1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
|
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>
#include "anv_private.h"
#include "util/debug.h"
#include "vk_util.h"
#include "vk_format_info.h"
/**
* Exactly one bit must be set in \a aspect.
*/
static isl_surf_usage_flags_t
choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
VkImageUsageFlags vk_usage,
VkImageAspectFlags aspect)
{
isl_surf_usage_flags_t isl_usage = 0;
if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
isl_usage |= ISL_SURF_USAGE_CUBE_BIT;
/* Even if we're only using it for transfer operations, clears to depth and
* stencil images happen as depth and stencil so they need the right ISL
* usage bits or else things will fall apart.
*/
switch (aspect) {
case VK_IMAGE_ASPECT_DEPTH_BIT:
isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
break;
case VK_IMAGE_ASPECT_STENCIL_BIT:
isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
break;
case VK_IMAGE_ASPECT_COLOR_BIT:
break;
default:
unreachable("bad VkImageAspect");
}
if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
/* blorp implements transfers by sampling from the source image. */
isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
}
if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
/* blorp implements transfers by rendering into the destination image.
* Only request this with color images, as we deal with depth/stencil
* formats differently. */
isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
}
return isl_usage;
}
/**
* Exactly one bit must be set in \a aspect.
*/
static struct anv_surface *
get_surface(struct anv_image *image, VkImageAspectFlags aspect)
{
switch (aspect) {
default:
unreachable("bad VkImageAspect");
case VK_IMAGE_ASPECT_COLOR_BIT:
return &image->color_surface;
case VK_IMAGE_ASPECT_DEPTH_BIT:
return &image->depth_surface;
case VK_IMAGE_ASPECT_STENCIL_BIT:
return &image->stencil_surface;
}
}
static void
add_surface(struct anv_image *image, struct anv_surface *surf)
{
assert(surf->isl.size > 0); /* isl surface must be initialized */
surf->offset = align_u32(image->size, surf->isl.alignment);
image->size = surf->offset + surf->isl.size;
image->alignment = MAX2(image->alignment, surf->isl.alignment);
}
static bool
all_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
const struct VkImageCreateInfo *vk_info)
{
enum isl_format format =
anv_get_isl_format(devinfo, vk_info->format,
VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
if (!isl_format_supports_ccs_e(devinfo, format))
return false;
if (!(vk_info->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
return true;
const VkImageFormatListCreateInfoKHR *fmt_list =
vk_find_struct_const(vk_info->pNext, IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
if (!fmt_list || fmt_list->viewFormatCount == 0)
return false;
for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
enum isl_format view_format =
anv_get_isl_format(devinfo, fmt_list->pViewFormats[i],
VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format))
return false;
}
return true;
}
/**
* For color images that have an auxiliary surface, request allocation for an
* additional buffer that mainly stores fast-clear values. Use of this buffer
* allows us to access the image's subresources while being aware of their
* fast-clear values in non-trivial cases (e.g., outside of a render pass in
* which a fast clear has occurred).
*
* For the purpose of discoverability, the algorithm used to manage this buffer
* is described here. A clear value in this buffer is updated when a fast clear
* is performed on a subresource. One of two synchronization operations is
* performed in order for a following memory access to use the fast-clear
* value:
* a. Copy the value from the buffer to the surface state object used for
* reading. This is done implicitly when the value is the clear value
* predetermined to be the default in other surface state objects. This
* is currently only done explicitly for the operation below.
* b. Do (a) and use the surface state object to resolve the subresource.
* This is only done during layout transitions for decent performance.
*
* With the above scheme, we can fast-clear whenever the hardware allows except
* for two cases in which synchronization becomes impossible or undesirable:
* * The subresource is in the GENERAL layout and is cleared to a value
* other than the special default value.
*
* Performing a synchronization operation in order to read from the
* subresource is undesirable in this case. Firstly, b) is not an option
* because a layout transition isn't required between a write and read of
* an image in the GENERAL layout. Secondly, it's undesirable to do a)
* explicitly because it would require large infrastructural changes. The
* Vulkan API supports us in deciding not to optimize this layout by
* stating that using this layout may cause suboptimal performance. NOTE:
* the auxiliary buffer must always be enabled to support a) implicitly.
*
*
* * For the given miplevel, only some of the layers are cleared at once.
*
* If the user clears each layer to a different value, then tries to
* render to multiple layers at once, we have no ability to perform a
* synchronization operation in between. a) is not helpful because the
* object can only hold one clear value. b) is not an option because a
* layout transition isn't required in this case.
*/
static void
add_fast_clear_state_buffer(struct anv_image *image,
const struct anv_device *device)
{
assert(image && device);
assert(image->aux_surface.isl.size > 0 &&
image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
/* The offset to the buffer of clear values must be dword-aligned for GPU
* memcpy operations. It is located immediately after the auxiliary surface.
*/
/* Tiled images are guaranteed to be 4K aligned, so the image alignment
* should also be dword-aligned.
*/
assert(image->alignment % 4 == 0);
/* Auxiliary buffers should be a multiple of 4K, so the start of the clear
* values buffer should already be dword-aligned.
*/
assert(image->aux_surface.isl.size % 4 == 0);
/* This buffer should be at the very end of the image. */
assert(image->size ==
image->aux_surface.offset + image->aux_surface.isl.size);
const unsigned entry_size = anv_fast_clear_state_entry_size(device);
/* There's no padding between entries, so ensure that they're always a
* multiple of 32 bits in order to enable GPU memcpy operations.
*/
assert(entry_size % 4 == 0);
image->size += entry_size * anv_image_aux_levels(image);
}
/**
* Initialize the anv_image::*_surface selected by \a aspect. Then update the
* image's memory requirements (that is, the image's size and alignment).
*
* Exactly one bit must be set in \a aspect.
*/
static VkResult
make_surface(const struct anv_device *dev,
struct anv_image *image,
const struct anv_image_create_info *anv_info,
VkImageAspectFlags aspect)
{
const VkImageCreateInfo *vk_info = anv_info->vk_info;
bool ok UNUSED;
static const enum isl_surf_dim vk_to_isl_surf_dim[] = {
[VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D,
[VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D,
[VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D,
};
/* Translate the Vulkan tiling to an equivalent ISL tiling, then filter the
* result with an optionally provided ISL tiling argument.
*/
isl_tiling_flags_t tiling_flags =
(vk_info->tiling == VK_IMAGE_TILING_LINEAR) ?
ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
if (anv_info->isl_tiling_flags)
tiling_flags &= anv_info->isl_tiling_flags;
assert(tiling_flags);
struct anv_surface *anv_surf = get_surface(image, aspect);
image->extent = anv_sanitize_image_extent(vk_info->imageType,
vk_info->extent);
enum isl_format format = anv_get_isl_format(&dev->info, vk_info->format,
aspect, vk_info->tiling);
assert(format != ISL_FORMAT_UNSUPPORTED);
/* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
* fall back to linear on Broadwell and earlier because we aren't
* guaranteed that we can handle offsets correctly. On Sky Lake, the
* horizontal and vertical alignments are sufficiently high that we can
* just use RENDER_SURFACE_STATE::X/Y Offset.
*/
bool needs_shadow = false;
if (dev->info.gen <= 8 &&
(vk_info->flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR) &&
vk_info->tiling == VK_IMAGE_TILING_OPTIMAL) {
assert(isl_format_is_compressed(format));
tiling_flags = ISL_TILING_LINEAR_BIT;
needs_shadow = true;
}
ok = isl_surf_init(&dev->isl_dev, &anv_surf->isl,
.dim = vk_to_isl_surf_dim[vk_info->imageType],
.format = format,
.width = image->extent.width,
.height = image->extent.height,
.depth = image->extent.depth,
.levels = vk_info->mipLevels,
.array_len = vk_info->arrayLayers,
.samples = vk_info->samples,
.min_alignment = 0,
.row_pitch = anv_info->stride,
.usage = choose_isl_surf_usage(vk_info->flags, image->usage, aspect),
.tiling_flags = tiling_flags);
/* isl_surf_init() will fail only if provided invalid input. Invalid input
* is illegal in Vulkan.
*/
assert(ok);
add_surface(image, anv_surf);
/* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
* create an identical tiled shadow surface for use while texturing so we
* don't get garbage performance.
*/
if (needs_shadow) {
assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
assert(tiling_flags == ISL_TILING_LINEAR_BIT);
ok = isl_surf_init(&dev->isl_dev, &image->shadow_surface.isl,
.dim = vk_to_isl_surf_dim[vk_info->imageType],
.format = format,
.width = image->extent.width,
.height = image->extent.height,
.depth = image->extent.depth,
.levels = vk_info->mipLevels,
.array_len = vk_info->arrayLayers,
.samples = vk_info->samples,
.min_alignment = 0,
.row_pitch = anv_info->stride,
.usage = choose_isl_surf_usage(image->usage, image->usage, aspect),
.tiling_flags = ISL_TILING_ANY_MASK);
/* isl_surf_init() will fail only if provided invalid input. Invalid input
* is illegal in Vulkan.
*/
assert(ok);
add_surface(image, &image->shadow_surface);
}
/* Add a HiZ surface to a depth buffer that will be used for rendering.
*/
if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
/* We don't advertise that depth buffers could be used as storage
* images.
*/
assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
/* Allow the user to control HiZ enabling. Disable by default on gen7
* because resolves are not currently implemented pre-BDW.
*/
if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
/* It will never be used as an attachment, HiZ is pointless. */
} else if (dev->info.gen == 7) {
anv_perf_warn(dev->instance, image, "Implement gen7 HiZ");
} else if (vk_info->mipLevels > 1) {
anv_perf_warn(dev->instance, image, "Enable multi-LOD HiZ");
} else if (vk_info->arrayLayers > 1) {
anv_perf_warn(dev->instance, image,
"Implement multi-arrayLayer HiZ clears and resolves");
} else if (dev->info.gen == 8 && vk_info->samples > 1) {
anv_perf_warn(dev->instance, image, "Enable gen8 multisampled HiZ");
} else if (!unlikely(INTEL_DEBUG & DEBUG_NO_HIZ)) {
assert(image->aux_surface.isl.size == 0);
ok = isl_surf_get_hiz_surf(&dev->isl_dev, &image->depth_surface.isl,
&image->aux_surface.isl);
assert(ok);
add_surface(image, &image->aux_surface);
image->aux_usage = ISL_AUX_USAGE_HIZ;
}
} else if (aspect == VK_IMAGE_ASPECT_COLOR_BIT && vk_info->samples == 1) {
if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC)) {
assert(image->aux_surface.isl.size == 0);
ok = isl_surf_get_ccs_surf(&dev->isl_dev, &anv_surf->isl,
&image->aux_surface.isl, 0);
if (ok) {
/* Disable CCS when it is not useful (i.e., when you can't render
* to the image with CCS enabled).
*/
if (!isl_format_supports_rendering(&dev->info, format)) {
/* While it may be technically possible to enable CCS for this
* image, we currently don't have things hooked up to get it
* working.
*/
anv_perf_warn(dev->instance, image,
"This image format doesn't support rendering. "
"Not allocating an CCS buffer.");
image->aux_surface.isl.size = 0;
return VK_SUCCESS;
}
add_surface(image, &image->aux_surface);
add_fast_clear_state_buffer(image, dev);
/* For images created without MUTABLE_FORMAT_BIT set, we know that
* they will always be used with the original format. In
* particular, they will always be used with a format that
* supports color compression. If it's never used as a storage
* image, then it will only be used through the sampler or the as
* a render target. This means that it's safe to just leave
* compression on at all times for these formats.
*/
if (!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT) &&
all_formats_ccs_e_compatible(&dev->info, vk_info)) {
image->aux_usage = ISL_AUX_USAGE_CCS_E;
}
}
}
} else if (aspect == VK_IMAGE_ASPECT_COLOR_BIT && vk_info->samples > 1) {
assert(image->aux_surface.isl.size == 0);
assert(!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT));
ok = isl_surf_get_mcs_surf(&dev->isl_dev, &anv_surf->isl,
&image->aux_surface.isl);
if (ok) {
add_surface(image, &image->aux_surface);
add_fast_clear_state_buffer(image, dev);
image->aux_usage = ISL_AUX_USAGE_MCS;
}
}
return VK_SUCCESS;
}
VkResult
anv_image_create(VkDevice _device,
const struct anv_image_create_info *create_info,
const VkAllocationCallbacks* alloc,
VkImage *pImage)
{
ANV_FROM_HANDLE(anv_device, device, _device);
const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
struct anv_image *image = NULL;
VkResult r;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
anv_assert(pCreateInfo->mipLevels > 0);
anv_assert(pCreateInfo->arrayLayers > 0);
anv_assert(pCreateInfo->samples > 0);
anv_assert(pCreateInfo->extent.width > 0);
anv_assert(pCreateInfo->extent.height > 0);
anv_assert(pCreateInfo->extent.depth > 0);
image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!image)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
image->type = pCreateInfo->imageType;
image->extent = pCreateInfo->extent;
image->vk_format = pCreateInfo->format;
image->aspects = vk_format_aspects(image->vk_format);
image->levels = pCreateInfo->mipLevels;
image->array_size = pCreateInfo->arrayLayers;
image->samples = pCreateInfo->samples;
image->usage = pCreateInfo->usage;
image->tiling = pCreateInfo->tiling;
image->aux_usage = ISL_AUX_USAGE_NONE;
uint32_t b;
for_each_bit(b, image->aspects) {
r = make_surface(device, image, create_info, (1 << b));
if (r != VK_SUCCESS)
goto fail;
}
*pImage = anv_image_to_handle(image);
return VK_SUCCESS;
fail:
if (image)
vk_free2(&device->alloc, alloc, image);
return r;
}
VkResult
anv_CreateImage(VkDevice device,
const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImage *pImage)
{
return anv_image_create(device,
&(struct anv_image_create_info) {
.vk_info = pCreateInfo,
},
pAllocator,
pImage);
}
void
anv_DestroyImage(VkDevice _device, VkImage _image,
const VkAllocationCallbacks *pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_image, image, _image);
if (!image)
return;
vk_free2(&device->alloc, pAllocator, image);
}
static void
anv_bind_image_memory(const VkBindImageMemoryInfoKHR *pBindInfo)
{
ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
ANV_FROM_HANDLE(anv_image, image, pBindInfo->image);
assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR);
if (mem == NULL) {
image->bo = NULL;
image->offset = 0;
return;
}
image->bo = mem->bo;
image->offset = pBindInfo->memoryOffset;
}
VkResult anv_BindImageMemory(
VkDevice device,
VkImage image,
VkDeviceMemory memory,
VkDeviceSize memoryOffset)
{
anv_bind_image_memory(
&(VkBindImageMemoryInfoKHR) {
.sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR,
.image = image,
.memory = memory,
.memoryOffset = memoryOffset,
});
return VK_SUCCESS;
}
VkResult anv_BindImageMemory2KHR(
VkDevice device,
uint32_t bindInfoCount,
const VkBindImageMemoryInfoKHR* pBindInfos)
{
for (uint32_t i = 0; i < bindInfoCount; i++)
anv_bind_image_memory(&pBindInfos[i]);
return VK_SUCCESS;
}
static void
anv_surface_get_subresource_layout(struct anv_image *image,
struct anv_surface *surface,
const VkImageSubresource *subresource,
VkSubresourceLayout *layout)
{
/* If we are on a non-zero mip level or array slice, we need to
* calculate a real offset.
*/
anv_assert(subresource->mipLevel == 0);
anv_assert(subresource->arrayLayer == 0);
layout->offset = surface->offset;
layout->rowPitch = surface->isl.row_pitch;
layout->depthPitch = isl_surf_get_array_pitch(&surface->isl);
layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl);
layout->size = surface->isl.size;
}
void anv_GetImageSubresourceLayout(
VkDevice device,
VkImage _image,
const VkImageSubresource* pSubresource,
VkSubresourceLayout* pLayout)
{
ANV_FROM_HANDLE(anv_image, image, _image);
assert(__builtin_popcount(pSubresource->aspectMask) == 1);
switch (pSubresource->aspectMask) {
case VK_IMAGE_ASPECT_COLOR_BIT:
anv_surface_get_subresource_layout(image, &image->color_surface,
pSubresource, pLayout);
break;
case VK_IMAGE_ASPECT_DEPTH_BIT:
anv_surface_get_subresource_layout(image, &image->depth_surface,
pSubresource, pLayout);
break;
case VK_IMAGE_ASPECT_STENCIL_BIT:
anv_surface_get_subresource_layout(image, &image->stencil_surface,
pSubresource, pLayout);
break;
default:
assert(!"Invalid image aspect");
}
}
/**
* This function determines the optimal buffer to use for a given
* VkImageLayout and other pieces of information needed to make that
* determination. This does not determine the optimal buffer to use
* during a resolve operation.
*
* @param devinfo The device information of the Intel GPU.
* @param image The image that may contain a collection of buffers.
* @param aspects The aspect(s) of the image to be accessed.
* @param layout The current layout of the image aspect(s).
*
* @return The primary buffer that should be used for the given layout.
*/
enum isl_aux_usage
anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
const struct anv_image * const image,
const VkImageAspectFlags aspects,
const VkImageLayout layout)
{
/* Validate the inputs. */
/* The devinfo is needed as the optimal buffer varies across generations. */
assert(devinfo != NULL);
/* The layout of a NULL image is not properly defined. */
assert(image != NULL);
/* The aspects must be a subset of the image aspects. */
assert(aspects & image->aspects && aspects <= image->aspects);
/* Determine the optimal buffer. */
/* If there is no auxiliary surface allocated, we must use the one and only
* main buffer.
*/
if (image->aux_surface.isl.size == 0)
return ISL_AUX_USAGE_NONE;
/* All images that use an auxiliary surface are required to be tiled. */
assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
/* On BDW+, when clearing the stencil aspect of a depth stencil image,
* the HiZ buffer allows us to record the clear with a relatively small
* number of packets. Prior to BDW, the HiZ buffer provides no known benefit
* to the stencil aspect.
*/
if (devinfo->gen < 8 && aspects == VK_IMAGE_ASPECT_STENCIL_BIT)
return ISL_AUX_USAGE_NONE;
const bool color_aspect = aspects == VK_IMAGE_ASPECT_COLOR_BIT;
/* The following switch currently only handles depth stencil aspects.
* TODO: Handle the color aspect.
*/
if (color_aspect)
return image->aux_usage;
switch (layout) {
/* Invalid Layouts */
case VK_IMAGE_LAYOUT_RANGE_SIZE:
case VK_IMAGE_LAYOUT_MAX_ENUM:
unreachable("Invalid image layout.");
/* Undefined layouts
*
* The pre-initialized layout is equivalent to the undefined layout for
* optimally-tiled images. We can only do color compression (CCS or HiZ)
* on tiled images.
*/
case VK_IMAGE_LAYOUT_UNDEFINED:
case VK_IMAGE_LAYOUT_PREINITIALIZED:
return ISL_AUX_USAGE_NONE;
/* Transfer Layouts
*
* This buffer could be a depth buffer used in a transfer operation. BLORP
* currently doesn't use HiZ for transfer operations so we must use the main
* buffer for this layout. TODO: Enable HiZ in BLORP.
*/
case VK_IMAGE_LAYOUT_GENERAL:
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
return ISL_AUX_USAGE_NONE;
/* Sampling Layouts */
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
assert(!color_aspect);
/* Fall-through */
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL_KHR:
if (anv_can_sample_with_hiz(devinfo, aspects, image->samples))
return ISL_AUX_USAGE_HIZ;
else
return ISL_AUX_USAGE_NONE;
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
assert(color_aspect);
/* On SKL+, the render buffer can be decompressed by the presentation
* engine. Support for this feature has not yet landed in the wider
* ecosystem. TODO: Update this code when support lands.
*
* From the BDW PRM, Vol 7, Render Target Resolve:
*
* If the MCS is enabled on a non-multisampled render target, the
* render target must be resolved before being used for other
* purposes (display, texture, CPU lock) The clear value from
* SURFACE_STATE is written into pixels in the render target
* indicated as clear in the MCS.
*
* Pre-SKL, the render buffer must be resolved before being used for
* presentation. We can infer that the auxiliary buffer is not used.
*/
return ISL_AUX_USAGE_NONE;
/* Rendering Layouts */
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
assert(color_aspect);
unreachable("Color images are not yet supported.");
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL_KHR:
assert(!color_aspect);
return ISL_AUX_USAGE_HIZ;
case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
unreachable("VK_KHR_shared_presentable_image is unsupported");
}
/* If the layout isn't recognized in the exhaustive switch above, the
* VkImageLayout value is not defined in vulkan.h.
*/
unreachable("layout is not a VkImageLayout enumeration member.");
}
static struct anv_state
alloc_surface_state(struct anv_device *device)
{
return anv_state_pool_alloc(&device->surface_state_pool, 64, 64);
}
static enum isl_channel_select
remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component,
struct isl_swizzle format_swizzle)
{
if (swizzle == VK_COMPONENT_SWIZZLE_IDENTITY)
swizzle = component;
switch (swizzle) {
case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO;
case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE;
case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r;
case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g;
case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b;
case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a;
default:
unreachable("Invalid swizzle");
}
}
void
anv_image_fill_surface_state(struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
const struct isl_view *view_in,
isl_surf_usage_flags_t view_usage,
enum isl_aux_usage aux_usage,
const union isl_color_value *clear_color,
enum anv_image_view_state_flags flags,
struct anv_surface_state *state_inout,
struct brw_image_param *image_param_out)
{
const struct anv_surface *surface =
anv_image_get_surface_for_aspect_mask(image, aspect);
struct isl_view view = *view_in;
view.usage |= view_usage;
/* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a
* compressed surface with a shadow surface, we use the shadow instead of
* the primary surface. The shadow surface will be tiled, unlike the main
* surface, so it should get significantly better performance.
*/
if (image->shadow_surface.isl.size > 0 &&
isl_format_is_compressed(view.format) &&
(flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) {
assert(isl_format_is_compressed(surface->isl.format));
assert(surface->isl.tiling == ISL_TILING_LINEAR);
assert(image->shadow_surface.isl.tiling != ISL_TILING_LINEAR);
surface = &image->shadow_surface;
}
if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
view.swizzle = anv_swizzle_for_render(view.swizzle);
/* If this is a HiZ buffer we can sample from with a programmable clear
* value (SKL+), define the clear value to the optimal constant.
*/
union isl_color_value default_clear_color = { .u32 = { 0, } };
if (device->info.gen >= 9 && aux_usage == ISL_AUX_USAGE_HIZ)
default_clear_color.f32[0] = ANV_HZ_FC_VAL;
if (!clear_color)
clear_color = &default_clear_color;
const uint64_t address = image->offset + surface->offset;
const uint64_t aux_address = (aux_usage == ISL_AUX_USAGE_NONE) ? 0 :
image->offset + image->aux_surface.offset;
if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
!(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY) &&
!isl_has_matching_typed_storage_image_format(&device->info,
view.format)) {
/* In this case, we are a writeable storage buffer which needs to be
* lowered to linear. All tiling and offset calculations will be done in
* the shader.
*/
assert(aux_usage == ISL_AUX_USAGE_NONE);
isl_buffer_fill_state(&device->isl_dev, state_inout->state.map,
.address = address,
.size = surface->isl.size,
.format = ISL_FORMAT_RAW,
.stride = 1,
.mocs = device->default_mocs);
state_inout->address = address,
state_inout->aux_address = 0;
} else {
if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
!(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY)) {
/* Typed surface reads support a very limited subset of the shader
* image formats. Translate it into the closest format the hardware
* supports.
*/
assert(aux_usage == ISL_AUX_USAGE_NONE);
view.format = isl_lower_storage_image_format(&device->info,
view.format);
}
const struct isl_surf *isl_surf = &surface->isl;
struct isl_surf tmp_surf;
uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
if (isl_format_is_compressed(surface->isl.format) &&
!isl_format_is_compressed(view.format)) {
/* We're creating an uncompressed view of a compressed surface. This
* is allowed but only for a single level/layer.
*/
assert(surface->isl.samples == 1);
assert(view.levels == 1);
assert(view.array_len == 1);
isl_surf_get_image_surf(&device->isl_dev, isl_surf,
view.base_level,
surface->isl.dim == ISL_SURF_DIM_3D ?
0 : view.base_array_layer,
surface->isl.dim == ISL_SURF_DIM_3D ?
view.base_array_layer : 0,
&tmp_surf,
&offset_B, &tile_x_sa, &tile_y_sa);
/* The newly created image represents the one subimage we're
* referencing with this view so it only has one array slice and
* miplevel.
*/
view.base_array_layer = 0;
view.base_level = 0;
/* We're making an uncompressed view here. The image dimensions need
* to be scaled down by the block size.
*/
const struct isl_format_layout *fmtl =
isl_format_get_layout(surface->isl.format);
tmp_surf.format = view.format;
tmp_surf.logical_level0_px.width =
DIV_ROUND_UP(tmp_surf.logical_level0_px.width, fmtl->bw);
tmp_surf.logical_level0_px.height =
DIV_ROUND_UP(tmp_surf.logical_level0_px.height, fmtl->bh);
tmp_surf.phys_level0_sa.width /= fmtl->bw;
tmp_surf.phys_level0_sa.height /= fmtl->bh;
tile_x_sa /= fmtl->bw;
tile_y_sa /= fmtl->bh;
isl_surf = &tmp_surf;
if (device->info.gen <= 8) {
assert(surface->isl.tiling == ISL_TILING_LINEAR);
assert(tile_x_sa == 0);
assert(tile_y_sa == 0);
}
}
isl_surf_fill_state(&device->isl_dev, state_inout->state.map,
.surf = isl_surf,
.view = &view,
.address = address + offset_B,
.clear_color = *clear_color,
.aux_surf = &image->aux_surface.isl,
.aux_usage = aux_usage,
.aux_address = aux_address,
.mocs = device->default_mocs,
.x_offset_sa = tile_x_sa,
.y_offset_sa = tile_y_sa);
state_inout->address = address + offset_B;
if (device->info.gen >= 8) {
state_inout->aux_address = aux_address;
} else {
/* On gen7 and prior, the bottom 12 bits of the MCS base address are
* used to store other information. This should be ok, however,
* because surface buffer addresses are always 4K page alinged.
*/
uint32_t *aux_addr_dw = state_inout->state.map +
device->isl_dev.ss.aux_addr_offset;
assert((aux_address & 0xfff) == 0);
assert(aux_address == (*aux_addr_dw & 0xfffff000));
state_inout->aux_address = *aux_addr_dw;
}
}
anv_state_flush(device, state_inout->state);
if (image_param_out) {
assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT);
isl_surf_fill_image_param(&device->isl_dev, image_param_out,
&surface->isl, &view);
}
}
VkResult
anv_CreateImageView(VkDevice _device,
const VkImageViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImageView *pView)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
struct anv_image_view *iview;
iview = vk_zalloc2(&device->alloc, pAllocator, sizeof(*iview), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (iview == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
assert(range->layerCount > 0);
assert(range->baseMipLevel < image->levels);
const VkImageViewUsageCreateInfoKHR *usage_info =
vk_find_struct_const(pCreateInfo, IMAGE_VIEW_USAGE_CREATE_INFO_KHR);
VkImageUsageFlags view_usage = usage_info ? usage_info->usage : image->usage;
/* View usage should be a subset of image usage */
assert((view_usage & ~image->usage) == 0);
assert(view_usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_STORAGE_BIT |
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT));
switch (image->type) {
default:
unreachable("bad VkImageType");
case VK_IMAGE_TYPE_1D:
case VK_IMAGE_TYPE_2D:
assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= image->array_size);
break;
case VK_IMAGE_TYPE_3D:
assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1
<= anv_minify(image->extent.depth, range->baseMipLevel));
break;
}
iview->image = image;
iview->aspect_mask = pCreateInfo->subresourceRange.aspectMask;
iview->vk_format = pCreateInfo->format;
struct anv_format format = anv_get_format(&device->info, pCreateInfo->format,
range->aspectMask, image->tiling);
iview->isl = (struct isl_view) {
.format = format.isl_format,
.base_level = range->baseMipLevel,
.levels = anv_get_levelCount(image, range),
.base_array_layer = range->baseArrayLayer,
.array_len = anv_get_layerCount(image, range),
.swizzle = {
.r = remap_swizzle(pCreateInfo->components.r,
VK_COMPONENT_SWIZZLE_R, format.swizzle),
.g = remap_swizzle(pCreateInfo->components.g,
VK_COMPONENT_SWIZZLE_G, format.swizzle),
.b = remap_swizzle(pCreateInfo->components.b,
VK_COMPONENT_SWIZZLE_B, format.swizzle),
.a = remap_swizzle(pCreateInfo->components.a,
VK_COMPONENT_SWIZZLE_A, format.swizzle),
},
};
iview->extent = (VkExtent3D) {
.width = anv_minify(image->extent.width , range->baseMipLevel),
.height = anv_minify(image->extent.height, range->baseMipLevel),
.depth = anv_minify(image->extent.depth , range->baseMipLevel),
};
if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
iview->isl.base_array_layer = 0;
iview->isl.array_len = iview->extent.depth;
}
if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
iview->isl.usage = ISL_SURF_USAGE_CUBE_BIT;
} else {
iview->isl.usage = 0;
}
/* Input attachment surfaces for color are allocated and filled
* out at BeginRenderPass time because they need compression information.
* Compression is not yet enabled for depth textures and stencil doesn't
* allow compression so we can just use the texture surface state from the
* view.
*/
if (view_usage & VK_IMAGE_USAGE_SAMPLED_BIT ||
(view_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT &&
!(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) {
iview->optimal_sampler_surface_state.state = alloc_surface_state(device);
iview->general_sampler_surface_state.state = alloc_surface_state(device);
enum isl_aux_usage general_aux_usage =
anv_layout_to_aux_usage(&device->info, image, iview->aspect_mask,
VK_IMAGE_LAYOUT_GENERAL);
enum isl_aux_usage optimal_aux_usage =
anv_layout_to_aux_usage(&device->info, image, iview->aspect_mask,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
anv_image_fill_surface_state(device, image, iview->aspect_mask,
&iview->isl, ISL_SURF_USAGE_TEXTURE_BIT,
optimal_aux_usage, NULL,
ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
&iview->optimal_sampler_surface_state,
NULL);
anv_image_fill_surface_state(device, image, iview->aspect_mask,
&iview->isl, ISL_SURF_USAGE_TEXTURE_BIT,
general_aux_usage, NULL,
0,
&iview->general_sampler_surface_state,
NULL);
}
/* NOTE: This one needs to go last since it may stomp isl_view.format */
if (view_usage & VK_IMAGE_USAGE_STORAGE_BIT) {
iview->storage_surface_state.state = alloc_surface_state(device);
iview->writeonly_storage_surface_state.state = alloc_surface_state(device);
anv_image_fill_surface_state(device, image, iview->aspect_mask,
&iview->isl, ISL_SURF_USAGE_STORAGE_BIT,
ISL_AUX_USAGE_NONE, NULL,
0,
&iview->storage_surface_state,
&iview->storage_image_param);
anv_image_fill_surface_state(device, image, iview->aspect_mask,
&iview->isl, ISL_SURF_USAGE_STORAGE_BIT,
ISL_AUX_USAGE_NONE, NULL,
ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY,
&iview->writeonly_storage_surface_state,
NULL);
}
*pView = anv_image_view_to_handle(iview);
return VK_SUCCESS;
}
void
anv_DestroyImageView(VkDevice _device, VkImageView _iview,
const VkAllocationCallbacks *pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_image_view, iview, _iview);
if (!iview)
return;
if (iview->optimal_sampler_surface_state.state.alloc_size > 0) {
anv_state_pool_free(&device->surface_state_pool,
iview->optimal_sampler_surface_state.state);
}
if (iview->general_sampler_surface_state.state.alloc_size > 0) {
anv_state_pool_free(&device->surface_state_pool,
iview->general_sampler_surface_state.state);
}
if (iview->storage_surface_state.state.alloc_size > 0) {
anv_state_pool_free(&device->surface_state_pool,
iview->storage_surface_state.state);
}
if (iview->writeonly_storage_surface_state.state.alloc_size > 0) {
anv_state_pool_free(&device->surface_state_pool,
iview->writeonly_storage_surface_state.state);
}
vk_free2(&device->alloc, pAllocator, iview);
}
VkResult
anv_CreateBufferView(VkDevice _device,
const VkBufferViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkBufferView *pView)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer);
struct anv_buffer_view *view;
view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!view)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
/* TODO: Handle the format swizzle? */
view->format = anv_get_isl_format(&device->info, pCreateInfo->format,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_TILING_LINEAR);
const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8;
view->bo = buffer->bo;
view->offset = buffer->offset + pCreateInfo->offset;
view->range = anv_buffer_get_range(buffer, pCreateInfo->offset,
pCreateInfo->range);
view->range = align_down_npot_u32(view->range, format_bs);
if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) {
view->surface_state = alloc_surface_state(device);
anv_fill_buffer_surface_state(device, view->surface_state,
view->format,
view->offset, view->range, format_bs);
} else {
view->surface_state = (struct anv_state){ 0 };
}
if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) {
view->storage_surface_state = alloc_surface_state(device);
view->writeonly_storage_surface_state = alloc_surface_state(device);
enum isl_format storage_format =
isl_has_matching_typed_storage_image_format(&device->info,
view->format) ?
isl_lower_storage_image_format(&device->info, view->format) :
ISL_FORMAT_RAW;
anv_fill_buffer_surface_state(device, view->storage_surface_state,
storage_format,
view->offset, view->range,
(storage_format == ISL_FORMAT_RAW ? 1 :
isl_format_get_layout(storage_format)->bpb / 8));
/* Write-only accesses should use the original format. */
anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state,
view->format,
view->offset, view->range,
isl_format_get_layout(view->format)->bpb / 8);
isl_buffer_fill_image_param(&device->isl_dev,
&view->storage_image_param,
view->format, view->range);
} else {
view->storage_surface_state = (struct anv_state){ 0 };
view->writeonly_storage_surface_state = (struct anv_state){ 0 };
}
*pView = anv_buffer_view_to_handle(view);
return VK_SUCCESS;
}
void
anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
const VkAllocationCallbacks *pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_buffer_view, view, bufferView);
if (!view)
return;
if (view->surface_state.alloc_size > 0)
anv_state_pool_free(&device->surface_state_pool,
view->surface_state);
if (view->storage_surface_state.alloc_size > 0)
anv_state_pool_free(&device->surface_state_pool,
view->storage_surface_state);
if (view->writeonly_storage_surface_state.alloc_size > 0)
anv_state_pool_free(&device->surface_state_pool,
view->writeonly_storage_surface_state);
vk_free2(&device->alloc, pAllocator, view);
}
const struct anv_surface *
anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
VkImageAspectFlags aspect_mask)
{
switch (aspect_mask) {
case VK_IMAGE_ASPECT_COLOR_BIT:
assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
return &image->color_surface;
case VK_IMAGE_ASPECT_DEPTH_BIT:
assert(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
return &image->depth_surface;
case VK_IMAGE_ASPECT_STENCIL_BIT:
assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
return &image->stencil_surface;
case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
/* FINISHME: The Vulkan spec (git a511ba2) requires support for
* combined depth stencil formats. Specifically, it states:
*
* At least one of ename:VK_FORMAT_D24_UNORM_S8_UINT or
* ename:VK_FORMAT_D32_SFLOAT_S8_UINT must be supported.
*
* Image views with both depth and stencil aspects are only valid for
* render target attachments, in which case
* cmd_buffer_emit_depth_stencil() will pick out both the depth and
* stencil surfaces from the underlying surface.
*/
if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
return &image->depth_surface;
} else {
assert(image->aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
return &image->stencil_surface;
}
default:
unreachable("image does not have aspect");
return NULL;
}
}
|