1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
|
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <getopt.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <signal.h>
#include <errno.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/mman.h>
#include "util/list.h"
#include "util/macros.h"
#include "util/rb_tree.h"
#include "common/gen_decoder.h"
#include "common/gen_disasm.h"
#include "common/gen_gem.h"
#include "intel_aub.h"
#ifndef HAVE_MEMFD_CREATE
#include <sys/syscall.h>
static inline int
memfd_create(const char *name, unsigned int flags)
{
return syscall(SYS_memfd_create, name, flags);
}
#endif
/* Below is the only command missing from intel_aub.h in libdrm
* So, reuse intel_aub.h from libdrm and #define the
* AUB_MI_BATCH_BUFFER_END as below
*/
#define AUB_MI_BATCH_BUFFER_END (0x0500 << 16)
#define CSI "\e["
#define BLUE_HEADER CSI "0;44m"
#define GREEN_HEADER CSI "1;42m"
#define NORMAL CSI "0m"
/* options */
static int option_full_decode = true;
static int option_print_offsets = true;
static int max_vbo_lines = -1;
static enum { COLOR_AUTO, COLOR_ALWAYS, COLOR_NEVER } option_color;
/* state */
uint16_t pci_id = 0;
char *input_file = NULL, *xml_path = NULL;
struct gen_device_info devinfo;
struct gen_batch_decode_ctx batch_ctx;
struct bo_map {
struct list_head link;
struct gen_batch_decode_bo bo;
bool unmap_after_use;
};
struct ggtt_entry {
struct rb_node node;
uint64_t virt_addr;
uint64_t phys_addr;
};
struct phys_mem {
struct rb_node node;
uint64_t fd_offset;
uint64_t phys_addr;
uint8_t *data;
};
static struct list_head maps;
static struct rb_tree ggtt = {NULL};
static struct rb_tree mem = {NULL};
int mem_fd = -1;
off_t mem_fd_len = 0;
FILE *outfile;
struct brw_instruction;
static void
add_gtt_bo_map(struct gen_batch_decode_bo bo, bool unmap_after_use)
{
struct bo_map *m = calloc(1, sizeof(*m));
m->bo = bo;
m->unmap_after_use = unmap_after_use;
list_add(&m->link, &maps);
}
static void
clear_bo_maps(void)
{
list_for_each_entry_safe(struct bo_map, i, &maps, link) {
if (i->unmap_after_use)
munmap((void *)i->bo.map, i->bo.size);
list_del(&i->link);
free(i);
}
}
static inline struct ggtt_entry *
ggtt_entry_next(struct ggtt_entry *entry)
{
if (!entry)
return NULL;
struct rb_node *node = rb_node_next(&entry->node);
if (!node)
return NULL;
return rb_node_data(struct ggtt_entry, node, node);
}
static inline int
cmp_uint64(uint64_t a, uint64_t b)
{
if (a < b)
return -1;
if (a > b)
return 1;
return 0;
}
static inline int
cmp_ggtt_entry(const struct rb_node *node, const void *addr)
{
struct ggtt_entry *entry = rb_node_data(struct ggtt_entry, node, node);
return cmp_uint64(entry->virt_addr, *(const uint64_t *)addr);
}
static struct ggtt_entry *
ensure_ggtt_entry(struct rb_tree *tree, uint64_t virt_addr)
{
struct rb_node *node = rb_tree_search_sloppy(&ggtt, &virt_addr,
cmp_ggtt_entry);
int cmp = 0;
if (!node || (cmp = cmp_ggtt_entry(node, &virt_addr))) {
struct ggtt_entry *new_entry = calloc(1, sizeof(*new_entry));
new_entry->virt_addr = virt_addr;
rb_tree_insert_at(&ggtt, node, &new_entry->node, cmp > 0);
node = &new_entry->node;
}
return rb_node_data(struct ggtt_entry, node, node);
}
static struct ggtt_entry *
search_ggtt_entry(uint64_t virt_addr)
{
virt_addr &= ~0xfff;
struct rb_node *node = rb_tree_search(&ggtt, &virt_addr, cmp_ggtt_entry);
if (!node)
return NULL;
return rb_node_data(struct ggtt_entry, node, node);
}
static inline int
cmp_phys_mem(const struct rb_node *node, const void *addr)
{
struct phys_mem *mem = rb_node_data(struct phys_mem, node, node);
return cmp_uint64(mem->phys_addr, *(uint64_t *)addr);
}
static struct phys_mem *
ensure_phys_mem(uint64_t phys_addr)
{
struct rb_node *node = rb_tree_search_sloppy(&mem, &phys_addr, cmp_phys_mem);
int cmp = 0;
if (!node || (cmp = cmp_phys_mem(node, &phys_addr))) {
struct phys_mem *new_mem = calloc(1, sizeof(*new_mem));
new_mem->phys_addr = phys_addr;
new_mem->fd_offset = mem_fd_len;
int ftruncate_res = ftruncate(mem_fd, mem_fd_len += 4096);
assert(ftruncate_res == 0);
new_mem->data = mmap(NULL, 4096, PROT_READ | PROT_WRITE, MAP_SHARED,
mem_fd, new_mem->fd_offset);
assert(new_mem->data != MAP_FAILED);
rb_tree_insert_at(&mem, node, &new_mem->node, cmp > 0);
node = &new_mem->node;
}
return rb_node_data(struct phys_mem, node, node);
}
static struct phys_mem *
search_phys_mem(uint64_t phys_addr)
{
phys_addr &= ~0xfff;
struct rb_node *node = rb_tree_search(&mem, &phys_addr, cmp_phys_mem);
if (!node)
return NULL;
return rb_node_data(struct phys_mem, node, node);
}
static void
handle_ggtt_entry_write(uint64_t address, const void *_data, uint32_t _size)
{
uint64_t virt_addr = (address / sizeof(uint64_t)) << 12;
const uint64_t *data = _data;
size_t size = _size / sizeof(*data);
for (const uint64_t *entry = data;
entry < data + size;
entry++, virt_addr += 4096) {
struct ggtt_entry *pt = ensure_ggtt_entry(&ggtt, virt_addr);
pt->phys_addr = *entry;
}
}
static void
handle_physical_write(uint64_t phys_address, const void *data, uint32_t size)
{
uint32_t to_write = size;
for (uint64_t page = phys_address & ~0xfff; page < phys_address + size; page += 4096) {
struct phys_mem *mem = ensure_phys_mem(page);
uint64_t offset = MAX2(page, phys_address) - page;
uint32_t size_this_page = MIN2(to_write, 4096 - offset);
to_write -= size_this_page;
memcpy(mem->data + offset, data, size_this_page);
data = (const uint8_t *)data + size_this_page;
}
}
static void
handle_ggtt_write(uint64_t virt_address, const void *data, uint32_t size)
{
uint32_t to_write = size;
for (uint64_t page = virt_address & ~0xfff; page < virt_address + size; page += 4096) {
struct ggtt_entry *entry = search_ggtt_entry(page);
assert(entry && entry->phys_addr & 0x1);
uint64_t offset = MAX2(page, virt_address) - page;
uint32_t size_this_page = MIN2(to_write, 4096 - offset);
to_write -= size_this_page;
uint64_t phys_page = entry->phys_addr & ~0xfff; /* Clear the validity bits. */
handle_physical_write(phys_page + offset, data, size_this_page);
data = (const uint8_t *)data + size_this_page;
}
}
static struct gen_batch_decode_bo
get_ggtt_batch_bo(void *user_data, uint64_t address)
{
struct gen_batch_decode_bo bo = {0};
list_for_each_entry(struct bo_map, i, &maps, link)
if (i->bo.addr <= address && i->bo.addr + i->bo.size > address)
return i->bo;
address &= ~0xfff;
struct ggtt_entry *start =
(struct ggtt_entry *)rb_tree_search_sloppy(&ggtt, &address,
cmp_ggtt_entry);
if (start && start->virt_addr < address)
start = ggtt_entry_next(start);
if (!start)
return bo;
struct ggtt_entry *last = start;
for (struct ggtt_entry *i = ggtt_entry_next(last);
i && last->virt_addr + 4096 == i->virt_addr;
last = i, i = ggtt_entry_next(last))
;
bo.addr = MIN2(address, start->virt_addr);
bo.size = last->virt_addr - bo.addr + 4096;
bo.map = mmap(NULL, bo.size, PROT_READ, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
assert(bo.map != MAP_FAILED);
for (struct ggtt_entry *i = start;
i;
i = i == last ? NULL : ggtt_entry_next(i)) {
uint64_t phys_addr = i->phys_addr & ~0xfff;
struct phys_mem *phys_mem = search_phys_mem(phys_addr);
if (!phys_mem)
continue;
uint32_t map_offset = i->virt_addr - address;
void *res = mmap((uint8_t *)bo.map + map_offset, 4096, PROT_READ,
MAP_SHARED | MAP_FIXED, mem_fd, phys_mem->fd_offset);
assert(res != MAP_FAILED);
}
add_gtt_bo_map(bo, true);
return bo;
}
static struct phys_mem *
ppgtt_walk(uint64_t pml4, uint64_t address)
{
uint64_t shift = 39;
uint64_t addr = pml4;
for (int level = 4; level > 0; level--) {
struct phys_mem *table = search_phys_mem(addr);
if (!table)
return NULL;
int index = (address >> shift) & 0x1ff;
uint64_t entry = ((uint64_t *)table->data)[index];
if (!(entry & 1))
return NULL;
addr = entry & ~0xfff;
shift -= 9;
}
return search_phys_mem(addr);
}
static bool
ppgtt_mapped(uint64_t pml4, uint64_t address)
{
return ppgtt_walk(pml4, address) != NULL;
}
static struct gen_batch_decode_bo
get_ppgtt_batch_bo(void *user_data, uint64_t address)
{
struct gen_batch_decode_bo bo = {0};
uint64_t pml4 = *(uint64_t *)user_data;
address &= ~0xfff;
if (!ppgtt_mapped(pml4, address))
return bo;
/* Map everything until the first gap since we don't know how much the
* decoder actually needs.
*/
uint64_t end = address;
while (ppgtt_mapped(pml4, end))
end += 4096;
bo.addr = address;
bo.size = end - address;
bo.map = mmap(NULL, bo.size, PROT_READ, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
assert(bo.map != MAP_FAILED);
for (uint64_t page = address; page < end; page += 4096) {
struct phys_mem *phys_mem = ppgtt_walk(pml4, page);
void *res = mmap((uint8_t *)bo.map + (page - bo.addr), 4096, PROT_READ,
MAP_SHARED | MAP_FIXED, mem_fd, phys_mem->fd_offset);
assert(res != MAP_FAILED);
}
add_gtt_bo_map(bo, true);
return bo;
}
#define GEN_ENGINE_RENDER 1
#define GEN_ENGINE_BLITTER 2
static void
handle_trace_block(uint32_t *p)
{
int operation = p[1] & AUB_TRACE_OPERATION_MASK;
int type = p[1] & AUB_TRACE_TYPE_MASK;
int address_space = p[1] & AUB_TRACE_ADDRESS_SPACE_MASK;
int header_length = p[0] & 0xffff;
int engine = GEN_ENGINE_RENDER;
struct gen_batch_decode_bo bo = {
.map = p + header_length + 2,
/* Addresses written by aubdump here are in canonical form but the batch
* decoder always gives us addresses with the top 16bits zeroed, so do
* the same here.
*/
.addr = gen_48b_address((devinfo.gen >= 8 ? ((uint64_t) p[5] << 32) : 0) |
((uint64_t) p[3])),
.size = p[4],
};
switch (operation) {
case AUB_TRACE_OP_DATA_WRITE:
if (address_space == AUB_TRACE_MEMTYPE_GTT)
add_gtt_bo_map(bo, false);
break;
case AUB_TRACE_OP_COMMAND_WRITE:
switch (type) {
case AUB_TRACE_TYPE_RING_PRB0:
engine = GEN_ENGINE_RENDER;
break;
case AUB_TRACE_TYPE_RING_PRB2:
engine = GEN_ENGINE_BLITTER;
break;
default:
fprintf(outfile, "command write to unknown ring %d\n", type);
break;
}
(void)engine; /* TODO */
batch_ctx.get_bo = get_ggtt_batch_bo;
gen_print_batch(&batch_ctx, bo.map, bo.size, 0);
clear_bo_maps();
break;
}
}
static void
aubinator_init(uint16_t aub_pci_id, const char *app_name)
{
if (!gen_get_device_info(pci_id, &devinfo)) {
fprintf(stderr, "can't find device information: pci_id=0x%x\n", pci_id);
exit(EXIT_FAILURE);
}
enum gen_batch_decode_flags batch_flags = 0;
if (option_color == COLOR_ALWAYS)
batch_flags |= GEN_BATCH_DECODE_IN_COLOR;
if (option_full_decode)
batch_flags |= GEN_BATCH_DECODE_FULL;
if (option_print_offsets)
batch_flags |= GEN_BATCH_DECODE_OFFSETS;
batch_flags |= GEN_BATCH_DECODE_FLOATS;
gen_batch_decode_ctx_init(&batch_ctx, &devinfo, outfile, batch_flags,
xml_path, NULL, NULL, NULL);
batch_ctx.max_vbo_decoded_lines = max_vbo_lines;
char *color = GREEN_HEADER, *reset_color = NORMAL;
if (option_color == COLOR_NEVER)
color = reset_color = "";
fprintf(outfile, "%sAubinator: Intel AUB file decoder.%-80s%s\n",
color, "", reset_color);
if (input_file)
fprintf(outfile, "File name: %s\n", input_file);
if (aub_pci_id)
fprintf(outfile, "PCI ID: 0x%x\n", aub_pci_id);
fprintf(outfile, "Application name: %s\n", app_name);
fprintf(outfile, "Decoding as: %s\n", gen_get_device_name(pci_id));
/* Throw in a new line before the first batch */
fprintf(outfile, "\n");
}
static void
handle_trace_header(uint32_t *p)
{
/* The intel_aubdump tool from IGT is kind enough to put a PCI-ID= tag in
* the AUB header comment. If the user hasn't specified a hardware
* generation, try to use the one from the AUB file.
*/
uint32_t *end = p + (p[0] & 0xffff) + 2;
int aub_pci_id = 0;
if (end > &p[12] && p[12] > 0)
sscanf((char *)&p[13], "PCI-ID=%i", &aub_pci_id);
if (pci_id == 0)
pci_id = aub_pci_id;
char app_name[33];
strncpy(app_name, (char *)&p[2], 32);
app_name[32] = 0;
aubinator_init(aub_pci_id, app_name);
}
static void
handle_memtrace_version(uint32_t *p)
{
int header_length = p[0] & 0xffff;
char app_name[64];
int app_name_len = MIN2(4 * (header_length + 1 - 5), ARRAY_SIZE(app_name) - 1);
int pci_id_len = 0;
int aub_pci_id = 0;
strncpy(app_name, (char *)&p[5], app_name_len);
app_name[app_name_len] = 0;
sscanf(app_name, "PCI-ID=%i %n", &aub_pci_id, &pci_id_len);
if (pci_id == 0)
pci_id = aub_pci_id;
aubinator_init(aub_pci_id, app_name + pci_id_len);
}
static void
handle_memtrace_reg_write(uint32_t *p)
{
static struct execlist_regs {
uint32_t render_elsp[4];
int render_elsp_index;
uint32_t blitter_elsp[4];
int blitter_elsp_index;
} state = {};
uint32_t offset = p[1];
uint32_t value = p[5];
int engine;
uint64_t context_descriptor;
switch (offset) {
case 0x2230: /* render elsp */
state.render_elsp[state.render_elsp_index++] = value;
if (state.render_elsp_index < 4)
return;
state.render_elsp_index = 0;
engine = GEN_ENGINE_RENDER;
context_descriptor = (uint64_t)state.render_elsp[2] << 32 |
state.render_elsp[3];
break;
case 0x22230: /* blitter elsp */
state.blitter_elsp[state.blitter_elsp_index++] = value;
if (state.blitter_elsp_index < 4)
return;
state.blitter_elsp_index = 0;
engine = GEN_ENGINE_BLITTER;
context_descriptor = (uint64_t)state.blitter_elsp[2] << 32 |
state.blitter_elsp[3];
break;
case 0x2510: /* render elsq0 lo */
state.render_elsp[3] = value;
return;
break;
case 0x2514: /* render elsq0 hi */
state.render_elsp[2] = value;
return;
break;
case 0x22510: /* blitter elsq0 lo */
state.blitter_elsp[3] = value;
return;
break;
case 0x22514: /* blitter elsq0 hi */
state.blitter_elsp[2] = value;
return;
break;
case 0x2550: /* render elsc */
engine = GEN_ENGINE_RENDER;
context_descriptor = (uint64_t)state.render_elsp[2] << 32 |
state.render_elsp[3];
break;
case 0x22550: /* blitter elsc */
engine = GEN_ENGINE_BLITTER;
context_descriptor = (uint64_t)state.blitter_elsp[2] << 32 |
state.blitter_elsp[3];
break;
default:
return;
}
const uint32_t pphwsp_size = 4096;
uint32_t pphwsp_addr = context_descriptor & 0xfffff000;
struct gen_batch_decode_bo pphwsp_bo = get_ggtt_batch_bo(NULL, pphwsp_addr);
uint32_t *context = (uint32_t *)((uint8_t *)pphwsp_bo.map +
(pphwsp_addr - pphwsp_bo.addr) +
pphwsp_size);
uint32_t ring_buffer_head = context[5];
uint32_t ring_buffer_tail = context[7];
uint32_t ring_buffer_start = context[9];
uint64_t pml4 = (uint64_t)context[49] << 32 | context[51];
struct gen_batch_decode_bo ring_bo = get_ggtt_batch_bo(NULL,
ring_buffer_start);
assert(ring_bo.size > 0);
void *commands = (uint8_t *)ring_bo.map + (ring_buffer_start - ring_bo.addr);
if (context_descriptor & 0x100 /* ppgtt */) {
batch_ctx.get_bo = get_ppgtt_batch_bo;
batch_ctx.user_data = &pml4;
} else {
batch_ctx.get_bo = get_ggtt_batch_bo;
}
(void)engine; /* TODO */
gen_print_batch(&batch_ctx, commands, ring_buffer_tail - ring_buffer_head,
0);
clear_bo_maps();
}
static void
handle_memtrace_mem_write(uint32_t *p)
{
struct gen_batch_decode_bo bo = {
.map = p + 5,
/* Addresses written by aubdump here are in canonical form but the batch
* decoder always gives us addresses with the top 16bits zeroed, so do
* the same here.
*/
.addr = gen_48b_address(*(uint64_t*)&p[1]),
.size = p[4],
};
uint32_t address_space = p[3] >> 28;
switch (address_space) {
case 0: /* GGTT */
handle_ggtt_write(bo.addr, bo.map, bo.size);
break;
case 1: /* Local */
add_gtt_bo_map(bo, false);
break;
case 2: /* Physical */
handle_physical_write(bo.addr, bo.map, bo.size);
break;
case 4: /* GGTT Entry */
handle_ggtt_entry_write(bo.addr, bo.map, bo.size);
break;
}
}
struct aub_file {
FILE *stream;
uint32_t *map, *end, *cursor;
uint32_t *mem_end;
};
static struct aub_file *
aub_file_open(const char *filename)
{
struct aub_file *file;
struct stat sb;
int fd;
file = calloc(1, sizeof *file);
fd = open(filename, O_RDONLY);
if (fd == -1) {
fprintf(stderr, "open %s failed: %s\n", filename, strerror(errno));
exit(EXIT_FAILURE);
}
if (fstat(fd, &sb) == -1) {
fprintf(stderr, "stat failed: %s\n", strerror(errno));
exit(EXIT_FAILURE);
}
file->map = mmap(NULL, sb.st_size,
PROT_READ, MAP_SHARED, fd, 0);
if (file->map == MAP_FAILED) {
fprintf(stderr, "mmap failed: %s\n", strerror(errno));
exit(EXIT_FAILURE);
}
close(fd);
file->cursor = file->map;
file->end = file->map + sb.st_size / 4;
return file;
}
#define TYPE(dw) (((dw) >> 29) & 7)
#define OPCODE(dw) (((dw) >> 23) & 0x3f)
#define SUBOPCODE(dw) (((dw) >> 16) & 0x7f)
#define MAKE_HEADER(type, opcode, subopcode) \
(((type) << 29) | ((opcode) << 23) | ((subopcode) << 16))
#define TYPE_AUB 0x7
/* Classic AUB opcodes */
#define OPCODE_AUB 0x01
#define SUBOPCODE_HEADER 0x05
#define SUBOPCODE_BLOCK 0x41
#define SUBOPCODE_BMP 0x1e
/* Newer version AUB opcode */
#define OPCODE_NEW_AUB 0x2e
#define SUBOPCODE_REG_POLL 0x02
#define SUBOPCODE_REG_WRITE 0x03
#define SUBOPCODE_MEM_POLL 0x05
#define SUBOPCODE_MEM_WRITE 0x06
#define SUBOPCODE_VERSION 0x0e
#define MAKE_GEN(major, minor) ( ((major) << 8) | (minor) )
static bool
aub_file_decode_batch(struct aub_file *file)
{
uint32_t *p, h, *new_cursor;
int header_length, bias;
assert(file->cursor < file->end);
p = file->cursor;
h = *p;
header_length = h & 0xffff;
switch (OPCODE(h)) {
case OPCODE_AUB:
bias = 2;
break;
case OPCODE_NEW_AUB:
bias = 1;
break;
default:
fprintf(outfile, "unknown opcode %d at %td/%td\n",
OPCODE(h), file->cursor - file->map,
file->end - file->map);
return false;
}
new_cursor = p + header_length + bias;
if ((h & 0xffff0000) == MAKE_HEADER(TYPE_AUB, OPCODE_AUB, SUBOPCODE_BLOCK)) {
assert(file->end - file->cursor >= 4);
new_cursor += p[4] / 4;
}
assert(new_cursor <= file->end);
switch (h & 0xffff0000) {
case MAKE_HEADER(TYPE_AUB, OPCODE_AUB, SUBOPCODE_HEADER):
handle_trace_header(p);
break;
case MAKE_HEADER(TYPE_AUB, OPCODE_AUB, SUBOPCODE_BLOCK):
handle_trace_block(p);
break;
case MAKE_HEADER(TYPE_AUB, OPCODE_AUB, SUBOPCODE_BMP):
break;
case MAKE_HEADER(TYPE_AUB, OPCODE_NEW_AUB, SUBOPCODE_VERSION):
handle_memtrace_version(p);
break;
case MAKE_HEADER(TYPE_AUB, OPCODE_NEW_AUB, SUBOPCODE_REG_WRITE):
handle_memtrace_reg_write(p);
break;
case MAKE_HEADER(TYPE_AUB, OPCODE_NEW_AUB, SUBOPCODE_MEM_WRITE):
handle_memtrace_mem_write(p);
break;
case MAKE_HEADER(TYPE_AUB, OPCODE_NEW_AUB, SUBOPCODE_MEM_POLL):
fprintf(outfile, "memory poll block (dwords %d):\n", h & 0xffff);
break;
case MAKE_HEADER(TYPE_AUB, OPCODE_NEW_AUB, SUBOPCODE_REG_POLL):
break;
default:
fprintf(outfile, "unknown block type=0x%x, opcode=0x%x, "
"subopcode=0x%x (%08x)\n", TYPE(h), OPCODE(h), SUBOPCODE(h), h);
break;
}
file->cursor = new_cursor;
return true;
}
static int
aub_file_more_stuff(struct aub_file *file)
{
return file->cursor < file->end || (file->stream && !feof(file->stream));
}
static void
setup_pager(void)
{
int fds[2];
pid_t pid;
if (!isatty(1))
return;
if (pipe(fds) == -1)
return;
pid = fork();
if (pid == -1)
return;
if (pid == 0) {
close(fds[1]);
dup2(fds[0], 0);
execlp("less", "less", "-FRSi", NULL);
}
close(fds[0]);
dup2(fds[1], 1);
close(fds[1]);
}
static void
print_help(const char *progname, FILE *file)
{
fprintf(file,
"Usage: %s [OPTION]... FILE\n"
"Decode aub file contents from FILE.\n\n"
" --help display this help and exit\n"
" --gen=platform decode for given platform (3 letter platform name)\n"
" --headers decode only command headers\n"
" --color[=WHEN] colorize the output; WHEN can be 'auto' (default\n"
" if omitted), 'always', or 'never'\n"
" --max-vbo-lines=N limit the number of decoded VBO lines\n"
" --no-pager don't launch pager\n"
" --no-offsets don't print instruction offsets\n"
" --xml=DIR load hardware xml description from directory DIR\n",
progname);
}
int main(int argc, char *argv[])
{
struct aub_file *file;
int c, i;
bool help = false, pager = true;
const struct option aubinator_opts[] = {
{ "help", no_argument, (int *) &help, true },
{ "no-pager", no_argument, (int *) &pager, false },
{ "no-offsets", no_argument, (int *) &option_print_offsets, false },
{ "gen", required_argument, NULL, 'g' },
{ "headers", no_argument, (int *) &option_full_decode, false },
{ "color", required_argument, NULL, 'c' },
{ "xml", required_argument, NULL, 'x' },
{ "max-vbo-lines", required_argument, NULL, 'v' },
{ NULL, 0, NULL, 0 }
};
outfile = stdout;
i = 0;
while ((c = getopt_long(argc, argv, "", aubinator_opts, &i)) != -1) {
switch (c) {
case 'g': {
const int id = gen_device_name_to_pci_device_id(optarg);
if (id < 0) {
fprintf(stderr, "can't parse gen: '%s', expected ivb, byt, hsw, "
"bdw, chv, skl, kbl or bxt\n", optarg);
exit(EXIT_FAILURE);
} else {
pci_id = id;
}
break;
}
case 'c':
if (optarg == NULL || strcmp(optarg, "always") == 0)
option_color = COLOR_ALWAYS;
else if (strcmp(optarg, "never") == 0)
option_color = COLOR_NEVER;
else if (strcmp(optarg, "auto") == 0)
option_color = COLOR_AUTO;
else {
fprintf(stderr, "invalid value for --color: %s", optarg);
exit(EXIT_FAILURE);
}
break;
case 'x':
xml_path = strdup(optarg);
break;
case 'v':
max_vbo_lines = atoi(optarg);
break;
default:
break;
}
}
if (optind < argc)
input_file = argv[optind];
if (help || !input_file) {
print_help(argv[0], stderr);
exit(0);
}
/* Do this before we redirect stdout to pager. */
if (option_color == COLOR_AUTO)
option_color = isatty(1) ? COLOR_ALWAYS : COLOR_NEVER;
if (isatty(1) && pager)
setup_pager();
mem_fd = memfd_create("phys memory", 0);
list_inithead(&maps);
file = aub_file_open(input_file);
while (aub_file_more_stuff(file) &&
aub_file_decode_batch(file));
fflush(stdout);
/* close the stdout which is opened to write the output */
close(1);
free(xml_path);
wait(NULL);
return EXIT_SUCCESS;
}
|