summaryrefslogtreecommitdiffstats
path: root/src/intel/vulkan/anv_pipeline_cache.c
blob: e1d48b879b07effede1be87a0355a76b0e36a120 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "util/blob.h"
#include "util/hash_table.h"
#include "util/debug.h"
#include "util/disk_cache.h"
#include "util/mesa-sha1.h"
#include "nir/nir_serialize.h"
#include "anv_private.h"
#include "nir/nir_xfb_info.h"

struct anv_shader_bin *
anv_shader_bin_create(struct anv_device *device,
                      const void *key_data, uint32_t key_size,
                      const void *kernel_data, uint32_t kernel_size,
                      const void *constant_data, uint32_t constant_data_size,
                      const struct brw_stage_prog_data *prog_data_in,
                      uint32_t prog_data_size, const void *prog_data_param_in,
                      const struct brw_compile_stats *stats, uint32_t num_stats,
                      const nir_xfb_info *xfb_info_in,
                      const struct anv_pipeline_bind_map *bind_map)
{
   struct anv_shader_bin *shader;
   struct anv_shader_bin_key *key;
   struct brw_stage_prog_data *prog_data;
   uint32_t *prog_data_param;
   nir_xfb_info *xfb_info;
   struct anv_pipeline_binding *surface_to_descriptor, *sampler_to_descriptor;

   ANV_MULTIALLOC(ma);
   anv_multialloc_add(&ma, &shader, 1);
   anv_multialloc_add_size(&ma, &key, sizeof(*key) + key_size);
   anv_multialloc_add_size(&ma, &prog_data, prog_data_size);
   anv_multialloc_add(&ma, &prog_data_param, prog_data_in->nr_params);
   if (xfb_info_in) {
      uint32_t xfb_info_size = nir_xfb_info_size(xfb_info_in->output_count);
      anv_multialloc_add_size(&ma, &xfb_info, xfb_info_size);
   }
   anv_multialloc_add(&ma, &surface_to_descriptor,
                           bind_map->surface_count);
   anv_multialloc_add(&ma, &sampler_to_descriptor,
                           bind_map->sampler_count);

   if (!anv_multialloc_alloc(&ma, &device->alloc,
                             VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
      return NULL;

   shader->ref_cnt = 1;

   key->size = key_size;
   memcpy(key->data, key_data, key_size);
   shader->key = key;

   shader->kernel =
      anv_state_pool_alloc(&device->instruction_state_pool, kernel_size, 64);
   memcpy(shader->kernel.map, kernel_data, kernel_size);
   shader->kernel_size = kernel_size;

   if (constant_data_size) {
      shader->constant_data =
         anv_state_pool_alloc(&device->dynamic_state_pool,
                              constant_data_size, 32);
      memcpy(shader->constant_data.map, constant_data, constant_data_size);
   } else {
      shader->constant_data = ANV_STATE_NULL;
   }
   shader->constant_data_size = constant_data_size;

   memcpy(prog_data, prog_data_in, prog_data_size);
   memcpy(prog_data_param, prog_data_param_in,
          prog_data->nr_params * sizeof(*prog_data_param));
   prog_data->param = prog_data_param;
   shader->prog_data = prog_data;
   shader->prog_data_size = prog_data_size;

   assert(num_stats <= ARRAY_SIZE(shader->stats));
   typed_memcpy(shader->stats, stats, num_stats);
   shader->num_stats = num_stats;

   if (xfb_info_in) {
      *xfb_info = *xfb_info_in;
      typed_memcpy(xfb_info->outputs, xfb_info_in->outputs,
                   xfb_info_in->output_count);
      shader->xfb_info = xfb_info;
   } else {
      shader->xfb_info = NULL;
   }

   shader->bind_map = *bind_map;
   typed_memcpy(surface_to_descriptor, bind_map->surface_to_descriptor,
                bind_map->surface_count);
   shader->bind_map.surface_to_descriptor = surface_to_descriptor;
   typed_memcpy(sampler_to_descriptor, bind_map->sampler_to_descriptor,
                bind_map->sampler_count);
   shader->bind_map.sampler_to_descriptor = sampler_to_descriptor;

   return shader;
}

void
anv_shader_bin_destroy(struct anv_device *device,
                       struct anv_shader_bin *shader)
{
   assert(shader->ref_cnt == 0);
   anv_state_pool_free(&device->instruction_state_pool, shader->kernel);
   anv_state_pool_free(&device->dynamic_state_pool, shader->constant_data);
   vk_free(&device->alloc, shader);
}

static bool
anv_shader_bin_write_to_blob(const struct anv_shader_bin *shader,
                             struct blob *blob)
{
   blob_write_uint32(blob, shader->key->size);
   blob_write_bytes(blob, shader->key->data, shader->key->size);

   blob_write_uint32(blob, shader->kernel_size);
   blob_write_bytes(blob, shader->kernel.map, shader->kernel_size);

   blob_write_uint32(blob, shader->constant_data_size);
   blob_write_bytes(blob, shader->constant_data.map,
                    shader->constant_data_size);

   blob_write_uint32(blob, shader->prog_data_size);
   blob_write_bytes(blob, shader->prog_data, shader->prog_data_size);
   blob_write_bytes(blob, shader->prog_data->param,
                    shader->prog_data->nr_params *
                    sizeof(*shader->prog_data->param));

   blob_write_uint32(blob, shader->num_stats);
   blob_write_bytes(blob, shader->stats,
                    shader->num_stats * sizeof(shader->stats[0]));

   if (shader->xfb_info) {
      uint32_t xfb_info_size =
         nir_xfb_info_size(shader->xfb_info->output_count);
      blob_write_uint32(blob, xfb_info_size);
      blob_write_bytes(blob, shader->xfb_info, xfb_info_size);
   } else {
      blob_write_uint32(blob, 0);
   }

   blob_write_uint32(blob, shader->bind_map.surface_count);
   blob_write_uint32(blob, shader->bind_map.sampler_count);
   blob_write_bytes(blob, shader->bind_map.surface_to_descriptor,
                    shader->bind_map.surface_count *
                    sizeof(*shader->bind_map.surface_to_descriptor));
   blob_write_bytes(blob, shader->bind_map.sampler_to_descriptor,
                    shader->bind_map.sampler_count *
                    sizeof(*shader->bind_map.sampler_to_descriptor));

   return !blob->out_of_memory;
}

static struct anv_shader_bin *
anv_shader_bin_create_from_blob(struct anv_device *device,
                                struct blob_reader *blob)
{
   uint32_t key_size = blob_read_uint32(blob);
   const void *key_data = blob_read_bytes(blob, key_size);

   uint32_t kernel_size = blob_read_uint32(blob);
   const void *kernel_data = blob_read_bytes(blob, kernel_size);

   uint32_t constant_data_size = blob_read_uint32(blob);
   const void *constant_data = blob_read_bytes(blob, constant_data_size);

   uint32_t prog_data_size = blob_read_uint32(blob);
   const struct brw_stage_prog_data *prog_data =
      blob_read_bytes(blob, prog_data_size);
   if (blob->overrun)
      return NULL;
   const void *prog_data_param =
      blob_read_bytes(blob, prog_data->nr_params * sizeof(*prog_data->param));

   uint32_t num_stats = blob_read_uint32(blob);
   const struct brw_compile_stats *stats =
      blob_read_bytes(blob, num_stats * sizeof(stats[0]));

   const nir_xfb_info *xfb_info = NULL;
   uint32_t xfb_size = blob_read_uint32(blob);
   if (xfb_size)
      xfb_info = blob_read_bytes(blob, xfb_size);

   struct anv_pipeline_bind_map bind_map;
   bind_map.surface_count = blob_read_uint32(blob);
   bind_map.sampler_count = blob_read_uint32(blob);
   bind_map.surface_to_descriptor = (void *)
      blob_read_bytes(blob, bind_map.surface_count *
                            sizeof(*bind_map.surface_to_descriptor));
   bind_map.sampler_to_descriptor = (void *)
      blob_read_bytes(blob, bind_map.sampler_count *
                            sizeof(*bind_map.sampler_to_descriptor));

   if (blob->overrun)
      return NULL;

   return anv_shader_bin_create(device,
                                key_data, key_size,
                                kernel_data, kernel_size,
                                constant_data, constant_data_size,
                                prog_data, prog_data_size, prog_data_param,
                                stats, num_stats, xfb_info, &bind_map);
}

/* Remaining work:
 *
 * - Compact binding table layout so it's tight and not dependent on
 *   descriptor set layout.
 *
 * - Review prog_data struct for size and cacheability: struct
 *   brw_stage_prog_data has binding_table which uses a lot of uint32_t for 8
 *   bit quantities etc; use bit fields for all bools, eg dual_src_blend.
 */

static uint32_t
shader_bin_key_hash_func(const void *void_key)
{
   const struct anv_shader_bin_key *key = void_key;
   return _mesa_hash_data(key->data, key->size);
}

static bool
shader_bin_key_compare_func(const void *void_a, const void *void_b)
{
   const struct anv_shader_bin_key *a = void_a, *b = void_b;
   if (a->size != b->size)
      return false;

   return memcmp(a->data, b->data, a->size) == 0;
}

static uint32_t
sha1_hash_func(const void *sha1)
{
   return _mesa_hash_data(sha1, 20);
}

static bool
sha1_compare_func(const void *sha1_a, const void *sha1_b)
{
   return memcmp(sha1_a, sha1_b, 20) == 0;
}

void
anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
                        struct anv_device *device,
                        bool cache_enabled)
{
   cache->device = device;
   pthread_mutex_init(&cache->mutex, NULL);

   if (cache_enabled) {
      cache->cache = _mesa_hash_table_create(NULL, shader_bin_key_hash_func,
                                             shader_bin_key_compare_func);
      cache->nir_cache = _mesa_hash_table_create(NULL, sha1_hash_func,
                                                 sha1_compare_func);
   } else {
      cache->cache = NULL;
      cache->nir_cache = NULL;
   }
}

void
anv_pipeline_cache_finish(struct anv_pipeline_cache *cache)
{
   pthread_mutex_destroy(&cache->mutex);

   if (cache->cache) {
      /* This is a bit unfortunate.  In order to keep things from randomly
       * going away, the shader cache has to hold a reference to all shader
       * binaries it contains.  We unref them when we destroy the cache.
       */
      hash_table_foreach(cache->cache, entry)
         anv_shader_bin_unref(cache->device, entry->data);

      _mesa_hash_table_destroy(cache->cache, NULL);
   }

   if (cache->nir_cache) {
      hash_table_foreach(cache->nir_cache, entry)
         ralloc_free(entry->data);

      _mesa_hash_table_destroy(cache->nir_cache, NULL);
   }
}

static struct anv_shader_bin *
anv_pipeline_cache_search_locked(struct anv_pipeline_cache *cache,
                                 const void *key_data, uint32_t key_size)
{
   uint32_t vla[1 + DIV_ROUND_UP(key_size, sizeof(uint32_t))];
   struct anv_shader_bin_key *key = (void *)vla;
   key->size = key_size;
   memcpy(key->data, key_data, key_size);

   struct hash_entry *entry = _mesa_hash_table_search(cache->cache, key);
   if (entry)
      return entry->data;
   else
      return NULL;
}

struct anv_shader_bin *
anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
                          const void *key_data, uint32_t key_size)
{
   if (!cache->cache)
      return NULL;

   pthread_mutex_lock(&cache->mutex);

   struct anv_shader_bin *shader =
      anv_pipeline_cache_search_locked(cache, key_data, key_size);

   pthread_mutex_unlock(&cache->mutex);

   /* We increment refcount before handing it to the caller */
   if (shader)
      anv_shader_bin_ref(shader);

   return shader;
}

static void
anv_pipeline_cache_add_shader_bin(struct anv_pipeline_cache *cache,
                                  struct anv_shader_bin *bin)
{
   if (!cache->cache)
      return;

   pthread_mutex_lock(&cache->mutex);

   struct hash_entry *entry = _mesa_hash_table_search(cache->cache, bin->key);
   if (entry == NULL) {
      /* Take a reference for the cache */
      anv_shader_bin_ref(bin);
      _mesa_hash_table_insert(cache->cache, bin->key, bin);
   }

   pthread_mutex_unlock(&cache->mutex);
}

static struct anv_shader_bin *
anv_pipeline_cache_add_shader_locked(struct anv_pipeline_cache *cache,
                                     const void *key_data, uint32_t key_size,
                                     const void *kernel_data,
                                     uint32_t kernel_size,
                                     const void *constant_data,
                                     uint32_t constant_data_size,
                                     const struct brw_stage_prog_data *prog_data,
                                     uint32_t prog_data_size,
                                     const void *prog_data_param,
                                     const struct brw_compile_stats *stats,
                                     uint32_t num_stats,
                                     const nir_xfb_info *xfb_info,
                                     const struct anv_pipeline_bind_map *bind_map)
{
   struct anv_shader_bin *shader =
      anv_pipeline_cache_search_locked(cache, key_data, key_size);
   if (shader)
      return shader;

   struct anv_shader_bin *bin =
      anv_shader_bin_create(cache->device, key_data, key_size,
                            kernel_data, kernel_size,
                            constant_data, constant_data_size,
                            prog_data, prog_data_size, prog_data_param,
                            stats, num_stats, xfb_info, bind_map);
   if (!bin)
      return NULL;

   _mesa_hash_table_insert(cache->cache, bin->key, bin);

   return bin;
}

struct anv_shader_bin *
anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
                                 const void *key_data, uint32_t key_size,
                                 const void *kernel_data, uint32_t kernel_size,
                                 const void *constant_data,
                                 uint32_t constant_data_size,
                                 const struct brw_stage_prog_data *prog_data,
                                 uint32_t prog_data_size,
                                 const struct brw_compile_stats *stats,
                                 uint32_t num_stats,
                                 const nir_xfb_info *xfb_info,
                                 const struct anv_pipeline_bind_map *bind_map)
{
   if (cache->cache) {
      pthread_mutex_lock(&cache->mutex);

      struct anv_shader_bin *bin =
         anv_pipeline_cache_add_shader_locked(cache, key_data, key_size,
                                              kernel_data, kernel_size,
                                              constant_data, constant_data_size,
                                              prog_data, prog_data_size,
                                              prog_data->param,
                                              stats, num_stats,
                                              xfb_info, bind_map);

      pthread_mutex_unlock(&cache->mutex);

      /* We increment refcount before handing it to the caller */
      if (bin)
         anv_shader_bin_ref(bin);

      return bin;
   } else {
      /* In this case, we're not caching it so the caller owns it entirely */
      return anv_shader_bin_create(cache->device, key_data, key_size,
                                   kernel_data, kernel_size,
                                   constant_data, constant_data_size,
                                   prog_data, prog_data_size,
                                   prog_data->param,
                                   stats, num_stats,
                                   xfb_info, bind_map);
   }
}

struct cache_header {
   uint32_t header_size;
   uint32_t header_version;
   uint32_t vendor_id;
   uint32_t device_id;
   uint8_t  uuid[VK_UUID_SIZE];
};

static void
anv_pipeline_cache_load(struct anv_pipeline_cache *cache,
                        const void *data, size_t size)
{
   struct anv_device *device = cache->device;
   struct anv_physical_device *pdevice = &device->instance->physicalDevice;

   if (cache->cache == NULL)
      return;

   struct blob_reader blob;
   blob_reader_init(&blob, data, size);

   struct cache_header header;
   blob_copy_bytes(&blob, &header, sizeof(header));
   uint32_t count = blob_read_uint32(&blob);
   if (blob.overrun)
      return;

   if (header.header_size < sizeof(header))
      return;
   if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
      return;
   if (header.vendor_id != 0x8086)
      return;
   if (header.device_id != device->chipset_id)
      return;
   if (memcmp(header.uuid, pdevice->pipeline_cache_uuid, VK_UUID_SIZE) != 0)
      return;

   for (uint32_t i = 0; i < count; i++) {
      struct anv_shader_bin *bin =
         anv_shader_bin_create_from_blob(device, &blob);
      if (!bin)
         break;
      _mesa_hash_table_insert(cache->cache, bin->key, bin);
   }
}

VkResult anv_CreatePipelineCache(
    VkDevice                                    _device,
    const VkPipelineCacheCreateInfo*            pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkPipelineCache*                            pPipelineCache)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_pipeline_cache *cache;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO);
   assert(pCreateInfo->flags == 0);

   cache = vk_alloc2(&device->alloc, pAllocator,
                       sizeof(*cache), 8,
                       VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (cache == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   anv_pipeline_cache_init(cache, device,
                           device->instance->pipeline_cache_enabled);

   if (pCreateInfo->initialDataSize > 0)
      anv_pipeline_cache_load(cache,
                              pCreateInfo->pInitialData,
                              pCreateInfo->initialDataSize);

   *pPipelineCache = anv_pipeline_cache_to_handle(cache);

   return VK_SUCCESS;
}

void anv_DestroyPipelineCache(
    VkDevice                                    _device,
    VkPipelineCache                             _cache,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);

   if (!cache)
      return;

   anv_pipeline_cache_finish(cache);

   vk_free2(&device->alloc, pAllocator, cache);
}

VkResult anv_GetPipelineCacheData(
    VkDevice                                    _device,
    VkPipelineCache                             _cache,
    size_t*                                     pDataSize,
    void*                                       pData)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
   struct anv_physical_device *pdevice = &device->instance->physicalDevice;

   struct blob blob;
   if (pData) {
      blob_init_fixed(&blob, pData, *pDataSize);
   } else {
      blob_init_fixed(&blob, NULL, SIZE_MAX);
   }

   struct cache_header header = {
      .header_size = sizeof(struct cache_header),
      .header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE,
      .vendor_id = 0x8086,
      .device_id = device->chipset_id,
   };
   memcpy(header.uuid, pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
   blob_write_bytes(&blob, &header, sizeof(header));

   uint32_t count = 0;
   intptr_t count_offset = blob_reserve_uint32(&blob);
   if (count_offset < 0) {
      *pDataSize = 0;
      blob_finish(&blob);
      return VK_INCOMPLETE;
   }

   VkResult result = VK_SUCCESS;
   if (cache->cache) {
      hash_table_foreach(cache->cache, entry) {
         struct anv_shader_bin *shader = entry->data;

         size_t save_size = blob.size;
         if (!anv_shader_bin_write_to_blob(shader, &blob)) {
            /* If it fails reset to the previous size and bail */
            blob.size = save_size;
            result = VK_INCOMPLETE;
            break;
         }

         count++;
      }
   }

   blob_overwrite_uint32(&blob, count_offset, count);

   *pDataSize = blob.size;

   blob_finish(&blob);

   return result;
}

VkResult anv_MergePipelineCaches(
    VkDevice                                    _device,
    VkPipelineCache                             destCache,
    uint32_t                                    srcCacheCount,
    const VkPipelineCache*                      pSrcCaches)
{
   ANV_FROM_HANDLE(anv_pipeline_cache, dst, destCache);

   if (!dst->cache)
      return VK_SUCCESS;

   for (uint32_t i = 0; i < srcCacheCount; i++) {
      ANV_FROM_HANDLE(anv_pipeline_cache, src, pSrcCaches[i]);
      if (!src->cache)
         continue;

      hash_table_foreach(src->cache, entry) {
         struct anv_shader_bin *bin = entry->data;
         assert(bin);

         if (_mesa_hash_table_search(dst->cache, bin->key))
            continue;

         anv_shader_bin_ref(bin);
         _mesa_hash_table_insert(dst->cache, bin->key, bin);
      }
   }

   return VK_SUCCESS;
}

struct anv_shader_bin *
anv_device_search_for_kernel(struct anv_device *device,
                             struct anv_pipeline_cache *cache,
                             const void *key_data, uint32_t key_size,
                             bool *user_cache_hit)
{
   struct anv_shader_bin *bin;

   *user_cache_hit = false;

   if (cache) {
      bin = anv_pipeline_cache_search(cache, key_data, key_size);
      if (bin) {
         *user_cache_hit = cache != &device->default_pipeline_cache;
         return bin;
      }
   }

#ifdef ENABLE_SHADER_CACHE
   struct disk_cache *disk_cache = device->instance->physicalDevice.disk_cache;
   if (disk_cache && device->instance->pipeline_cache_enabled) {
      cache_key cache_key;
      disk_cache_compute_key(disk_cache, key_data, key_size, cache_key);

      size_t buffer_size;
      uint8_t *buffer = disk_cache_get(disk_cache, cache_key, &buffer_size);
      if (buffer) {
         struct blob_reader blob;
         blob_reader_init(&blob, buffer, buffer_size);
         bin = anv_shader_bin_create_from_blob(device, &blob);
         free(buffer);

         if (bin) {
            if (cache)
               anv_pipeline_cache_add_shader_bin(cache, bin);
            return bin;
         }
      }
   }
#endif

   return NULL;
}

struct anv_shader_bin *
anv_device_upload_kernel(struct anv_device *device,
                         struct anv_pipeline_cache *cache,
                         const void *key_data, uint32_t key_size,
                         const void *kernel_data, uint32_t kernel_size,
                         const void *constant_data,
                         uint32_t constant_data_size,
                         const struct brw_stage_prog_data *prog_data,
                         uint32_t prog_data_size,
                         const struct brw_compile_stats *stats,
                         uint32_t num_stats,
                         const nir_xfb_info *xfb_info,
                         const struct anv_pipeline_bind_map *bind_map)
{
   struct anv_shader_bin *bin;
   if (cache) {
      bin = anv_pipeline_cache_upload_kernel(cache, key_data, key_size,
                                             kernel_data, kernel_size,
                                             constant_data, constant_data_size,
                                             prog_data, prog_data_size,
                                             stats, num_stats,
                                             xfb_info, bind_map);
   } else {
      bin = anv_shader_bin_create(device, key_data, key_size,
                                  kernel_data, kernel_size,
                                  constant_data, constant_data_size,
                                  prog_data, prog_data_size,
                                  prog_data->param,
                                  stats, num_stats,
                                  xfb_info, bind_map);
   }

   if (bin == NULL)
      return NULL;

#ifdef ENABLE_SHADER_CACHE
   struct disk_cache *disk_cache = device->instance->physicalDevice.disk_cache;
   if (disk_cache) {
      struct blob binary;
      blob_init(&binary);
      if (anv_shader_bin_write_to_blob(bin, &binary)) {
         cache_key cache_key;
         disk_cache_compute_key(disk_cache, key_data, key_size, cache_key);

         disk_cache_put(disk_cache, cache_key, binary.data, binary.size, NULL);
      }

      blob_finish(&binary);
   }
#endif

   return bin;
}

struct serialized_nir {
   unsigned char sha1_key[20];
   size_t size;
   char data[0];
};

struct nir_shader *
anv_device_search_for_nir(struct anv_device *device,
                          struct anv_pipeline_cache *cache,
                          const nir_shader_compiler_options *nir_options,
                          unsigned char sha1_key[20],
                          void *mem_ctx)
{
   if (cache && cache->nir_cache) {
      const struct serialized_nir *snir = NULL;

      pthread_mutex_lock(&cache->mutex);
      struct hash_entry *entry =
         _mesa_hash_table_search(cache->nir_cache, sha1_key);
      if (entry)
         snir = entry->data;
      pthread_mutex_unlock(&cache->mutex);

      if (snir) {
         struct blob_reader blob;
         blob_reader_init(&blob, snir->data, snir->size);

         nir_shader *nir = nir_deserialize(mem_ctx, nir_options, &blob);
         if (blob.overrun) {
            ralloc_free(nir);
         } else {
            return nir;
         }
      }
   }

   return NULL;
}

void
anv_device_upload_nir(struct anv_device *device,
                      struct anv_pipeline_cache *cache,
                      const struct nir_shader *nir,
                      unsigned char sha1_key[20])
{
   if (cache && cache->nir_cache) {
      pthread_mutex_lock(&cache->mutex);
      struct hash_entry *entry =
         _mesa_hash_table_search(cache->nir_cache, sha1_key);
      pthread_mutex_unlock(&cache->mutex);
      if (entry)
         return;

      struct blob blob;
      blob_init(&blob);

      nir_serialize(&blob, nir, false);
      if (blob.out_of_memory) {
         blob_finish(&blob);
         return;
      }

      pthread_mutex_lock(&cache->mutex);
      /* Because ralloc isn't thread-safe, we have to do all this inside the
       * lock.  We could unlock for the big memcpy but it's probably not worth
       * the hassle.
       */
      entry = _mesa_hash_table_search(cache->nir_cache, sha1_key);
      if (entry) {
         blob_finish(&blob);
         pthread_mutex_unlock(&cache->mutex);
         return;
      }

      struct serialized_nir *snir =
         ralloc_size(cache->nir_cache, sizeof(*snir) + blob.size);
      memcpy(snir->sha1_key, sha1_key, 20);
      snir->size = blob.size;
      memcpy(snir->data, blob.data, blob.size);

      blob_finish(&blob);

      _mesa_hash_table_insert(cache->nir_cache, snir->sha1_key, snir);

      pthread_mutex_unlock(&cache->mutex);
   }
}