1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/mesa-sha1.h"
#include "util/debug.h"
#include "anv_private.h"
/* Remaining work:
*
* - Compact binding table layout so it's tight and not dependent on
* descriptor set layout.
*
* - Review prog_data struct for size and cacheability: struct
* brw_stage_prog_data has binding_table which uses a lot of uint32_t for 8
* bit quantities etc; param, pull_param, and image_params are pointers, we
* just need the compation map. use bit fields for all bools, eg
* dual_src_blend.
*/
void
anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
struct anv_device *device)
{
cache->device = device;
anv_state_stream_init(&cache->program_stream,
&device->instruction_block_pool);
pthread_mutex_init(&cache->mutex, NULL);
cache->kernel_count = 0;
cache->total_size = 0;
cache->table_size = 1024;
const size_t byte_size = cache->table_size * sizeof(cache->hash_table[0]);
cache->hash_table = malloc(byte_size);
/* We don't consider allocation failure fatal, we just start with a 0-sized
* cache. */
if (cache->hash_table == NULL)
cache->table_size = 0;
else
memset(cache->hash_table, 0xff, byte_size);
}
void
anv_pipeline_cache_finish(struct anv_pipeline_cache *cache)
{
anv_state_stream_finish(&cache->program_stream);
pthread_mutex_destroy(&cache->mutex);
free(cache->hash_table);
}
struct cache_entry {
unsigned char sha1[20];
uint32_t prog_data_size;
uint32_t kernel_size;
uint32_t surface_count;
uint32_t sampler_count;
uint32_t image_count;
char prog_data[0];
/* kernel follows prog_data at next 64 byte aligned address */
};
static uint32_t
entry_size(struct cache_entry *entry)
{
/* This returns the number of bytes needed to serialize an entry, which
* doesn't include the alignment padding bytes.
*/
const uint32_t map_size =
entry->surface_count * sizeof(struct anv_pipeline_binding) +
entry->sampler_count * sizeof(struct anv_pipeline_binding);
return sizeof(*entry) + entry->prog_data_size + map_size;
}
void
anv_hash_shader(unsigned char *hash, const void *key, size_t key_size,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
struct mesa_sha1 *ctx;
ctx = _mesa_sha1_init();
_mesa_sha1_update(ctx, key, key_size);
_mesa_sha1_update(ctx, module->sha1, sizeof(module->sha1));
_mesa_sha1_update(ctx, entrypoint, strlen(entrypoint));
/* hash in shader stage, pipeline layout? */
if (spec_info) {
_mesa_sha1_update(ctx, spec_info->pMapEntries,
spec_info->mapEntryCount * sizeof spec_info->pMapEntries[0]);
_mesa_sha1_update(ctx, spec_info->pData, spec_info->dataSize);
}
_mesa_sha1_final(ctx, hash);
}
static uint32_t
anv_pipeline_cache_search_unlocked(struct anv_pipeline_cache *cache,
const unsigned char *sha1,
const struct brw_stage_prog_data **prog_data,
struct anv_pipeline_bind_map *map)
{
const uint32_t mask = cache->table_size - 1;
const uint32_t start = (*(uint32_t *) sha1);
for (uint32_t i = 0; i < cache->table_size; i++) {
const uint32_t index = (start + i) & mask;
const uint32_t offset = cache->hash_table[index];
if (offset == ~0)
return NO_KERNEL;
struct cache_entry *entry =
cache->program_stream.block_pool->map + offset;
if (memcmp(entry->sha1, sha1, sizeof(entry->sha1)) == 0) {
if (prog_data) {
assert(map);
void *p = entry->prog_data;
*prog_data = p;
p += entry->prog_data_size;
map->surface_count = entry->surface_count;
map->sampler_count = entry->sampler_count;
map->image_count = entry->image_count;
map->surface_to_descriptor = p;
p += map->surface_count * sizeof(struct anv_pipeline_binding);
map->sampler_to_descriptor = p;
}
return offset + align_u32(entry_size(entry), 64);
}
}
unreachable("hash table should never be full");
}
uint32_t
anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
const unsigned char *sha1,
const struct brw_stage_prog_data **prog_data,
struct anv_pipeline_bind_map *map)
{
uint32_t kernel;
pthread_mutex_lock(&cache->mutex);
kernel = anv_pipeline_cache_search_unlocked(cache, sha1, prog_data, map);
pthread_mutex_unlock(&cache->mutex);
return kernel;
}
static void
anv_pipeline_cache_set_entry(struct anv_pipeline_cache *cache,
struct cache_entry *entry, uint32_t entry_offset)
{
const uint32_t mask = cache->table_size - 1;
const uint32_t start = (*(uint32_t *) entry->sha1);
/* We'll always be able to insert when we get here. */
assert(cache->kernel_count < cache->table_size / 2);
for (uint32_t i = 0; i < cache->table_size; i++) {
const uint32_t index = (start + i) & mask;
if (cache->hash_table[index] == ~0) {
cache->hash_table[index] = entry_offset;
break;
}
}
cache->total_size += entry_size(entry) + entry->kernel_size;
cache->kernel_count++;
}
static VkResult
anv_pipeline_cache_grow(struct anv_pipeline_cache *cache)
{
const uint32_t table_size = cache->table_size * 2;
const uint32_t old_table_size = cache->table_size;
const size_t byte_size = table_size * sizeof(cache->hash_table[0]);
uint32_t *table;
uint32_t *old_table = cache->hash_table;
table = malloc(byte_size);
if (table == NULL)
return VK_ERROR_OUT_OF_HOST_MEMORY;
cache->hash_table = table;
cache->table_size = table_size;
cache->kernel_count = 0;
cache->total_size = 0;
memset(cache->hash_table, 0xff, byte_size);
for (uint32_t i = 0; i < old_table_size; i++) {
const uint32_t offset = old_table[i];
if (offset == ~0)
continue;
struct cache_entry *entry =
cache->program_stream.block_pool->map + offset;
anv_pipeline_cache_set_entry(cache, entry, offset);
}
free(old_table);
return VK_SUCCESS;
}
static void
anv_pipeline_cache_add_entry(struct anv_pipeline_cache *cache,
struct cache_entry *entry, uint32_t entry_offset)
{
if (cache->kernel_count == cache->table_size / 2)
anv_pipeline_cache_grow(cache);
/* Failing to grow that hash table isn't fatal, but may mean we don't
* have enough space to add this new kernel. Only add it if there's room.
*/
if (cache->kernel_count < cache->table_size / 2)
anv_pipeline_cache_set_entry(cache, entry, entry_offset);
}
uint32_t
anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
const unsigned char *sha1,
const void *kernel, size_t kernel_size,
const struct brw_stage_prog_data **prog_data,
size_t prog_data_size,
struct anv_pipeline_bind_map *map)
{
pthread_mutex_lock(&cache->mutex);
/* Before uploading, check again that another thread didn't upload this
* shader while we were compiling it.
*/
if (sha1) {
uint32_t cached_kernel =
anv_pipeline_cache_search_unlocked(cache, sha1, prog_data, map);
if (cached_kernel != NO_KERNEL) {
pthread_mutex_unlock(&cache->mutex);
return cached_kernel;
}
}
struct cache_entry *entry;
const uint32_t map_size =
map->surface_count * sizeof(struct anv_pipeline_binding) +
map->sampler_count * sizeof(struct anv_pipeline_binding);
const uint32_t preamble_size =
align_u32(sizeof(*entry) + prog_data_size + map_size, 64);
const uint32_t size = preamble_size + kernel_size;
assert(size < cache->program_stream.block_pool->block_size);
const struct anv_state state =
anv_state_stream_alloc(&cache->program_stream, size, 64);
entry = state.map;
entry->prog_data_size = prog_data_size;
entry->surface_count = map->surface_count;
entry->sampler_count = map->sampler_count;
entry->image_count = map->image_count;
entry->kernel_size = kernel_size;
void *p = entry->prog_data;
memcpy(p, *prog_data, prog_data_size);
p += prog_data_size;
memcpy(p, map->surface_to_descriptor,
map->surface_count * sizeof(struct anv_pipeline_binding));
map->surface_to_descriptor = p;
p += map->surface_count * sizeof(struct anv_pipeline_binding);
memcpy(p, map->sampler_to_descriptor,
map->sampler_count * sizeof(struct anv_pipeline_binding));
map->sampler_to_descriptor = p;
if (sha1 && env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", false)) {
assert(anv_pipeline_cache_search_unlocked(cache, sha1,
NULL, NULL) == NO_KERNEL);
memcpy(entry->sha1, sha1, sizeof(entry->sha1));
anv_pipeline_cache_add_entry(cache, entry, state.offset);
}
pthread_mutex_unlock(&cache->mutex);
memcpy(state.map + preamble_size, kernel, kernel_size);
if (!cache->device->info.has_llc)
anv_state_clflush(state);
*prog_data = (const struct brw_stage_prog_data *) entry->prog_data;
return state.offset + preamble_size;
}
struct cache_header {
uint32_t header_size;
uint32_t header_version;
uint32_t vendor_id;
uint32_t device_id;
uint8_t uuid[VK_UUID_SIZE];
};
static void
anv_pipeline_cache_load(struct anv_pipeline_cache *cache,
const void *data, size_t size)
{
struct anv_device *device = cache->device;
struct cache_header header;
uint8_t uuid[VK_UUID_SIZE];
if (size < sizeof(header))
return;
memcpy(&header, data, sizeof(header));
if (header.header_size < sizeof(header))
return;
if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
return;
if (header.vendor_id != 0x8086)
return;
if (header.device_id != device->chipset_id)
return;
anv_device_get_cache_uuid(uuid);
if (memcmp(header.uuid, uuid, VK_UUID_SIZE) != 0)
return;
void *end = (void *) data + size;
void *p = (void *) data + header.header_size;
while (p < end) {
struct cache_entry *entry = p;
void *data = entry->prog_data;
const struct brw_stage_prog_data *prog_data = data;
data += entry->prog_data_size;
struct anv_pipeline_binding *surface_to_descriptor = data;
data += entry->surface_count * sizeof(struct anv_pipeline_binding);
struct anv_pipeline_binding *sampler_to_descriptor = data;
data += entry->sampler_count * sizeof(struct anv_pipeline_binding);
void *kernel = data;
struct anv_pipeline_bind_map map = {
.surface_count = entry->surface_count,
.sampler_count = entry->sampler_count,
.image_count = entry->image_count,
.surface_to_descriptor = surface_to_descriptor,
.sampler_to_descriptor = sampler_to_descriptor
};
anv_pipeline_cache_upload_kernel(cache, entry->sha1,
kernel, entry->kernel_size,
&prog_data,
entry->prog_data_size, &map);
p = kernel + entry->kernel_size;
}
}
VkResult anv_CreatePipelineCache(
VkDevice _device,
const VkPipelineCacheCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipelineCache* pPipelineCache)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_pipeline_cache *cache;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
cache = anv_alloc2(&device->alloc, pAllocator,
sizeof(*cache), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (cache == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
anv_pipeline_cache_init(cache, device);
if (pCreateInfo->initialDataSize > 0)
anv_pipeline_cache_load(cache,
pCreateInfo->pInitialData,
pCreateInfo->initialDataSize);
*pPipelineCache = anv_pipeline_cache_to_handle(cache);
return VK_SUCCESS;
}
void anv_DestroyPipelineCache(
VkDevice _device,
VkPipelineCache _cache,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
anv_pipeline_cache_finish(cache);
anv_free2(&device->alloc, pAllocator, cache);
}
VkResult anv_GetPipelineCacheData(
VkDevice _device,
VkPipelineCache _cache,
size_t* pDataSize,
void* pData)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
struct cache_header *header;
const size_t size = sizeof(*header) + cache->total_size;
if (pData == NULL) {
*pDataSize = size;
return VK_SUCCESS;
}
if (*pDataSize < sizeof(*header)) {
*pDataSize = 0;
return VK_INCOMPLETE;
}
void *p = pData, *end = pData + *pDataSize;
header = p;
header->header_size = sizeof(*header);
header->header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE;
header->vendor_id = 0x8086;
header->device_id = device->chipset_id;
anv_device_get_cache_uuid(header->uuid);
p += header->header_size;
struct cache_entry *entry;
for (uint32_t i = 0; i < cache->table_size; i++) {
if (cache->hash_table[i] == ~0)
continue;
entry = cache->program_stream.block_pool->map + cache->hash_table[i];
const uint32_t size = entry_size(entry);
if (end < p + size + entry->kernel_size)
break;
memcpy(p, entry, size);
p += size;
void *kernel = (void *) entry + align_u32(size, 64);
memcpy(p, kernel, entry->kernel_size);
p += entry->kernel_size;
}
*pDataSize = p - pData;
return VK_SUCCESS;
}
static void
anv_pipeline_cache_merge(struct anv_pipeline_cache *dst,
struct anv_pipeline_cache *src)
{
for (uint32_t i = 0; i < src->table_size; i++) {
const uint32_t offset = src->hash_table[i];
if (offset == ~0)
continue;
struct cache_entry *entry =
src->program_stream.block_pool->map + offset;
if (anv_pipeline_cache_search(dst, entry->sha1, NULL, NULL) != NO_KERNEL)
continue;
anv_pipeline_cache_add_entry(dst, entry, offset);
}
}
VkResult anv_MergePipelineCaches(
VkDevice _device,
VkPipelineCache destCache,
uint32_t srcCacheCount,
const VkPipelineCache* pSrcCaches)
{
ANV_FROM_HANDLE(anv_pipeline_cache, dst, destCache);
for (uint32_t i = 0; i < srcCacheCount; i++) {
ANV_FROM_HANDLE(anv_pipeline_cache, src, pSrcCaches[i]);
anv_pipeline_cache_merge(dst, src);
}
return VK_SUCCESS;
}
|