summaryrefslogtreecommitdiffstats
path: root/src/intel/vulkan/anv_meta_blit2d.c
blob: 10e9ba3befd2a577871f6193ae3de1b1f4ae23a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "anv_meta.h"
#include "nir/nir_builder.h"

static VkFormat
vk_format_for_size(int bs)
{
   /* The choice of UNORM and UINT formats is very intentional here.  Most of
    * the time, we want to use a UINT format to avoid any rounding error in
    * the blit.  For stencil blits, R8_UINT is required by the hardware.
    * (It's the only format allowed in conjunction with W-tiling.)  Also we
    * intentionally use the 4-channel formats whenever we can.  This is so
    * that, when we do a RGB <-> RGBX copy, the two formats will line up even
    * though one of them is 3/4 the size of the other.  The choice of UNORM
    * vs. UINT is also very intentional because Haswell doesn't handle 8 or
    * 16-bit RGB UINT formats at all so we have to use UNORM there.
    * Fortunately, the only time we should ever use two different formats in
    * the table below is for RGB -> RGBA blits and so we will never have any
    * UNORM/UINT mismatch.
    */
   switch (bs) {
   case 1: return VK_FORMAT_R8_UINT;
   case 2: return VK_FORMAT_R8G8_UINT;
   case 3: return VK_FORMAT_R8G8B8_UNORM;
   case 4: return VK_FORMAT_R8G8B8A8_UNORM;
   case 6: return VK_FORMAT_R16G16B16_UNORM;
   case 8: return VK_FORMAT_R16G16B16A16_UNORM;
   case 12: return VK_FORMAT_R32G32B32_UINT;
   case 16: return VK_FORMAT_R32G32B32A32_UINT;
   default:
      unreachable("Invalid format block size");
   }
}

static void
create_iview(struct anv_cmd_buffer *cmd_buffer,
             struct anv_meta_blit2d_surf *surf,
             struct anv_meta_blit2d_rect *rect,
             VkImageUsageFlags usage,
             VkImage *img,
             struct anv_image_view *iview)
{
   struct isl_tile_info tile_info;
   isl_tiling_get_info(&cmd_buffer->device->isl_dev,
                       surf->tiling, surf->bs, &tile_info);
   const unsigned tile_width_px = tile_info.width > surf->bs ?
                                  tile_info.width / surf->bs : 1;
   uint32_t *rect_y = (usage == VK_IMAGE_USAGE_SAMPLED_BIT) ?
                      &rect->src_y : &rect->dst_y;
   uint32_t *rect_x = (usage == VK_IMAGE_USAGE_SAMPLED_BIT) ?
                      &rect->src_x : &rect->dst_x;

   /* Define the shared state among all created image views */
   const VkImageCreateInfo image_info = {
      .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
      .imageType = VK_IMAGE_TYPE_2D,
      .format = vk_format_for_size(surf->bs),
      .extent = {
         .width = rect->width + (*rect_x) % tile_width_px,
         .height = rect->height + (*rect_y) % tile_info.height,
         .depth = 1,
      },
      .mipLevels = 1,
      .arrayLayers = 1,
      .samples = 1,
      .tiling = surf->tiling == ISL_TILING_LINEAR ?
                VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL,
      .usage = usage,
   };

   /* Create the VkImage that is bound to the surface's memory. */
   anv_image_create(anv_device_to_handle(cmd_buffer->device),
                    &(struct anv_image_create_info) {
                       .vk_info = &image_info,
                       .isl_tiling_flags = 1 << surf->tiling,
                       .stride = surf->pitch,
                    }, &cmd_buffer->pool->alloc, img);

   /* We could use a vk call to bind memory, but that would require
    * creating a dummy memory object etc. so there's really no point.
    */
   anv_image_from_handle(*img)->bo = surf->bo;
   anv_image_from_handle(*img)->offset = surf->base_offset;

   /* Create a VkImageView that starts at the tile aligned offset closest
    * to the provided x/y offset into the surface.
    */
   uint32_t img_o = 0;
   isl_surf_get_image_intratile_offset_el_xy(&cmd_buffer->device->isl_dev,
                                             &anv_image_from_handle(*img)->
                                                color_surface.isl,
                                             *rect_x, *rect_y,
                                             &img_o, rect_x, rect_y);
   anv_image_view_init(iview, cmd_buffer->device,
                       &(VkImageViewCreateInfo) {
                          .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
                          .image = *img,
                          .viewType = VK_IMAGE_VIEW_TYPE_2D,
                          .format = image_info.format,
                          .subresourceRange = {
                             .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
                             .baseMipLevel = 0,
                             .levelCount = 1,
                             .baseArrayLayer = 0,
                             .layerCount = 1
                          },
                       }, cmd_buffer, img_o, usage);
}

static void
meta_emit_blit2d(struct anv_cmd_buffer *cmd_buffer,
               struct anv_image_view *src_iview,
               VkOffset3D src_offset,
               struct anv_image_view *dest_iview,
               VkOffset3D dest_offset,
               VkExtent3D extent)
{
   struct anv_device *device = cmd_buffer->device;

   struct blit_vb_data {
      float pos[2];
      float tex_coord[3];
   } *vb_data;

   unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);

   struct anv_state vb_state =
      anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
   memset(vb_state.map, 0, sizeof(struct anv_vue_header));
   vb_data = vb_state.map + sizeof(struct anv_vue_header);

   vb_data[0] = (struct blit_vb_data) {
      .pos = {
         dest_offset.x + extent.width,
         dest_offset.y + extent.height,
      },
      .tex_coord = {
         src_offset.x + extent.width,
         src_offset.y + extent.height,
         src_offset.z,
      },
   };

   vb_data[1] = (struct blit_vb_data) {
      .pos = {
         dest_offset.x,
         dest_offset.y + extent.height,
      },
      .tex_coord = {
         src_offset.x,
         src_offset.y + extent.height,
         src_offset.z,
      },
   };

   vb_data[2] = (struct blit_vb_data) {
      .pos = {
         dest_offset.x,
         dest_offset.y,
      },
      .tex_coord = {
         src_offset.x,
         src_offset.y,
         src_offset.z,
      },
   };

   anv_state_clflush(vb_state);

   struct anv_buffer vertex_buffer = {
      .device = device,
      .size = vb_size,
      .bo = &device->dynamic_state_block_pool.bo,
      .offset = vb_state.offset,
   };

   anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
      (VkBuffer[]) {
         anv_buffer_to_handle(&vertex_buffer),
         anv_buffer_to_handle(&vertex_buffer)
      },
      (VkDeviceSize[]) {
         0,
         sizeof(struct anv_vue_header),
      });

   VkDescriptorPool desc_pool;
   anv_CreateDescriptorPool(anv_device_to_handle(device),
      &(const VkDescriptorPoolCreateInfo) {
         .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
         .pNext = NULL,
         .flags = 0,
         .maxSets = 1,
         .poolSizeCount = 1,
         .pPoolSizes = (VkDescriptorPoolSize[]) {
            {
               .type = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
               .descriptorCount = 1
            },
         }
      }, &cmd_buffer->pool->alloc, &desc_pool);

   VkDescriptorSet set;
   anv_AllocateDescriptorSets(anv_device_to_handle(device),
      &(VkDescriptorSetAllocateInfo) {
         .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
         .descriptorPool = desc_pool,
         .descriptorSetCount = 1,
         .pSetLayouts = &device->meta_state.blit2d.ds_layout
      }, &set);

   anv_UpdateDescriptorSets(anv_device_to_handle(device),
      1, /* writeCount */
      (VkWriteDescriptorSet[]) {
         {
            .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
            .dstSet = set,
            .dstBinding = 0,
            .dstArrayElement = 0,
            .descriptorCount = 1,
            .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
            .pImageInfo = (VkDescriptorImageInfo[]) {
               {
                  .sampler = NULL,
                  .imageView = anv_image_view_to_handle(src_iview),
                  .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
               },
            }
         }
      }, 0, NULL);

   VkFramebuffer fb;
   anv_CreateFramebuffer(anv_device_to_handle(device),
      &(VkFramebufferCreateInfo) {
         .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
         .attachmentCount = 1,
         .pAttachments = (VkImageView[]) {
            anv_image_view_to_handle(dest_iview),
         },
         .width = dest_iview->extent.width,
         .height = dest_iview->extent.height,
         .layers = 1
      }, &cmd_buffer->pool->alloc, &fb);

   ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
      &(VkRenderPassBeginInfo) {
         .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
         .renderPass = device->meta_state.blit2d.render_pass,
         .framebuffer = fb,
         .renderArea = {
            .offset = { dest_offset.x, dest_offset.y },
            .extent = { extent.width, extent.height },
         },
         .clearValueCount = 0,
         .pClearValues = NULL,
      }, VK_SUBPASS_CONTENTS_INLINE);

   VkPipeline pipeline = device->meta_state.blit2d.pipeline_2d_src;

   if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) {
      anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
                          VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
   }

   anv_CmdSetViewport(anv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
                      &(VkViewport) {
                        .x = 0.0f,
                        .y = 0.0f,
                        .width = dest_iview->extent.width,
                        .height = dest_iview->extent.height,
                        .minDepth = 0.0f,
                        .maxDepth = 1.0f,
                      });

   anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
                             VK_PIPELINE_BIND_POINT_GRAPHICS,
                             device->meta_state.blit2d.pipeline_layout, 0, 1,
                             &set, 0, NULL);

   ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);

   ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));

   /* At the point where we emit the draw call, all data from the
    * descriptor sets, etc. has been used.  We are free to delete it.
    */
   anv_DestroyDescriptorPool(anv_device_to_handle(device),
                             desc_pool, &cmd_buffer->pool->alloc);
   anv_DestroyFramebuffer(anv_device_to_handle(device), fb,
                          &cmd_buffer->pool->alloc);
}

void
anv_meta_end_blit2d(struct anv_cmd_buffer *cmd_buffer,
                    struct anv_meta_saved_state *save)
{
   anv_meta_restore(save, cmd_buffer);
}

void
anv_meta_begin_blit2d(struct anv_cmd_buffer *cmd_buffer,
                      struct anv_meta_saved_state *save)
{
   anv_meta_save(save, cmd_buffer,
                 (1 << VK_DYNAMIC_STATE_VIEWPORT));
}

void
anv_meta_blit2d(struct anv_cmd_buffer *cmd_buffer,
                struct anv_meta_blit2d_surf *src,
                struct anv_meta_blit2d_surf *dst,
                unsigned num_rects,
                struct anv_meta_blit2d_rect *rects)
{
   VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
   VkImageUsageFlags src_usage = VK_IMAGE_USAGE_SAMPLED_BIT;
   VkImageUsageFlags dst_usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;

   for (unsigned r = 0; r < num_rects; ++r) {
      VkImage src_img;
      VkImage dst_img;
      struct anv_image_view src_iview;
      struct anv_image_view dst_iview;
      create_iview(cmd_buffer, src, &rects[r], src_usage, &src_img, &src_iview);
      create_iview(cmd_buffer, dst, &rects[r], dst_usage, &dst_img, &dst_iview);

      /* Perform blit */
      meta_emit_blit2d(cmd_buffer,
                     &src_iview,
                     (VkOffset3D){rects[r].src_x, rects[r].src_y, 0},
                     &dst_iview,
                     (VkOffset3D){rects[r].dst_x, rects[r].dst_y, 0},
                     (VkExtent3D){rects[r].width, rects[r].height, 1});

      anv_DestroyImage(vk_device, src_img, &cmd_buffer->pool->alloc);
      anv_DestroyImage(vk_device, dst_img, &cmd_buffer->pool->alloc);
   }
}


static nir_shader *
build_nir_vertex_shader(void)
{
   const struct glsl_type *vec4 = glsl_vec4_type();
   nir_builder b;

   nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
   b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_vs");

   nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in,
                                              vec4, "a_pos");
   pos_in->data.location = VERT_ATTRIB_GENERIC0;
   nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
                                               vec4, "gl_Position");
   pos_out->data.location = VARYING_SLOT_POS;
   nir_copy_var(&b, pos_out, pos_in);

   nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
                                                  vec4, "a_tex_pos");
   tex_pos_in->data.location = VERT_ATTRIB_GENERIC1;
   nir_variable *tex_pos_out = nir_variable_create(b.shader, nir_var_shader_out,
                                                   vec4, "v_tex_pos");
   tex_pos_out->data.location = VARYING_SLOT_VAR0;
   tex_pos_out->data.interpolation = INTERP_QUALIFIER_SMOOTH;
   nir_copy_var(&b, tex_pos_out, tex_pos_in);

   return b.shader;
}

static nir_shader *
build_nir_copy_fragment_shader()
{
   const struct glsl_type *vec4 = glsl_vec4_type();
   const struct glsl_type *vec2 = glsl_vector_type(GLSL_TYPE_FLOAT, 2);
   nir_builder b;

   nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
   b.shader->info.name = ralloc_strdup(b.shader, "meta_blit2d_fs");

   nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
                                                  vec2, "v_tex_pos");
   tex_pos_in->data.location = VARYING_SLOT_VAR0;
   nir_ssa_def *const tex_pos = nir_f2i(&b, nir_load_var(&b, tex_pos_in));

   const struct glsl_type *sampler_type =
      glsl_sampler_type(GLSL_SAMPLER_DIM_2D, false, false,
                        glsl_get_base_type(vec4));
   nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform,
                                               sampler_type, "s_tex");
   sampler->data.descriptor_set = 0;
   sampler->data.binding = 0;

   nir_tex_instr *tex = nir_tex_instr_create(b.shader, 2);
   tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
   tex->op = nir_texop_txf;
   tex->src[0].src_type = nir_tex_src_coord;
   tex->src[0].src = nir_src_for_ssa(tex_pos);
   tex->src[1].src_type = nir_tex_src_lod;
   tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0));
   tex->dest_type = nir_type_float; /* TODO */
   tex->is_array = false;
   tex->coord_components = tex_pos->num_components;
   tex->texture = nir_deref_var_create(tex, sampler);
   tex->sampler = NULL;

   nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
   nir_builder_instr_insert(&b, &tex->instr);

   nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
                                                 vec4, "f_color");
   color_out->data.location = FRAG_RESULT_DATA0;
   nir_store_var(&b, color_out, &tex->dest.ssa, 4);

   return b.shader;
}

void
anv_device_finish_meta_blit2d_state(struct anv_device *device)
{
   anv_DestroyRenderPass(anv_device_to_handle(device),
                         device->meta_state.blit2d.render_pass,
                         &device->meta_state.alloc);
   anv_DestroyPipeline(anv_device_to_handle(device),
                       device->meta_state.blit2d.pipeline_2d_src,
                       &device->meta_state.alloc);
   anv_DestroyPipelineLayout(anv_device_to_handle(device),
                             device->meta_state.blit2d.pipeline_layout,
                             &device->meta_state.alloc);
   anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
                                  device->meta_state.blit2d.ds_layout,
                                  &device->meta_state.alloc);
}

VkResult
anv_device_init_meta_blit2d_state(struct anv_device *device)
{
   VkResult result;

   result = anv_CreateRenderPass(anv_device_to_handle(device),
      &(VkRenderPassCreateInfo) {
         .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
         .attachmentCount = 1,
         .pAttachments = &(VkAttachmentDescription) {
            .format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
            .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
            .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
            .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
            .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
         },
         .subpassCount = 1,
         .pSubpasses = &(VkSubpassDescription) {
            .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
            .inputAttachmentCount = 0,
            .colorAttachmentCount = 1,
            .pColorAttachments = &(VkAttachmentReference) {
               .attachment = 0,
               .layout = VK_IMAGE_LAYOUT_GENERAL,
            },
            .pResolveAttachments = NULL,
            .pDepthStencilAttachment = &(VkAttachmentReference) {
               .attachment = VK_ATTACHMENT_UNUSED,
               .layout = VK_IMAGE_LAYOUT_GENERAL,
            },
            .preserveAttachmentCount = 1,
            .pPreserveAttachments = (uint32_t[]) { 0 },
         },
         .dependencyCount = 0,
      }, &device->meta_state.alloc, &device->meta_state.blit2d.render_pass);
   if (result != VK_SUCCESS)
      goto fail;

   /* We don't use a vertex shader for blitting, but instead build and pass
    * the VUEs directly to the rasterization backend.  However, we do need
    * to provide GLSL source for the vertex shader so that the compiler
    * does not dead-code our inputs.
    */
   struct anv_shader_module vs = {
      .nir = build_nir_vertex_shader(),
   };

   struct anv_shader_module fs_2d = {
      .nir = build_nir_copy_fragment_shader(),
   };

   VkPipelineVertexInputStateCreateInfo vi_create_info = {
      .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
      .vertexBindingDescriptionCount = 2,
      .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
         {
            .binding = 0,
            .stride = 0,
            .inputRate = VK_VERTEX_INPUT_RATE_INSTANCE
         },
         {
            .binding = 1,
            .stride = 5 * sizeof(float),
            .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
         },
      },
      .vertexAttributeDescriptionCount = 3,
      .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
         {
            /* VUE Header */
            .location = 0,
            .binding = 0,
            .format = VK_FORMAT_R32G32B32A32_UINT,
            .offset = 0
         },
         {
            /* Position */
            .location = 1,
            .binding = 1,
            .format = VK_FORMAT_R32G32_SFLOAT,
            .offset = 0
         },
         {
            /* Texture Coordinate */
            .location = 2,
            .binding = 1,
            .format = VK_FORMAT_R32G32B32_SFLOAT,
            .offset = 8
         }
      }
   };

   VkDescriptorSetLayoutCreateInfo ds_layout_info = {
      .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
      .bindingCount = 1,
      .pBindings = (VkDescriptorSetLayoutBinding[]) {
         {
            .binding = 0,
            .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
            .descriptorCount = 1,
            .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
            .pImmutableSamplers = NULL
         },
      }
   };
   result = anv_CreateDescriptorSetLayout(anv_device_to_handle(device),
                                          &ds_layout_info,
                                          &device->meta_state.alloc,
                                          &device->meta_state.blit2d.ds_layout);
   if (result != VK_SUCCESS)
      goto fail_render_pass;

   result = anv_CreatePipelineLayout(anv_device_to_handle(device),
      &(VkPipelineLayoutCreateInfo) {
         .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
         .setLayoutCount = 1,
         .pSetLayouts = &device->meta_state.blit2d.ds_layout,
      },
      &device->meta_state.alloc, &device->meta_state.blit2d.pipeline_layout);
   if (result != VK_SUCCESS)
      goto fail_descriptor_set_layout;

   VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
      {
         .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
         .stage = VK_SHADER_STAGE_VERTEX_BIT,
         .module = anv_shader_module_to_handle(&vs),
         .pName = "main",
         .pSpecializationInfo = NULL
      }, {
         .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
         .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
         .module = VK_NULL_HANDLE, /* TEMPLATE VALUE! FILL ME IN! */
         .pName = "main",
         .pSpecializationInfo = NULL
      },
   };

   const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
      .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
      .stageCount = ARRAY_SIZE(pipeline_shader_stages),
      .pStages = pipeline_shader_stages,
      .pVertexInputState = &vi_create_info,
      .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
         .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
         .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
         .primitiveRestartEnable = false,
      },
      .pViewportState = &(VkPipelineViewportStateCreateInfo) {
         .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
         .viewportCount = 1,
         .scissorCount = 1,
      },
      .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
         .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
         .rasterizerDiscardEnable = false,
         .polygonMode = VK_POLYGON_MODE_FILL,
         .cullMode = VK_CULL_MODE_NONE,
         .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
      },
      .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
         .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
         .rasterizationSamples = 1,
         .sampleShadingEnable = false,
         .pSampleMask = (VkSampleMask[]) { UINT32_MAX },
      },
      .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
         .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
         .attachmentCount = 1,
         .pAttachments = (VkPipelineColorBlendAttachmentState []) {
            { .colorWriteMask =
                 VK_COLOR_COMPONENT_A_BIT |
                 VK_COLOR_COMPONENT_R_BIT |
                 VK_COLOR_COMPONENT_G_BIT |
                 VK_COLOR_COMPONENT_B_BIT },
         }
      },
      .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
         .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
         .dynamicStateCount = 9,
         .pDynamicStates = (VkDynamicState[]) {
            VK_DYNAMIC_STATE_VIEWPORT,
            VK_DYNAMIC_STATE_SCISSOR,
            VK_DYNAMIC_STATE_LINE_WIDTH,
            VK_DYNAMIC_STATE_DEPTH_BIAS,
            VK_DYNAMIC_STATE_BLEND_CONSTANTS,
            VK_DYNAMIC_STATE_DEPTH_BOUNDS,
            VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
            VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
            VK_DYNAMIC_STATE_STENCIL_REFERENCE,
         },
      },
      .flags = 0,
      .layout = device->meta_state.blit2d.pipeline_layout,
      .renderPass = device->meta_state.blit2d.render_pass,
      .subpass = 0,
   };

   const struct anv_graphics_pipeline_create_info anv_pipeline_info = {
      .color_attachment_count = -1,
      .use_repclear = false,
      .disable_viewport = true,
      .disable_scissor = true,
      .disable_vs = true,
      .use_rectlist = true
   };

   pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_2d);
   result = anv_graphics_pipeline_create(anv_device_to_handle(device),
      VK_NULL_HANDLE,
      &vk_pipeline_info, &anv_pipeline_info,
      &device->meta_state.alloc, &device->meta_state.blit2d.pipeline_2d_src);
   if (result != VK_SUCCESS)
      goto fail_pipeline_layout;

   ralloc_free(vs.nir);
   ralloc_free(fs_2d.nir);

   return VK_SUCCESS;

 fail_pipeline_layout:
   anv_DestroyPipelineLayout(anv_device_to_handle(device),
                             device->meta_state.blit2d.pipeline_layout,
                             &device->meta_state.alloc);
 fail_descriptor_set_layout:
   anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
                                  device->meta_state.blit2d.ds_layout,
                                  &device->meta_state.alloc);
 fail_render_pass:
   anv_DestroyRenderPass(anv_device_to_handle(device),
                         device->meta_state.blit2d.render_pass,
                         &device->meta_state.alloc);

   ralloc_free(vs.nir);
   ralloc_free(fs_2d.nir);
 fail:
   return result;
}