summaryrefslogtreecommitdiffstats
path: root/src/intel/vulkan/anv_descriptor_set.c
blob: edb829601e8bca8f3ba0bb1e4f62319ab5035d1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>

#include "util/mesa-sha1.h"

#include "anv_private.h"

/*
 * Descriptor set layouts.
 */

VkResult anv_CreateDescriptorSetLayout(
    VkDevice                                    _device,
    const VkDescriptorSetLayoutCreateInfo*      pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkDescriptorSetLayout*                      pSetLayout)
{
   ANV_FROM_HANDLE(anv_device, device, _device);

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);

   uint32_t max_binding = 0;
   uint32_t immutable_sampler_count = 0;
   for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
      max_binding = MAX2(max_binding, pCreateInfo->pBindings[j].binding);
      if (pCreateInfo->pBindings[j].pImmutableSamplers)
         immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
   }

   struct anv_descriptor_set_layout *set_layout;
   struct anv_descriptor_set_binding_layout *bindings;
   struct anv_sampler **samplers;

   /* We need to allocate decriptor set layouts off the device allocator
    * with DEVICE scope because they are reference counted and may not be
    * destroyed when vkDestroyDescriptorSetLayout is called.
    */
   ANV_MULTIALLOC(ma);
   anv_multialloc_add(&ma, &set_layout, 1);
   anv_multialloc_add(&ma, &bindings, max_binding + 1);
   anv_multialloc_add(&ma, &samplers, immutable_sampler_count);

   if (!anv_multialloc_alloc(&ma, &device->alloc,
                             VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   memset(set_layout, 0, sizeof(*set_layout));
   set_layout->ref_cnt = 1;
   set_layout->binding_count = max_binding + 1;

   for (uint32_t b = 0; b <= max_binding; b++) {
      /* Initialize all binding_layout entries to -1 */
      memset(&set_layout->binding[b], -1, sizeof(set_layout->binding[b]));

      set_layout->binding[b].array_size = 0;
      set_layout->binding[b].immutable_samplers = NULL;
   }

   /* Initialize all samplers to 0 */
   memset(samplers, 0, immutable_sampler_count * sizeof(*samplers));

   uint32_t sampler_count[MESA_SHADER_STAGES] = { 0, };
   uint32_t surface_count[MESA_SHADER_STAGES] = { 0, };
   uint32_t image_count[MESA_SHADER_STAGES] = { 0, };
   uint32_t buffer_count = 0;
   uint32_t dynamic_offset_count = 0;

   for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
      const VkDescriptorSetLayoutBinding *binding = &pCreateInfo->pBindings[j];
      uint32_t b = binding->binding;
      /* We temporarily store the pointer to the binding in the
       * immutable_samplers pointer.  This provides us with a quick-and-dirty
       * way to sort the bindings by binding number.
       */
      set_layout->binding[b].immutable_samplers = (void *)binding;
   }

   for (uint32_t b = 0; b <= max_binding; b++) {
      const VkDescriptorSetLayoutBinding *binding =
         (void *)set_layout->binding[b].immutable_samplers;

      if (binding == NULL)
         continue;

      if (binding->descriptorCount == 0)
         continue;

#ifndef NDEBUG
      set_layout->binding[b].type = binding->descriptorType;
#endif
      set_layout->binding[b].array_size = binding->descriptorCount;
      set_layout->binding[b].descriptor_index = set_layout->size;
      set_layout->size += binding->descriptorCount;

      switch (binding->descriptorType) {
      case VK_DESCRIPTOR_TYPE_SAMPLER:
      case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
         anv_foreach_stage(s, binding->stageFlags) {
            set_layout->binding[b].stage[s].sampler_index = sampler_count[s];
            sampler_count[s] += binding->descriptorCount;
         }
         break;
      default:
         break;
      }

      switch (binding->descriptorType) {
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
         set_layout->binding[b].buffer_index = buffer_count;
         buffer_count += binding->descriptorCount;
         /* fall through */

      case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
      case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
      case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
      case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
      case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
      case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
         anv_foreach_stage(s, binding->stageFlags) {
            set_layout->binding[b].stage[s].surface_index = surface_count[s];
            surface_count[s] += binding->descriptorCount;
         }
         break;
      default:
         break;
      }

      switch (binding->descriptorType) {
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
         set_layout->binding[b].dynamic_offset_index = dynamic_offset_count;
         dynamic_offset_count += binding->descriptorCount;
         break;
      default:
         break;
      }

      switch (binding->descriptorType) {
      case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
      case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
         anv_foreach_stage(s, binding->stageFlags) {
            set_layout->binding[b].stage[s].image_index = image_count[s];
            image_count[s] += binding->descriptorCount;
         }
         break;
      default:
         break;
      }

      if (binding->pImmutableSamplers) {
         set_layout->binding[b].immutable_samplers = samplers;
         samplers += binding->descriptorCount;

         for (uint32_t i = 0; i < binding->descriptorCount; i++)
            set_layout->binding[b].immutable_samplers[i] =
               anv_sampler_from_handle(binding->pImmutableSamplers[i]);
      } else {
         set_layout->binding[b].immutable_samplers = NULL;
      }

      set_layout->shader_stages |= binding->stageFlags;
   }

   set_layout->buffer_count = buffer_count;
   set_layout->dynamic_offset_count = dynamic_offset_count;

   *pSetLayout = anv_descriptor_set_layout_to_handle(set_layout);

   return VK_SUCCESS;
}

void anv_DestroyDescriptorSetLayout(
    VkDevice                                    _device,
    VkDescriptorSetLayout                       _set_layout,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout, _set_layout);

   if (!set_layout)
      return;

   anv_descriptor_set_layout_unref(device, set_layout);
}

static void
sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx,
                                  const struct anv_descriptor_set_layout *layout)
{
   size_t size = sizeof(*layout) +
                 sizeof(layout->binding[0]) * layout->binding_count;
   _mesa_sha1_update(ctx, layout, size);
}

/*
 * Pipeline layouts.  These have nothing to do with the pipeline.  They are
 * just multiple descriptor set layouts pasted together
 */

VkResult anv_CreatePipelineLayout(
    VkDevice                                    _device,
    const VkPipelineLayoutCreateInfo*           pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkPipelineLayout*                           pPipelineLayout)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_pipeline_layout *layout;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);

   layout = vk_alloc2(&device->alloc, pAllocator, sizeof(*layout), 8,
                       VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (layout == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   layout->num_sets = pCreateInfo->setLayoutCount;

   unsigned dynamic_offset_count = 0;

   memset(layout->stage, 0, sizeof(layout->stage));
   for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
      ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout,
                      pCreateInfo->pSetLayouts[set]);
      layout->set[set].layout = set_layout;
      anv_descriptor_set_layout_ref(set_layout);

      layout->set[set].dynamic_offset_start = dynamic_offset_count;
      for (uint32_t b = 0; b < set_layout->binding_count; b++) {
         if (set_layout->binding[b].dynamic_offset_index < 0)
            continue;

         dynamic_offset_count += set_layout->binding[b].array_size;
         for (gl_shader_stage s = 0; s < MESA_SHADER_STAGES; s++) {
            if (set_layout->binding[b].stage[s].surface_index >= 0)
               layout->stage[s].has_dynamic_offsets = true;
         }
      }
   }

   struct mesa_sha1 ctx;
   _mesa_sha1_init(&ctx);
   for (unsigned s = 0; s < layout->num_sets; s++) {
      sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout);
      _mesa_sha1_update(&ctx, &layout->set[s].dynamic_offset_start,
                        sizeof(layout->set[s].dynamic_offset_start));
   }
   _mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets));
   for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
      _mesa_sha1_update(&ctx, &layout->stage[s].has_dynamic_offsets,
                        sizeof(layout->stage[s].has_dynamic_offsets));
   }
   _mesa_sha1_final(&ctx, layout->sha1);

   *pPipelineLayout = anv_pipeline_layout_to_handle(layout);

   return VK_SUCCESS;
}

void anv_DestroyPipelineLayout(
    VkDevice                                    _device,
    VkPipelineLayout                            _pipelineLayout,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, _pipelineLayout);

   if (!pipeline_layout)
      return;

   for (uint32_t i = 0; i < pipeline_layout->num_sets; i++)
      anv_descriptor_set_layout_unref(device, pipeline_layout->set[i].layout);

   vk_free2(&device->alloc, pAllocator, pipeline_layout);
}

/*
 * Descriptor pools.
 *
 * These are implemented using a big pool of memory and a free-list for the
 * host memory allocations and a state_stream and a free list for the buffer
 * view surface state. The spec allows us to fail to allocate due to
 * fragmentation in all cases but two: 1) after pool reset, allocating up
 * until the pool size with no freeing must succeed and 2) allocating and
 * freeing only descriptor sets with the same layout. Case 1) is easy enogh,
 * and the free lists lets us recycle blocks for case 2).
 */

#define EMPTY 1

VkResult anv_CreateDescriptorPool(
    VkDevice                                    _device,
    const VkDescriptorPoolCreateInfo*           pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkDescriptorPool*                           pDescriptorPool)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_descriptor_pool *pool;

   uint32_t descriptor_count = 0;
   uint32_t buffer_count = 0;
   for (uint32_t i = 0; i < pCreateInfo->poolSizeCount; i++) {
      switch (pCreateInfo->pPoolSizes[i].type) {
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
         buffer_count += pCreateInfo->pPoolSizes[i].descriptorCount;
      default:
         descriptor_count += pCreateInfo->pPoolSizes[i].descriptorCount;
         break;
      }
   }

   const size_t pool_size =
      pCreateInfo->maxSets * sizeof(struct anv_descriptor_set) +
      descriptor_count * sizeof(struct anv_descriptor) +
      buffer_count * sizeof(struct anv_buffer_view);
   const size_t total_size = sizeof(*pool) + pool_size;

   pool = vk_alloc2(&device->alloc, pAllocator, total_size, 8,
                     VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (!pool)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   pool->size = pool_size;
   pool->next = 0;
   pool->free_list = EMPTY;

   anv_state_stream_init(&pool->surface_state_stream,
                         &device->surface_state_pool, 4096);
   pool->surface_state_free_list = NULL;

   *pDescriptorPool = anv_descriptor_pool_to_handle(pool);

   return VK_SUCCESS;
}

void anv_DestroyDescriptorPool(
    VkDevice                                    _device,
    VkDescriptorPool                            _pool,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_descriptor_pool, pool, _pool);

   if (!pool)
      return;

   anv_state_stream_finish(&pool->surface_state_stream);
   vk_free2(&device->alloc, pAllocator, pool);
}

VkResult anv_ResetDescriptorPool(
    VkDevice                                    _device,
    VkDescriptorPool                            descriptorPool,
    VkDescriptorPoolResetFlags                  flags)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_descriptor_pool, pool, descriptorPool);

   pool->next = 0;
   pool->free_list = EMPTY;
   anv_state_stream_finish(&pool->surface_state_stream);
   anv_state_stream_init(&pool->surface_state_stream,
                         &device->surface_state_pool, 4096);
   pool->surface_state_free_list = NULL;

   return VK_SUCCESS;
}

struct pool_free_list_entry {
   uint32_t next;
   uint32_t size;
};

size_t
anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout)
{
   return
      sizeof(struct anv_descriptor_set) +
      layout->size * sizeof(struct anv_descriptor) +
      layout->buffer_count * sizeof(struct anv_buffer_view);
}

size_t
anv_descriptor_set_binding_layout_get_hw_size(const struct anv_descriptor_set_binding_layout *binding)
{
   if (!binding->immutable_samplers)
      return binding->array_size;

   uint32_t total_plane_count = 0;
   for (uint32_t i = 0; i < binding->array_size; i++)
      total_plane_count += binding->immutable_samplers[i]->n_planes;

   return total_plane_count;
}

struct surface_state_free_list_entry {
   void *next;
   struct anv_state state;
};

VkResult
anv_descriptor_set_create(struct anv_device *device,
                          struct anv_descriptor_pool *pool,
                          struct anv_descriptor_set_layout *layout,
                          struct anv_descriptor_set **out_set)
{
   struct anv_descriptor_set *set;
   const size_t size = anv_descriptor_set_layout_size(layout);

   set = NULL;
   if (size <= pool->size - pool->next) {
      set = (struct anv_descriptor_set *) (pool->data + pool->next);
      pool->next += size;
   } else {
      struct pool_free_list_entry *entry;
      uint32_t *link = &pool->free_list;
      for (uint32_t f = pool->free_list; f != EMPTY; f = entry->next) {
         entry = (struct pool_free_list_entry *) (pool->data + f);
         if (size <= entry->size) {
            *link = entry->next;
            set = (struct anv_descriptor_set *) entry;
            break;
         }
         link = &entry->next;
      }
   }

   if (set == NULL) {
      if (pool->free_list != EMPTY) {
         return vk_error(VK_ERROR_FRAGMENTED_POOL);
      } else {
         return vk_error(VK_ERROR_OUT_OF_POOL_MEMORY_KHR);
      }
   }

   set->layout = layout;
   anv_descriptor_set_layout_ref(layout);

   set->size = size;
   set->buffer_views =
      (struct anv_buffer_view *) &set->descriptors[layout->size];
   set->buffer_count = layout->buffer_count;

   /* By defining the descriptors to be zero now, we can later verify that
    * a descriptor has not been populated with user data.
    */
   memset(set->descriptors, 0, sizeof(struct anv_descriptor) * layout->size);

   /* Go through and fill out immutable samplers if we have any */
   struct anv_descriptor *desc = set->descriptors;
   for (uint32_t b = 0; b < layout->binding_count; b++) {
      if (layout->binding[b].immutable_samplers) {
         for (uint32_t i = 0; i < layout->binding[b].array_size; i++) {
            /* The type will get changed to COMBINED_IMAGE_SAMPLER in
             * UpdateDescriptorSets if needed.  However, if the descriptor
             * set has an immutable sampler, UpdateDescriptorSets may never
             * touch it, so we need to make sure it's 100% valid now.
             */
            desc[i] = (struct anv_descriptor) {
               .type = VK_DESCRIPTOR_TYPE_SAMPLER,
               .sampler = layout->binding[b].immutable_samplers[i],
            };
         }
      }
      desc += layout->binding[b].array_size;
   }

   /* Allocate surface state for the buffer views. */
   for (uint32_t b = 0; b < layout->buffer_count; b++) {
      struct surface_state_free_list_entry *entry =
         pool->surface_state_free_list;
      struct anv_state state;

      if (entry) {
         state = entry->state;
         pool->surface_state_free_list = entry->next;
         assert(state.alloc_size == 64);
      } else {
         state = anv_state_stream_alloc(&pool->surface_state_stream, 64, 64);
      }

      set->buffer_views[b].surface_state = state;
   }

   *out_set = set;

   return VK_SUCCESS;
}

void
anv_descriptor_set_destroy(struct anv_device *device,
                           struct anv_descriptor_pool *pool,
                           struct anv_descriptor_set *set)
{
   anv_descriptor_set_layout_unref(device, set->layout);

   /* Put the buffer view surface state back on the free list. */
   for (uint32_t b = 0; b < set->buffer_count; b++) {
      struct surface_state_free_list_entry *entry =
         set->buffer_views[b].surface_state.map;
      entry->next = pool->surface_state_free_list;
      entry->state = set->buffer_views[b].surface_state;
      pool->surface_state_free_list = entry;
   }

   /* Put the descriptor set allocation back on the free list. */
   const uint32_t index = (char *) set - pool->data;
   if (index + set->size == pool->next) {
      pool->next = index;
   } else {
      struct pool_free_list_entry *entry = (struct pool_free_list_entry *) set;
      entry->next = pool->free_list;
      entry->size = set->size;
      pool->free_list = (char *) entry - pool->data;
   }
}

VkResult anv_AllocateDescriptorSets(
    VkDevice                                    _device,
    const VkDescriptorSetAllocateInfo*          pAllocateInfo,
    VkDescriptorSet*                            pDescriptorSets)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_descriptor_pool, pool, pAllocateInfo->descriptorPool);

   VkResult result = VK_SUCCESS;
   struct anv_descriptor_set *set;
   uint32_t i;

   for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
      ANV_FROM_HANDLE(anv_descriptor_set_layout, layout,
                      pAllocateInfo->pSetLayouts[i]);

      result = anv_descriptor_set_create(device, pool, layout, &set);
      if (result != VK_SUCCESS)
         break;

      pDescriptorSets[i] = anv_descriptor_set_to_handle(set);
   }

   if (result != VK_SUCCESS)
      anv_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
                             i, pDescriptorSets);

   return result;
}

VkResult anv_FreeDescriptorSets(
    VkDevice                                    _device,
    VkDescriptorPool                            descriptorPool,
    uint32_t                                    count,
    const VkDescriptorSet*                      pDescriptorSets)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_descriptor_pool, pool, descriptorPool);

   for (uint32_t i = 0; i < count; i++) {
      ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);

      if (!set)
         continue;

      anv_descriptor_set_destroy(device, pool, set);
   }

   return VK_SUCCESS;
}

void
anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
                                    const struct gen_device_info * const devinfo,
                                    const VkDescriptorImageInfo * const info,
                                    VkDescriptorType type,
                                    uint32_t binding,
                                    uint32_t element)
{
   const struct anv_descriptor_set_binding_layout *bind_layout =
      &set->layout->binding[binding];
   struct anv_descriptor *desc =
      &set->descriptors[bind_layout->descriptor_index + element];
   struct anv_image_view *image_view = NULL;
   struct anv_sampler *sampler = NULL;

   assert(type == bind_layout->type);

   switch (type) {
   case VK_DESCRIPTOR_TYPE_SAMPLER:
      sampler = anv_sampler_from_handle(info->sampler);
      break;

   case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
      image_view = anv_image_view_from_handle(info->imageView);
      sampler = anv_sampler_from_handle(info->sampler);
      break;

   case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
   case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
   case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
      image_view = anv_image_view_from_handle(info->imageView);
      break;

   default:
      unreachable("invalid descriptor type");
   }

   /* If this descriptor has an immutable sampler, we don't want to stomp on
    * it.
    */
   sampler = bind_layout->immutable_samplers ?
             bind_layout->immutable_samplers[element] :
             sampler;

   *desc = (struct anv_descriptor) {
      .type = type,
      .layout = info->imageLayout,
      .image_view = image_view,
      .sampler = sampler,
   };
}

void
anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
                                     VkDescriptorType type,
                                     struct anv_buffer_view *buffer_view,
                                     uint32_t binding,
                                     uint32_t element)
{
   const struct anv_descriptor_set_binding_layout *bind_layout =
      &set->layout->binding[binding];
   struct anv_descriptor *desc =
      &set->descriptors[bind_layout->descriptor_index + element];

   assert(type == bind_layout->type);

   *desc = (struct anv_descriptor) {
      .type = type,
      .buffer_view = buffer_view,
   };
}

void
anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
                                struct anv_device *device,
                                struct anv_state_stream *alloc_stream,
                                VkDescriptorType type,
                                struct anv_buffer *buffer,
                                uint32_t binding,
                                uint32_t element,
                                VkDeviceSize offset,
                                VkDeviceSize range)
{
   const struct anv_descriptor_set_binding_layout *bind_layout =
      &set->layout->binding[binding];
   struct anv_descriptor *desc =
      &set->descriptors[bind_layout->descriptor_index + element];

   assert(type == bind_layout->type);

   if (type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
       type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
      *desc = (struct anv_descriptor) {
         .type = type,
         .buffer = buffer,
         .offset = offset,
         .range = range,
      };
   } else {
      struct anv_buffer_view *bview =
         &set->buffer_views[bind_layout->buffer_index + element];

      bview->format = anv_isl_format_for_descriptor_type(type);
      bview->bo = buffer->bo;
      bview->offset = buffer->offset + offset;
      bview->range = anv_buffer_get_range(buffer, offset, range);

      /* If we're writing descriptors through a push command, we need to
       * allocate the surface state from the command buffer. Otherwise it will
       * be allocated by the descriptor pool when calling
       * vkAllocateDescriptorSets. */
      if (alloc_stream)
         bview->surface_state = anv_state_stream_alloc(alloc_stream, 64, 64);

      anv_fill_buffer_surface_state(device, bview->surface_state,
                                    bview->format,
                                    bview->offset, bview->range, 1);

      *desc = (struct anv_descriptor) {
         .type = type,
         .buffer_view = bview,
      };
   }
}

void anv_UpdateDescriptorSets(
    VkDevice                                    _device,
    uint32_t                                    descriptorWriteCount,
    const VkWriteDescriptorSet*                 pDescriptorWrites,
    uint32_t                                    descriptorCopyCount,
    const VkCopyDescriptorSet*                  pDescriptorCopies)
{
   ANV_FROM_HANDLE(anv_device, device, _device);

   for (uint32_t i = 0; i < descriptorWriteCount; i++) {
      const VkWriteDescriptorSet *write = &pDescriptorWrites[i];
      ANV_FROM_HANDLE(anv_descriptor_set, set, write->dstSet);

      switch (write->descriptorType) {
      case VK_DESCRIPTOR_TYPE_SAMPLER:
      case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
      case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
      case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
      case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
         for (uint32_t j = 0; j < write->descriptorCount; j++) {
            anv_descriptor_set_write_image_view(set, &device->info,
                                                write->pImageInfo + j,
                                                write->descriptorType,
                                                write->dstBinding,
                                                write->dstArrayElement + j);
         }
         break;

      case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
      case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
         for (uint32_t j = 0; j < write->descriptorCount; j++) {
            ANV_FROM_HANDLE(anv_buffer_view, bview,
                            write->pTexelBufferView[j]);

            anv_descriptor_set_write_buffer_view(set,
                                                 write->descriptorType,
                                                 bview,
                                                 write->dstBinding,
                                                 write->dstArrayElement + j);
         }
         break;

      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
         for (uint32_t j = 0; j < write->descriptorCount; j++) {
            assert(write->pBufferInfo[j].buffer);
            ANV_FROM_HANDLE(anv_buffer, buffer, write->pBufferInfo[j].buffer);
            assert(buffer);

            anv_descriptor_set_write_buffer(set,
                                            device,
                                            NULL,
                                            write->descriptorType,
                                            buffer,
                                            write->dstBinding,
                                            write->dstArrayElement + j,
                                            write->pBufferInfo[j].offset,
                                            write->pBufferInfo[j].range);
         }
         break;

      default:
         break;
      }
   }

   for (uint32_t i = 0; i < descriptorCopyCount; i++) {
      const VkCopyDescriptorSet *copy = &pDescriptorCopies[i];
      ANV_FROM_HANDLE(anv_descriptor_set, src, copy->srcSet);
      ANV_FROM_HANDLE(anv_descriptor_set, dst, copy->dstSet);

      const struct anv_descriptor_set_binding_layout *src_layout =
         &src->layout->binding[copy->srcBinding];
      struct anv_descriptor *src_desc =
         &src->descriptors[src_layout->descriptor_index];
      src_desc += copy->srcArrayElement;

      const struct anv_descriptor_set_binding_layout *dst_layout =
         &dst->layout->binding[copy->dstBinding];
      struct anv_descriptor *dst_desc =
         &dst->descriptors[dst_layout->descriptor_index];
      dst_desc += copy->dstArrayElement;

      for (uint32_t j = 0; j < copy->descriptorCount; j++)
         dst_desc[j] = src_desc[j];
   }
}

/*
 * Descriptor update templates.
 */

void
anv_descriptor_set_write_template(struct anv_descriptor_set *set,
                                  struct anv_device *device,
                                  struct anv_state_stream *alloc_stream,
                                  const struct anv_descriptor_update_template *template,
                                  const void *data)
{
   const struct anv_descriptor_set_layout *layout = set->layout;

   for (uint32_t i = 0; i < template->entry_count; i++) {
      const struct anv_descriptor_template_entry *entry =
         &template->entries[i];
      const struct anv_descriptor_set_binding_layout *bind_layout =
         &layout->binding[entry->binding];
      struct anv_descriptor *desc = &set->descriptors[bind_layout->descriptor_index];
      desc += entry->array_element;

      switch (entry->type) {
      case VK_DESCRIPTOR_TYPE_SAMPLER:
      case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
      case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
      case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
      case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
         for (uint32_t j = 0; j < entry->array_count; j++) {
            const VkDescriptorImageInfo *info =
               data + entry->offset + j * entry->stride;
            anv_descriptor_set_write_image_view(set, &device->info,
                                                info, entry->type,
                                                entry->binding,
                                                entry->array_element + j);
         }
         break;

      case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
      case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
         for (uint32_t j = 0; j < entry->array_count; j++) {
            const VkBufferView *_bview =
               data + entry->offset + j * entry->stride;
            ANV_FROM_HANDLE(anv_buffer_view, bview, *_bview);

            anv_descriptor_set_write_buffer_view(set,
                                                 entry->type,
                                                 bview,
                                                 entry->binding,
                                                 entry->array_element + j);
         }
         break;

      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
         for (uint32_t j = 0; j < entry->array_count; j++) {
            const VkDescriptorBufferInfo *info =
               data + entry->offset + j * entry->stride;
            ANV_FROM_HANDLE(anv_buffer, buffer, info->buffer);

            anv_descriptor_set_write_buffer(set,
                                            device,
                                            alloc_stream,
                                            entry->type,
                                            buffer,
                                            entry->binding,
                                            entry->array_element + j,
                                            info->offset, info->range);
         }
         break;

      default:
         break;
      }
   }
}

VkResult anv_CreateDescriptorUpdateTemplateKHR(
    VkDevice                                    _device,
    const VkDescriptorUpdateTemplateCreateInfoKHR* pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkDescriptorUpdateTemplateKHR*              pDescriptorUpdateTemplate)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_descriptor_update_template *template;

   size_t size = sizeof(*template) +
      pCreateInfo->descriptorUpdateEntryCount * sizeof(template->entries[0]);
   template = vk_alloc2(&device->alloc, pAllocator, size, 8,
                        VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   if (template == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   template->bind_point = pCreateInfo->pipelineBindPoint;

   if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR)
      template->set = pCreateInfo->set;

   template->entry_count = pCreateInfo->descriptorUpdateEntryCount;
   for (uint32_t i = 0; i < template->entry_count; i++) {
      const VkDescriptorUpdateTemplateEntryKHR *pEntry =
         &pCreateInfo->pDescriptorUpdateEntries[i];

      template->entries[i] = (struct anv_descriptor_template_entry) {
         .type = pEntry->descriptorType,
         .binding = pEntry->dstBinding,
         .array_element = pEntry->dstArrayElement,
         .array_count = pEntry->descriptorCount,
         .offset = pEntry->offset,
         .stride = pEntry->stride,
      };
   }

   *pDescriptorUpdateTemplate =
      anv_descriptor_update_template_to_handle(template);

   return VK_SUCCESS;
}

void anv_DestroyDescriptorUpdateTemplateKHR(
    VkDevice                                    _device,
    VkDescriptorUpdateTemplateKHR               descriptorUpdateTemplate,
    const VkAllocationCallbacks*                pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_descriptor_update_template, template,
                   descriptorUpdateTemplate);

   vk_free2(&device->alloc, pAllocator, template);
}

void anv_UpdateDescriptorSetWithTemplateKHR(
    VkDevice                                    _device,
    VkDescriptorSet                             descriptorSet,
    VkDescriptorUpdateTemplateKHR               descriptorUpdateTemplate,
    const void*                                 pData)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_descriptor_set, set, descriptorSet);
   ANV_FROM_HANDLE(anv_descriptor_update_template, template,
                   descriptorUpdateTemplate);

   anv_descriptor_set_write_template(set, device, NULL, template, pData);
}