1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
|
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_meta.h"
static VkExtent3D
meta_image_block_size(const struct anv_image *image)
{
if (image->aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
const struct isl_format_layout *isl_layout =
isl_format_get_layout(image->color_surface.isl.format);
return (VkExtent3D) { isl_layout->bw, isl_layout->bh, isl_layout->bd };
} else {
return (VkExtent3D) { 1, 1, 1 };
}
}
/* Returns the user-provided VkBufferImageCopy::imageExtent in units of
* elements rather than texels. One element equals one texel or one block
* if Image is uncompressed or compressed, respectively.
*/
static struct VkExtent3D
meta_region_extent_el(const struct anv_image *image,
const struct VkExtent3D *extent)
{
const VkExtent3D block = meta_image_block_size(image);
return anv_sanitize_image_extent(image->type, (VkExtent3D) {
.width = DIV_ROUND_UP(extent->width , block.width),
.height = DIV_ROUND_UP(extent->height, block.height),
.depth = DIV_ROUND_UP(extent->depth , block.depth),
});
}
/* Returns the user-provided VkBufferImageCopy::imageOffset in units of
* elements rather than texels. One element equals one texel or one block
* if Image is uncompressed or compressed, respectively.
*/
static struct VkOffset3D
meta_region_offset_el(const struct anv_image *image,
const struct VkOffset3D *offset)
{
const VkExtent3D block = meta_image_block_size(image);
return anv_sanitize_image_offset(image->type, (VkOffset3D) {
.x = offset->x / block.width,
.y = offset->y / block.height,
.z = offset->z / block.depth,
});
}
static struct anv_meta_blit2d_surf
blit_surf_for_image(const struct anv_image* image,
const struct isl_surf *img_isl_surf)
{
return (struct anv_meta_blit2d_surf) {
.bo = image->bo,
.tiling = img_isl_surf->tiling,
.base_offset = image->offset,
.bs = isl_format_get_layout(img_isl_surf->format)->bs,
.pitch = isl_surf_get_row_pitch(img_isl_surf),
};
}
static void
do_buffer_copy(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *src, uint64_t src_offset,
struct anv_bo *dest, uint64_t dest_offset,
int width, int height, int bs)
{
struct anv_meta_blit2d_surf b_src = {
.bo = src,
.tiling = ISL_TILING_LINEAR,
.base_offset = src_offset,
.bs = bs,
.pitch = width * bs,
};
struct anv_meta_blit2d_surf b_dst = {
.bo = dest,
.tiling = ISL_TILING_LINEAR,
.base_offset = dest_offset,
.bs = bs,
.pitch = width * bs,
};
struct anv_meta_blit2d_rect rect = {
.width = width,
.height = height,
};
anv_meta_blit2d(cmd_buffer, &b_src, &b_dst, 1, &rect);
}
static void
meta_copy_buffer_to_image(struct anv_cmd_buffer *cmd_buffer,
struct anv_buffer* buffer,
struct anv_image* image,
uint32_t regionCount,
const VkBufferImageCopy* pRegions,
bool forward)
{
struct anv_meta_saved_state saved_state;
/* The Vulkan 1.0 spec says "dstImage must have a sample count equal to
* VK_SAMPLE_COUNT_1_BIT."
*/
assert(image->samples == 1);
anv_meta_begin_blit2d(cmd_buffer, &saved_state);
for (unsigned r = 0; r < regionCount; r++) {
/**
* From the Vulkan 1.0.6 spec: 18.3 Copying Data Between Images
* extent is the size in texels of the source image to copy in width,
* height and depth. 1D images use only x and width. 2D images use x, y,
* width and height. 3D images use x, y, z, width, height and depth.
*
*
* Also, convert the offsets and extent from units of texels to units of
* blocks - which is the highest resolution accessible in this command.
*/
const VkOffset3D img_offset_el =
meta_region_offset_el(image, &pRegions[r].imageOffset);
const VkExtent3D bufferExtent = {
.width = pRegions[r].bufferRowLength ?
pRegions[r].bufferRowLength : pRegions[r].imageExtent.width,
.height = pRegions[r].bufferImageHeight ?
pRegions[r].bufferImageHeight : pRegions[r].imageExtent.height,
};
const VkExtent3D buf_extent_el =
meta_region_extent_el(image, &bufferExtent);
/* Start creating blit rect */
const VkExtent3D img_extent_el =
meta_region_extent_el(image, &pRegions[r].imageExtent);
struct anv_meta_blit2d_rect rect = {
.width = img_extent_el.width,
.height = img_extent_el.height,
};
/* Create blit surfaces */
VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask;
const struct isl_surf *img_isl_surf =
&anv_image_get_surface_for_aspect_mask(image, aspect)->isl;
struct anv_meta_blit2d_surf img_bsurf =
blit_surf_for_image(image, img_isl_surf);
enum isl_format buf_format = anv_get_isl_format(&cmd_buffer->device->info,
image->vk_format, aspect,
VK_IMAGE_TILING_LINEAR);
struct anv_meta_blit2d_surf buf_bsurf = {
.bo = buffer->bo,
.tiling = ISL_TILING_LINEAR,
.base_offset = buffer->offset + pRegions[r].bufferOffset,
.bs = isl_format_get_layout(buf_format)->bs,
.pitch = buf_extent_el.width * buf_bsurf.bs,
};
/* Set direction-dependent variables */
struct anv_meta_blit2d_surf *dst_bsurf = forward ? &img_bsurf : &buf_bsurf;
struct anv_meta_blit2d_surf *src_bsurf = forward ? &buf_bsurf : &img_bsurf;
uint32_t *x_offset = forward ? &rect.dst_x : &rect.src_x;
uint32_t *y_offset = forward ? &rect.dst_y : &rect.src_y;
/* Loop through each 3D or array slice */
unsigned num_slices_3d = img_extent_el.depth;
unsigned num_slices_array = pRegions[r].imageSubresource.layerCount;
unsigned slice_3d = 0;
unsigned slice_array = 0;
while (slice_3d < num_slices_3d && slice_array < num_slices_array) {
/* Finish creating blit rect */
isl_surf_get_image_offset_el(img_isl_surf,
pRegions[r].imageSubresource.mipLevel,
pRegions[r].imageSubresource.baseArrayLayer
+ slice_array,
img_offset_el.z + slice_3d,
x_offset,
y_offset);
*x_offset += img_offset_el.x;
*y_offset += img_offset_el.y;
/* Perform Blit */
anv_meta_blit2d(cmd_buffer, src_bsurf, dst_bsurf, 1, &rect);
/* Once we've done the blit, all of the actual information about
* the image is embedded in the command buffer so we can just
* increment the offset directly in the image effectively
* re-binding it to different backing memory.
*/
buf_bsurf.base_offset += buf_extent_el.width *
buf_extent_el.height * buf_bsurf.bs;
if (image->type == VK_IMAGE_TYPE_3D)
slice_3d++;
else
slice_array++;
}
}
anv_meta_end_blit2d(cmd_buffer, &saved_state);
}
void anv_CmdCopyBufferToImage(
VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkImage destImage,
VkImageLayout destImageLayout,
uint32_t regionCount,
const VkBufferImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, dest_image, destImage);
ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
meta_copy_buffer_to_image(cmd_buffer, src_buffer, dest_image,
regionCount, pRegions, true);
}
void anv_CmdCopyImageToBuffer(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkBuffer destBuffer,
uint32_t regionCount,
const VkBufferImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_buffer, dst_buffer, destBuffer);
meta_copy_buffer_to_image(cmd_buffer, dst_buffer, src_image,
regionCount, pRegions, false);
}
void anv_CmdCopyImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage destImage,
VkImageLayout destImageLayout,
uint32_t regionCount,
const VkImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_image, dest_image, destImage);
struct anv_meta_saved_state saved_state;
/* From the Vulkan 1.0 spec:
*
* vkCmdCopyImage can be used to copy image data between multisample
* images, but both images must have the same number of samples.
*/
assert(src_image->samples == dest_image->samples);
anv_meta_begin_blit2d(cmd_buffer, &saved_state);
for (unsigned r = 0; r < regionCount; r++) {
assert(pRegions[r].srcSubresource.aspectMask ==
pRegions[r].dstSubresource.aspectMask);
VkImageAspectFlags aspect = pRegions[r].srcSubresource.aspectMask;
/* Create blit surfaces */
struct isl_surf *src_isl_surf =
&anv_image_get_surface_for_aspect_mask(src_image, aspect)->isl;
struct isl_surf *dst_isl_surf =
&anv_image_get_surface_for_aspect_mask(dest_image, aspect)->isl;
struct anv_meta_blit2d_surf b_src =
blit_surf_for_image(src_image, src_isl_surf);
struct anv_meta_blit2d_surf b_dst =
blit_surf_for_image(dest_image, dst_isl_surf);
/**
* From the Vulkan 1.0.6 spec: 18.4 Copying Data Between Buffers and Images
* imageExtent is the size in texels of the image to copy in width, height
* and depth. 1D images use only x and width. 2D images use x, y, width
* and height. 3D images use x, y, z, width, height and depth.
*
* Also, convert the offsets and extent from units of texels to units of
* blocks - which is the highest resolution accessible in this command.
*/
const VkOffset3D dst_offset_el =
meta_region_offset_el(dest_image, &pRegions[r].dstOffset);
const VkOffset3D src_offset_el =
meta_region_offset_el(src_image, &pRegions[r].srcOffset);
const VkExtent3D img_extent_el =
meta_region_extent_el(src_image, &pRegions[r].extent);
/* Start creating blit rect */
struct anv_meta_blit2d_rect rect = {
.width = img_extent_el.width,
.height = img_extent_el.height,
};
/* Loop through each 3D or array slice */
unsigned num_slices_3d = img_extent_el.depth;
unsigned num_slices_array = pRegions[r].dstSubresource.layerCount;
unsigned slice_3d = 0;
unsigned slice_array = 0;
while (slice_3d < num_slices_3d && slice_array < num_slices_array) {
/* Finish creating blit rect */
isl_surf_get_image_offset_el(dst_isl_surf,
pRegions[r].dstSubresource.mipLevel,
pRegions[r].dstSubresource.baseArrayLayer
+ slice_array,
dst_offset_el.z + slice_3d,
&rect.dst_x,
&rect.dst_y);
isl_surf_get_image_offset_el(src_isl_surf,
pRegions[r].srcSubresource.mipLevel,
pRegions[r].srcSubresource.baseArrayLayer
+ slice_array,
src_offset_el.z + slice_3d,
&rect.src_x,
&rect.src_y);
rect.dst_x += dst_offset_el.x;
rect.dst_y += dst_offset_el.y;
rect.src_x += src_offset_el.x;
rect.src_y += src_offset_el.y;
/* Perform Blit */
anv_meta_blit2d(cmd_buffer, &b_src, &b_dst, 1, &rect);
if (dest_image->type == VK_IMAGE_TYPE_3D)
slice_3d++;
else
slice_array++;
}
}
anv_meta_end_blit2d(cmd_buffer, &saved_state);
}
void anv_CmdCopyBuffer(
VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkBuffer destBuffer,
uint32_t regionCount,
const VkBufferCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
ANV_FROM_HANDLE(anv_buffer, dest_buffer, destBuffer);
struct anv_meta_saved_state saved_state;
anv_meta_begin_blit2d(cmd_buffer, &saved_state);
for (unsigned r = 0; r < regionCount; r++) {
uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset;
uint64_t dest_offset = dest_buffer->offset + pRegions[r].dstOffset;
uint64_t copy_size = pRegions[r].size;
/* First, we compute the biggest format that can be used with the
* given offsets and size.
*/
int bs = 16;
int fs = ffs(src_offset) - 1;
if (fs != -1)
bs = MIN2(bs, 1 << fs);
assert(src_offset % bs == 0);
fs = ffs(dest_offset) - 1;
if (fs != -1)
bs = MIN2(bs, 1 << fs);
assert(dest_offset % bs == 0);
fs = ffs(pRegions[r].size) - 1;
if (fs != -1)
bs = MIN2(bs, 1 << fs);
assert(pRegions[r].size % bs == 0);
/* This is maximum possible width/height our HW can handle */
uint64_t max_surface_dim = 1 << 14;
/* First, we make a bunch of max-sized copies */
uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
while (copy_size >= max_copy_size) {
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
dest_buffer->bo, dest_offset,
max_surface_dim, max_surface_dim, bs);
copy_size -= max_copy_size;
src_offset += max_copy_size;
dest_offset += max_copy_size;
}
uint64_t height = copy_size / (max_surface_dim * bs);
assert(height < max_surface_dim);
if (height != 0) {
uint64_t rect_copy_size = height * max_surface_dim * bs;
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
dest_buffer->bo, dest_offset,
max_surface_dim, height, bs);
copy_size -= rect_copy_size;
src_offset += rect_copy_size;
dest_offset += rect_copy_size;
}
if (copy_size != 0) {
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
dest_buffer->bo, dest_offset,
copy_size / bs, 1, bs);
}
}
anv_meta_end_blit2d(cmd_buffer, &saved_state);
}
void anv_CmdUpdateBuffer(
VkCommandBuffer commandBuffer,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize dataSize,
const uint32_t* pData)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
struct anv_meta_saved_state saved_state;
anv_meta_begin_blit2d(cmd_buffer, &saved_state);
/* We can't quite grab a full block because the state stream needs a
* little data at the top to build its linked list.
*/
const uint32_t max_update_size =
cmd_buffer->device->dynamic_state_block_pool.block_size - 64;
assert(max_update_size < (1 << 14) * 4);
while (dataSize) {
const uint32_t copy_size = MIN2(dataSize, max_update_size);
struct anv_state tmp_data =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, copy_size, 64);
memcpy(tmp_data.map, pData, copy_size);
int bs;
if ((copy_size & 15) == 0 && (dstOffset & 15) == 0) {
bs = 16;
} else if ((copy_size & 7) == 0 && (dstOffset & 7) == 0) {
bs = 8;
} else {
assert((copy_size & 3) == 0 && (dstOffset & 3) == 0);
bs = 4;
}
do_buffer_copy(cmd_buffer,
&cmd_buffer->device->dynamic_state_block_pool.bo,
tmp_data.offset,
dst_buffer->bo, dst_buffer->offset + dstOffset,
copy_size / bs, 1, bs);
dataSize -= copy_size;
dstOffset += copy_size;
pData = (void *)pData + copy_size;
}
anv_meta_end_blit2d(cmd_buffer, &saved_state);
}
|