJECT_ASYNC));
      }

      /* From the Vulkan spec:
       *
       *    "Importing semaphore state from a file descriptor transfers
       *    ownership of the file descriptor from the application to the
       *    Vulkan implementation. The application must not perform any
       *    operations on the file descriptor after a successful import."
       *
       * If the import fails, we leave the file descriptor open.
       */
      close(fd);
      break;

   case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
      if (device->physical->has_syncobj) {
         new_impl = (struct anv_semaphore_impl) {
            .type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
            .syncobj = anv_gem_syncobj_create(device, 0),
         };
         if (!new_impl.syncobj)
            return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
         if (anv_gem_syncobj_import_sync_file(device, new_impl.syncobj, fd)) {
            anv_gem_syncobj_destroy(device, new_impl.syncobj);
            return vk_errorf(device, NULL, VK_ERROR_INVALID_EXTERNAL_HANDLE,
                             "syncobj sync file import failed: %m");
         }
         /* Ownership of the FD is transfered to Anv. Since we don't need it
          * anymore because the associated fence has been put into a syncobj,
          * we must close the FD.
          */
         close(fd);
      } else {
         new_impl = (struct anv_semaphore_impl) {
            .type = ANV_SEMAPHORE_TYPE_SYNC_FILE,
            .fd = fd,
         };
      }
      break;

   default:
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
   }

   if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT) {
      anv_semaphore_impl_cleanup(device, &semaphore->temporary);
      semaphore->temporary = new_impl;
   } else {
      anv_semaphore_impl_cleanup(device, &semaphore->permanent);
      semaphore->permanent = new_impl;
   }

   return VK_SUCCESS;
}

VkResult anv_GetSemaphoreFdKHR(
    VkDevice                                    _device,
    const VkSemaphoreGetFdInfoKHR*              pGetFdInfo,
    int*                                        pFd)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_semaphore, semaphore, pGetFdInfo->semaphore);
   VkResult result;
   int fd;

   assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR);

   struct anv_semaphore_impl *impl =
      semaphore->temporary.type != ANV_SEMAPHORE_TYPE_NONE ?
      &semaphore->temporary : &semaphore->permanent;

   switch (impl->type) {
   case ANV_SEMAPHORE_TYPE_BO:
      result = anv_device_export_bo(device, impl->bo, pFd);
      if (result != VK_SUCCESS)
         return result;
      break;

   case ANV_SEMAPHORE_TYPE_SYNC_FILE: {
      /* There's a potential race here with vkQueueSubmit if you are trying
       * to export a semaphore Fd while the queue submit is still happening.
       * This can happen if we see all dependencies get resolved via timeline
       * semaphore waits completing before the execbuf completes and we
       * process the resulting out fence.  To work around this, take a lock
       * around grabbing the fd.
       */
      pthread_mutex_lock(&device->mutex);

      /* From the Vulkan 1.0.53 spec:
       *
       *    "...exporting a semaphore payload to a handle with copy
       *    transference has the same side effects on the source
       *    semaphore’s payload as executing a semaphore wait operation."
       *
       * In other words, it may still be a SYNC_FD semaphore, but it's now
       * considered to have been waited on and no longer has a sync file
       * attached.
       */
      int fd = impl->fd;
      impl->fd = -1;

      pthread_mutex_unlock(&device->mutex);

      /* There are two reasons why this could happen:
       *
       *  1) The user is trying to export without submitting something that
       *     signals the semaphore.  If this is the case, it's their bug so
       *     what we return here doesn't matter.
       *
       *  2) The kernel didn't give us a file descriptor.  The most likely
       *     reason for this is running out of file descriptors.
       */
      if (fd < 0)
         return vk_error(VK_ERROR_TOO_MANY_OBJECTS);

      *pFd = fd;
      return VK_SUCCESS;
   }

   case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ:
      if (pGetFdInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT)
         fd = anv_gem_syncobj_export_sync_file(device, impl->syncobj);
      else {
         assert(pGetFdInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT);
         fd = anv_gem_syncobj_handle_to_fd(device, impl->syncobj);
      }
      if (fd < 0)
         return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
      *pFd = fd;
      break;

   default:
      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
   }

   /* From the Vulkan 1.0.53 spec:
    *
    *    "Export operations have the same transference as the specified handle
    *    type’s import operations. [...] If the semaphore was using a
    *    temporarily imported payload, the semaphore’s prior permanent payload
    *    will be restored.
    */
   if (impl == &semaphore->temporary)
      anv_semaphore_impl_cleanup(device, impl);

   return VK_SUCCESS;
}

VkResult anv_GetSemaphoreCounterValue(
    VkDevice                                    _device,
    VkSemaphore                                 _semaphore,
    uint64_t*                                   pValue)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_semaphore, semaphore, _semaphore);

   struct anv_semaphore_impl *impl =
      semaphore->temporary.type != ANV_SEMAPHORE_TYPE_NONE ?
      &semaphore->temporary : &semaphore->permanent;

   switch (impl->type) {
   case ANV_SEMAPHORE_TYPE_TIMELINE: {
      pthread_mutex_lock(&device->mutex);
      *pValue = impl->timeline.highest_past;
      pthread_mutex_unlock(&device->mutex);
      return VK_SUCCESS;
   }

   default:
      unreachable("Invalid semaphore type");
   }
}

static VkResult
anv_timeline_wait_locked(struct anv_device *device,
                         struct anv_timeline *timeline,
                         uint64_t serial, uint64_t abs_timeout_ns)
{
   /* Wait on the queue_submit condition variable until the timeline has a
    * time point pending that's at least as high as serial.
    */
   while (timeline->highest_pending < serial) {
      struct timespec abstime = {
         .tv_sec = abs_timeout_ns / NSEC_PER_SEC,
         .tv_nsec = abs_timeout_ns % NSEC_PER_SEC,
      };

      int ret = pthread_cond_timedwait(&device->queue_submit,
                                       &device->mutex, &abstime);
      assert(ret != EINVAL);
      if (anv_gettime_ns() >= abs_timeout_ns &&
          timeline->highest_pending < serial)
         return VK_TIMEOUT;
   }

   while (1) {
      VkResult result = anv_timeline_gc_locked(device, timeline);
      if (result != VK_SUCCESS)
         return result;

      if (timeline->highest_past >= serial)
         return VK_SUCCESS;

      /* If we got here, our earliest time point has a busy BO */
      struct anv_timeline_point *point =
         list_first_entry(&timeline->points,
                          struct anv_timeline_point, link);

      /* Drop the lock while we wait. */
      point->waiting++;
      pthread_mutex_unlock(&device->mutex);

      result = anv_device_wait(device, point->bo,
                               anv_get_relative_timeout(abs_timeout_ns));

      /* Pick the mutex back up */
      pthread_mutex_lock(&device->mutex);
      point->waiting--;

      /* This covers both VK_TIMEOUT and VK_ERROR_DEVICE_LOST */
      if (result != VK_SUCCESS)
         return result;
   }
}

static VkResult
anv_timelines_wait(struct anv_device *device,
                   struct anv_timeline **timelines,
                   const uint64_t *serials,
                   uint32_t n_timelines,
                   bool wait_all,
                   uint64_t abs_timeout_ns)
{
   if (!wait_all && n_timelines > 1) {
      pthread_mutex_lock(&device->mutex);

      while (1) {
         VkResult result;
         for (uint32_t i = 0; i < n_timelines; i++) {
            result =
               anv_timeline_wait_locked(device, timelines[i], serials[i], 0);
            if (result != VK_TIMEOUT)
               break;
         }

         if (result != VK_TIMEOUT ||
             anv_gettime_ns() >= abs_timeout_ns) {
            pthread_mutex_unlock(&device->mutex);
            return result;
         }

         /* If none of them are ready do a short wait so we don't completely
          * spin while holding the lock. The 10us is completely arbitrary.
          */
         uint64_t abs_short_wait_ns =
            anv_get_absolute_timeout(
               MIN2((anv_gettime_ns() - abs_timeout_ns) / 10, 10 * 1000));
         struct timespec abstime = {
            .tv_sec = abs_short_wait_ns / NSEC_PER_SEC,
            .tv_nsec = abs_short_wait_ns % NSEC_PER_SEC,
         };
         ASSERTED int ret;
         ret = pthread_cond_timedwait(&device->queue_submit,
                                      &device->mutex, &abstime);
         assert(ret != EINVAL);
      }
   } else {
      VkResult result = VK_SUCCESS;
      pthread_mutex_lock(&device->mutex);
      for (uint32_t i = 0; i < n_timelines; i++) {
         result =
            anv_timeline_wait_locked(device, timelines[i],
                                     serials[i], abs_timeout_ns);
         if (result != VK_SUCCESS)
            break;
      }
      pthread_mutex_unlock(&device->mutex);
      return result;
   }
}

VkResult anv_WaitSemaphores(
    VkDevice                                    _device,
    const VkSemaphoreWaitInfoKHR*               pWaitInfo,
    uint64_t                                    timeout)
{
   ANV_FROM_HANDLE(anv_device, device, _device);

   if (device->no_hw)
      return VK_SUCCESS;

   struct anv_timeline **timelines =
      vk_alloc(&device->vk.alloc,
               pWaitInfo->semaphoreCount * sizeof(*timelines),
               8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
   if (!timelines)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   uint64_t *values = vk_alloc(&device->vk.alloc,
                               pWaitInfo->semaphoreCount * sizeof(*values),
                               8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
   if (!values) {
      vk_free(&device->vk.alloc, timelines);
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
   }

   uint32_t handle_count = 0;
   for (uint32_t i = 0; i < pWaitInfo->semaphoreCount; i++) {
      ANV_FROM_HANDLE(anv_semaphore, semaphore, pWaitInfo->pSemaphores[i]);
      struct anv_semaphore_impl *impl =
         semaphore->temporary.type != ANV_SEMAPHORE_TYPE_NONE ?
         &semaphore->temporary : &semaphore->permanent;

      assert(impl->type == ANV_SEMAPHORE_TYPE_TIMELINE);

      if (pWaitInfo->pValues[i] == 0)
         continue;

      timelines[handle_count] = &impl->timeline;
      values[handle_count] = pWaitInfo->pValues[i];
      handle_count++;
   }

   VkResult result = VK_SUCCESS;
   if (handle_count > 0) {
      result = anv_timelines_wait(device, timelines, values, handle_count,
                                  !(pWaitInfo->flags & VK_SEMAPHORE_WAIT_ANY_BIT_KHR),
                                  anv_get_absolute_timeout(timeout));
   }

   vk_free(&device->vk.alloc, timelines);
   vk_free(&device->vk.alloc, values);

   return result;
}

VkResult anv_SignalSemaphore(
    VkDevice                                    _device,
    const VkSemaphoreSignalInfoKHR*             pSignalInfo)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_semaphore, semaphore, pSignalInfo->semaphore);

   struct anv_semaphore_impl *impl =
      semaphore->temporary.type != ANV_SEMAPHORE_TYPE_NONE ?
      &semaphore->temporary : &semaphore->permanent;

   switch (impl->type) {
   case ANV_SEMAPHORE_TYPE_TIMELINE: {
      pthread_mutex_lock(&device->mutex);

      VkResult result = anv_timeline_gc_locked(device, &impl->timeline);

      assert(pSignalInfo->value > impl->timeline.highest_pending);

      impl->timeline.highest_pending = impl->timeline.highest_past = pSignalInfo->value;

      if (result == VK_SUCCESS)
         result = anv_device_submit_deferred_locked(device);

      pthread_cond_broadcast(&device->queue_submit);
      pthread_mutex_unlock(&device->mutex);
      return result;
   }

   default:
      unreachable("Invalid semaphore type");
   }
}