aboutsummaryrefslogtreecommitdiffstats
path: root/src/intel/tools/aub_write.c
blob: c4d1cbbbfb70436ad5505d00e45a2bc8b61a3b74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "aub_write.h"

#include <inttypes.h>
#include <signal.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>

#include "drm-uapi/i915_drm.h"
#include "intel_aub.h"
#include "gen_context.h"

#ifndef ALIGN
#define ALIGN(x, y) (((x) + (y)-1) & ~((y)-1))
#endif

#define MI_BATCH_NON_SECURE_I965 (1 << 8)

#define min(a, b) ({                            \
         __typeof(a) _a = (a);                  \
         __typeof(b) _b = (b);                  \
         _a < _b ? _a : _b;                     \
      })

#define max(a, b) ({                            \
         __typeof(a) _a = (a);                  \
         __typeof(b) _b = (b);                  \
         _a > _b ? _a : _b;                     \
      })

static void
mem_trace_memory_write_header_out(struct aub_file *aub, uint64_t addr,
                                  uint32_t len, uint32_t addr_space,
                                  const char *desc);

static void __attribute__ ((format(__printf__, 2, 3)))
fail_if(int cond, const char *format, ...)
{
   va_list args;

   if (!cond)
      return;

   va_start(args, format);
   vfprintf(stderr, format, args);
   va_end(args);

   raise(SIGTRAP);
}

static inline uint32_t
align_u32(uint32_t v, uint32_t a)
{
   return (v + a - 1) & ~(a - 1);
}

static void
aub_ppgtt_table_finish(struct aub_ppgtt_table *table, int level)
{
   if (level == 1)
      return;

   for (unsigned i = 0; i < ARRAY_SIZE(table->subtables); i++) {
      if (table->subtables[i]) {
         aub_ppgtt_table_finish(table->subtables[i], level - 1);
         free(table->subtables[i]);
      }
   }
}

static void
data_out(struct aub_file *aub, const void *data, size_t size)
{
   if (size == 0)
      return;

   fail_if(fwrite(data, 1, size, aub->file) == 0,
           "Writing to output failed\n");
}

static void
dword_out(struct aub_file *aub, uint32_t data)
{
   data_out(aub, &data, sizeof(data));
}

static void
write_execlists_header(struct aub_file *aub, const char *name)
{
   char app_name[8 * 4];
   int app_name_len, dwords;

   app_name_len =
      snprintf(app_name, sizeof(app_name), "PCI-ID=0x%X %s",
               aub->pci_id, name);
   app_name_len = ALIGN(app_name_len, sizeof(uint32_t));

   dwords = 5 + app_name_len / sizeof(uint32_t);
   dword_out(aub, CMD_MEM_TRACE_VERSION | (dwords - 1));
   dword_out(aub, AUB_MEM_TRACE_VERSION_FILE_VERSION);
   dword_out(aub, aub->devinfo.simulator_id << AUB_MEM_TRACE_VERSION_DEVICE_SHIFT);
   dword_out(aub, 0);      /* version */
   dword_out(aub, 0);      /* version */
   data_out(aub, app_name, app_name_len);
}

static void
write_legacy_header(struct aub_file *aub, const char *name)
{
   char app_name[8 * 4];
   char comment[16];
   int comment_len, comment_dwords, dwords;

   comment_len = snprintf(comment, sizeof(comment), "PCI-ID=0x%x", aub->pci_id);
   comment_dwords = ((comment_len + 3) / 4);

   /* Start with a (required) version packet. */
   dwords = 13 + comment_dwords;
   dword_out(aub, CMD_AUB_HEADER | (dwords - 2));
   dword_out(aub, (4 << AUB_HEADER_MAJOR_SHIFT) |
                  (0 << AUB_HEADER_MINOR_SHIFT));

   /* Next comes a 32-byte application name. */
   strncpy(app_name, name, sizeof(app_name));
   app_name[sizeof(app_name) - 1] = 0;
   data_out(aub, app_name, sizeof(app_name));

   dword_out(aub, 0); /* timestamp */
   dword_out(aub, 0); /* timestamp */
   dword_out(aub, comment_len);
   data_out(aub, comment, comment_dwords * 4);
}


static void
aub_write_header(struct aub_file *aub, const char *app_name)
{
   if (aub_use_execlists(aub))
      write_execlists_header(aub, app_name);
   else
      write_legacy_header(aub, app_name);
}

void
aub_file_init(struct aub_file *aub, FILE *file, FILE *debug, uint16_t pci_id, const char *app_name)
{
   memset(aub, 0, sizeof(*aub));

   aub->verbose_log_file = debug;
   aub->file = file;
   aub->pci_id = pci_id;
   fail_if(!gen_get_device_info_from_pci_id(pci_id, &aub->devinfo),
           "failed to identify chipset=0x%x\n", pci_id);
   aub->addr_bits = aub->devinfo.gen >= 8 ? 48 : 32;

   aub_write_header(aub, app_name);

   aub->phys_addrs_allocator = 0;
   aub->pml4.phys_addr = aub->phys_addrs_allocator++ << 12;

   mem_trace_memory_write_header_out(aub, 0,
                                     GEN8_PTE_SIZE,
                                     AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT_ENTRY,
                                     "GGTT PT");
   dword_out(aub, 1);
   dword_out(aub, 0);
}

void
aub_file_finish(struct aub_file *aub)
{
   aub_ppgtt_table_finish(&aub->pml4, 4);
   fclose(aub->file);
}

uint32_t
aub_gtt_size(struct aub_file *aub)
{
   return NUM_PT_ENTRIES * (aub->addr_bits > 32 ? GEN8_PTE_SIZE : PTE_SIZE);
}

static void
mem_trace_memory_write_header_out(struct aub_file *aub, uint64_t addr,
                                  uint32_t len, uint32_t addr_space,
                                  const char *desc)
{
   uint32_t dwords = ALIGN(len, sizeof(uint32_t)) / sizeof(uint32_t);

   if (aub->verbose_log_file) {
      fprintf(aub->verbose_log_file,
              "  MEM WRITE (0x%016" PRIx64 "-0x%016" PRIx64 ") %s\n",
              addr, addr + len, desc);
   }

   dword_out(aub, CMD_MEM_TRACE_MEMORY_WRITE | (5 + dwords - 1));
   dword_out(aub, addr & 0xFFFFFFFF);   /* addr lo */
   dword_out(aub, addr >> 32);   /* addr hi */
   dword_out(aub, addr_space);   /* gtt */
   dword_out(aub, len);
}

static void
register_write_out(struct aub_file *aub, uint32_t addr, uint32_t value)
{
   uint32_t dwords = 1;

   if (aub->verbose_log_file) {
      fprintf(aub->verbose_log_file,
              "  MMIO WRITE (0x%08x = 0x%08x)\n", addr, value);
   }

   dword_out(aub, CMD_MEM_TRACE_REGISTER_WRITE | (5 + dwords - 1));
   dword_out(aub, addr);
   dword_out(aub, AUB_MEM_TRACE_REGISTER_SIZE_DWORD |
                  AUB_MEM_TRACE_REGISTER_SPACE_MMIO);
   dword_out(aub, 0xFFFFFFFF);   /* mask lo */
   dword_out(aub, 0x00000000);   /* mask hi */
   dword_out(aub, value);
}

static void
populate_ppgtt_table(struct aub_file *aub, struct aub_ppgtt_table *table,
                     int start, int end, int level)
{
   uint64_t entries[512] = {0};
   int dirty_start = 512, dirty_end = 0;

   if (aub->verbose_log_file) {
      fprintf(aub->verbose_log_file,
              "  PPGTT (0x%016" PRIx64 "), lvl %d, start: %x, end: %x\n",
              table->phys_addr, level, start, end);
   }

   for (int i = start; i <= end; i++) {
      if (!table->subtables[i]) {
         dirty_start = min(dirty_start, i);
         dirty_end = max(dirty_end, i);
         if (level == 1) {
            table->subtables[i] =
               (void *)(aub->phys_addrs_allocator++ << 12);
            if (aub->verbose_log_file) {
               fprintf(aub->verbose_log_file,
                       "   Adding entry: %x, phys_addr: 0x%016" PRIx64 "\n",
                       i, (uint64_t)table->subtables[i]);
            }
         } else {
            table->subtables[i] =
               calloc(1, sizeof(struct aub_ppgtt_table));
            table->subtables[i]->phys_addr =
               aub->phys_addrs_allocator++ << 12;
            if (aub->verbose_log_file) {
               fprintf(aub->verbose_log_file,
                       "   Adding entry: %x, phys_addr: 0x%016" PRIx64 "\n",
                       i, table->subtables[i]->phys_addr);
            }
         }
      }
      entries[i] = 3 /* read/write | present */ |
         (level == 1 ? (uint64_t)table->subtables[i] :
          table->subtables[i]->phys_addr);
   }

   if (dirty_start <= dirty_end) {
      uint64_t write_addr = table->phys_addr + dirty_start *
         sizeof(uint64_t);
      uint64_t write_size = (dirty_end - dirty_start + 1) *
         sizeof(uint64_t);
      mem_trace_memory_write_header_out(aub, write_addr, write_size,
                                        AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_PHYSICAL,
                                        "PPGTT update");
      data_out(aub, entries + dirty_start, write_size);
   }
}

void
aub_map_ppgtt(struct aub_file *aub, uint64_t start, uint64_t size)
{
   uint64_t l4_start = start & 0xff8000000000;
   uint64_t l4_end = ((start + size - 1) | 0x007fffffffff) & 0xffffffffffff;

#define L4_index(addr) (((addr) >> 39) & 0x1ff)
#define L3_index(addr) (((addr) >> 30) & 0x1ff)
#define L2_index(addr) (((addr) >> 21) & 0x1ff)
#define L1_index(addr) (((addr) >> 12) & 0x1ff)

#define L3_table(addr) (aub->pml4.subtables[L4_index(addr)])
#define L2_table(addr) (L3_table(addr)->subtables[L3_index(addr)])
#define L1_table(addr) (L2_table(addr)->subtables[L2_index(addr)])

   if (aub->verbose_log_file) {
      fprintf(aub->verbose_log_file,
              " Mapping PPGTT address: 0x%" PRIx64 ", size: %" PRIu64"\n",
              start, size);
   }

   populate_ppgtt_table(aub, &aub->pml4, L4_index(l4_start), L4_index(l4_end), 4);

   for (uint64_t l4 = l4_start; l4 < l4_end; l4 += (1ULL << 39)) {
      uint64_t l3_start = max(l4, start & 0xffffc0000000);
      uint64_t l3_end = min(l4 + (1ULL << 39) - 1,
                            ((start + size - 1) | 0x00003fffffff) & 0xffffffffffff);
      uint64_t l3_start_idx = L3_index(l3_start);
      uint64_t l3_end_idx = L3_index(l3_end);

      populate_ppgtt_table(aub, L3_table(l4), l3_start_idx, l3_end_idx, 3);

      for (uint64_t l3 = l3_start; l3 < l3_end; l3 += (1ULL << 30)) {
         uint64_t l2_start = max(l3, start & 0xffffffe00000);
         uint64_t l2_end = min(l3 + (1ULL << 30) - 1,
                               ((start + size - 1) | 0x0000001fffff) & 0xffffffffffff);
         uint64_t l2_start_idx = L2_index(l2_start);
         uint64_t l2_end_idx = L2_index(l2_end);

         populate_ppgtt_table(aub, L2_table(l3), l2_start_idx, l2_end_idx, 2);

         for (uint64_t l2 = l2_start; l2 < l2_end; l2 += (1ULL << 21)) {
            uint64_t l1_start = max(l2, start & 0xfffffffff000);
            uint64_t l1_end = min(l2 + (1ULL << 21) - 1,
                                  ((start + size - 1) | 0x000000000fff) & 0xffffffffffff);
            uint64_t l1_start_idx = L1_index(l1_start);
            uint64_t l1_end_idx = L1_index(l1_end);

            populate_ppgtt_table(aub, L1_table(l2), l1_start_idx, l1_end_idx, 1);
         }
      }
   }
}

static uint64_t
ppgtt_lookup(struct aub_file *aub, uint64_t ppgtt_addr)
{
   return (uint64_t)L1_table(ppgtt_addr)->subtables[L1_index(ppgtt_addr)];
}

static const struct engine {
   const char *name;
   enum drm_i915_gem_engine_class engine_class;
   uint32_t hw_class;
   uint32_t elsp_reg;
   uint32_t elsq_reg;
   uint32_t status_reg;
   uint32_t control_reg;
} engines[] = {
   [I915_ENGINE_CLASS_RENDER] = {
      .name = "RENDER",
      .engine_class = I915_ENGINE_CLASS_RENDER,
      .hw_class = 1,
      .elsp_reg = EXECLIST_SUBMITPORT_RCSUNIT,
      .elsq_reg = EXECLIST_SQ_CONTENTS0_RCSUNIT,
      .status_reg = EXECLIST_STATUS_RCSUNIT,
      .control_reg = EXECLIST_CONTROL_RCSUNIT,
   },
   [I915_ENGINE_CLASS_VIDEO] = {
      .name = "VIDEO",
      .engine_class = I915_ENGINE_CLASS_VIDEO,
      .hw_class = 3,
      .elsp_reg = EXECLIST_SUBMITPORT_VCSUNIT0,
      .elsq_reg = EXECLIST_SQ_CONTENTS0_VCSUNIT0,
      .status_reg = EXECLIST_STATUS_VCSUNIT0,
      .control_reg = EXECLIST_CONTROL_VCSUNIT0,
   },
   [I915_ENGINE_CLASS_COPY] = {
      .name = "BLITTER",
      .engine_class = I915_ENGINE_CLASS_COPY,
      .hw_class = 2,
      .elsp_reg = EXECLIST_SUBMITPORT_BCSUNIT,
      .elsq_reg = EXECLIST_SQ_CONTENTS0_BCSUNIT,
      .status_reg = EXECLIST_STATUS_BCSUNIT,
      .control_reg = EXECLIST_CONTROL_BCSUNIT,
   },
};

static const struct engine *
engine_from_engine_class(enum drm_i915_gem_engine_class engine_class)
{
   switch (engine_class) {
   case I915_ENGINE_CLASS_RENDER:
   case I915_ENGINE_CLASS_COPY:
   case I915_ENGINE_CLASS_VIDEO:
      return &engines[engine_class];
   default:
      unreachable("unknown ring");
   }
}

static void
get_context_init(const struct gen_device_info *devinfo,
                 const struct gen_context_parameters *params,
                 enum drm_i915_gem_engine_class engine_class,
                 uint32_t *data,
                 uint32_t *size)
{
   static const gen_context_init_t gen8_contexts[] = {
      [I915_ENGINE_CLASS_RENDER] = gen8_render_context_init,
      [I915_ENGINE_CLASS_COPY] = gen8_blitter_context_init,
      [I915_ENGINE_CLASS_VIDEO] = gen8_video_context_init,
   };
   static const gen_context_init_t gen10_contexts[] = {
      [I915_ENGINE_CLASS_RENDER] = gen10_render_context_init,
      [I915_ENGINE_CLASS_COPY] = gen10_blitter_context_init,
      [I915_ENGINE_CLASS_VIDEO] = gen10_video_context_init,
   };

   assert(devinfo->gen >= 8);

   if (devinfo->gen <= 10)
      gen8_contexts[engine_class](params, data, size);
   else
      gen10_contexts[engine_class](params, data, size);
}

static uint32_t
write_engine_execlist_setup(struct aub_file *aub,
                            enum drm_i915_gem_engine_class engine_class)
{
   const struct engine *cs = engine_from_engine_class(engine_class);
   uint32_t context_size;

   get_context_init(&aub->devinfo, NULL, engine_class, NULL, &context_size);

   /* GGTT PT */
   uint64_t phys_addr = aub->phys_addrs_allocator << 12;
   uint32_t total_size = RING_SIZE + PPHWSP_SIZE + context_size;
   uint32_t ggtt_ptes = DIV_ROUND_UP(total_size, 4096);
   char name[80];

   aub->phys_addrs_allocator += ggtt_ptes;

   snprintf(name, sizeof(name), "%s GGTT PT", cs->name);
   mem_trace_memory_write_header_out(aub,
                                     sizeof(uint64_t) * (phys_addr >> 12),
                                     ggtt_ptes * GEN8_PTE_SIZE,
                                     AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT_ENTRY,
                                     name);
   for (uint32_t i = 0; i < ggtt_ptes; i++) {
      dword_out(aub, 1 + 0x1000 * i + phys_addr);
      dword_out(aub, 0);
   }

   /* RING */
   aub->engine_setup[engine_class].ring_addr = phys_addr;
   snprintf(name, sizeof(name), "%s RING", cs->name);
   mem_trace_memory_write_header_out(aub, phys_addr, RING_SIZE,
                                     AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
                                     name);
   for (uint32_t i = 0; i < RING_SIZE; i += sizeof(uint32_t))
      dword_out(aub, 0);
   phys_addr += RING_SIZE;

   /* PPHWSP */
   aub->engine_setup[engine_class].pphwsp_addr = phys_addr;
   aub->engine_setup[engine_class].descriptor = cs->hw_class | phys_addr | CONTEXT_FLAGS;
   snprintf(name, sizeof(name), "%s PPHWSP", cs->name);
   mem_trace_memory_write_header_out(aub, phys_addr,
                                     PPHWSP_SIZE + context_size,
                                     AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
                                     name);
   for (uint32_t i = 0; i < PPHWSP_SIZE; i += sizeof(uint32_t))
      dword_out(aub, 0);

   /* CONTEXT */
   struct gen_context_parameters params = {
      .ring_addr = aub->engine_setup[engine_class].ring_addr,
      .ring_size = RING_SIZE,
      .pml4_addr = aub->pml4.phys_addr,
   };
   uint32_t *context_data = calloc(1, context_size);
   get_context_init(&aub->devinfo, &params, engine_class, context_data, &context_size);
   data_out(aub, context_data, context_size);
   free(context_data);

   return total_size;
}

static void
write_execlists_default_setup(struct aub_file *aub)
{
   write_engine_execlist_setup(aub, I915_ENGINE_CLASS_RENDER);
   write_engine_execlist_setup(aub, I915_ENGINE_CLASS_COPY);
   write_engine_execlist_setup(aub, I915_ENGINE_CLASS_VIDEO);

   register_write_out(aub, HWS_PGA_RCSUNIT, aub->engine_setup[I915_ENGINE_CLASS_RENDER].pphwsp_addr);
   register_write_out(aub, HWS_PGA_VCSUNIT0, aub->engine_setup[I915_ENGINE_CLASS_VIDEO].pphwsp_addr);
   register_write_out(aub, HWS_PGA_BCSUNIT, aub->engine_setup[I915_ENGINE_CLASS_COPY].pphwsp_addr);

   register_write_out(aub, GFX_MODE_RCSUNIT, 0x80008000 /* execlist enable */);
   register_write_out(aub, GFX_MODE_VCSUNIT0, 0x80008000 /* execlist enable */);
   register_write_out(aub, GFX_MODE_BCSUNIT, 0x80008000 /* execlist enable */);
}

static void write_legacy_default_setup(struct aub_file *aub)
{
   uint32_t entry = 0x200003;

   /* Set up the GTT. The max we can handle is 64M */
   dword_out(aub, CMD_AUB_TRACE_HEADER_BLOCK |
                  ((aub->addr_bits > 32 ? 6 : 5) - 2));
   dword_out(aub, AUB_TRACE_MEMTYPE_GTT_ENTRY |
                  AUB_TRACE_TYPE_NOTYPE | AUB_TRACE_OP_DATA_WRITE);
   dword_out(aub, 0); /* subtype */
   dword_out(aub, 0); /* offset */
   dword_out(aub, aub_gtt_size(aub)); /* size */
   if (aub->addr_bits > 32)
      dword_out(aub, 0);
   for (uint32_t i = 0; i < NUM_PT_ENTRIES; i++) {
      dword_out(aub, entry + 0x1000 * i);
      if (aub->addr_bits > 32)
         dword_out(aub, 0);
   }
}

/**
 * Sets up a default GGTT/PPGTT address space and execlists context (when
 * supported).
 */
void
aub_write_default_setup(struct aub_file *aub)
{
   if (aub_use_execlists(aub))
      write_execlists_default_setup(aub);
   else
      write_legacy_default_setup(aub);

   aub->has_default_setup = true;
}

void
aub_write_ggtt(struct aub_file *aub, uint64_t virt_addr, uint64_t size, const void *data)
{
   if (aub->verbose_log_file) {
      fprintf(aub->verbose_log_file,
              " Writting GGTT address: 0x%" PRIx64 ", size: %" PRIu64"\n",
              virt_addr, size);
   }

   /* Default setup assumes a 1 to 1 mapping between physical and virtual GGTT
    * addresses. This is somewhat incompatible with the aub_write_ggtt()
    * function. In practice it doesn't matter as the GGTT writes are used to
    * replace the default setup and we've taken care to setup the PML4 as the
    * top of the GGTT.
    */
   assert(!aub->has_default_setup);

   /* Makes the code below a bit simpler. In practice all of the write we
    * receive from error2aub are page aligned.
    */
   assert(virt_addr % 4096 == 0);
   assert((aub->phys_addrs_allocator + size) < (1UL << 32));

   /* GGTT PT */
   uint32_t ggtt_ptes = DIV_ROUND_UP(size, 4096);
   uint64_t phys_addr = aub->phys_addrs_allocator << 12;
   aub->phys_addrs_allocator += ggtt_ptes;

   if (aub->verbose_log_file) {
      fprintf(aub->verbose_log_file,
              " Writting GGTT address: 0x%" PRIx64 ", size: %" PRIu64" phys_addr=0x%" PRIx64 " entries=%u\n",
              virt_addr, size, phys_addr, ggtt_ptes);
   }

   mem_trace_memory_write_header_out(aub,
                                     (virt_addr >> 12) * GEN8_PTE_SIZE,
                                     ggtt_ptes * GEN8_PTE_SIZE,
                                     AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT_ENTRY,
                                     "GGTT PT");
   for (uint32_t i = 0; i < ggtt_ptes; i++) {
      dword_out(aub, 1 + phys_addr + i * 4096);
      dword_out(aub, 0);
   }

   /* We write the GGTT buffer through the GGTT aub command rather than the
    * PHYSICAL aub command. This is because the Gen9 simulator seems to have 2
    * different set of memory pools for GGTT and physical (probably someone
    * didn't really understand the concept?).
    */
   static const char null_block[8 * 4096];
   for (uint64_t offset = 0; offset < size; offset += 4096) {
      uint32_t block_size = min(4096, size - offset);

      mem_trace_memory_write_header_out(aub, virt_addr + offset, block_size,
                                        AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
                                        "GGTT buffer");
      data_out(aub, (char *) data + offset, block_size);

      /* Pad to a multiple of 4 bytes. */
      data_out(aub, null_block, -block_size & 3);
   }
}

/**
 * Break up large objects into multiple writes.  Otherwise a 128kb VBO
 * would overflow the 16 bits of size field in the packet header and
 * everything goes badly after that.
 */
void
aub_write_trace_block(struct aub_file *aub,
                      uint32_t type, void *virtual,
                      uint32_t size, uint64_t gtt_offset)
{
   uint32_t block_size;
   uint32_t subtype = 0;
   static const char null_block[8 * 4096];

   for (uint32_t offset = 0; offset < size; offset += block_size) {
      block_size = min(8 * 4096, size - offset);

      if (aub_use_execlists(aub)) {
         block_size = min(4096, block_size);
         mem_trace_memory_write_header_out(aub,
                                           ppgtt_lookup(aub, gtt_offset + offset),
                                           block_size,
                                           AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_PHYSICAL,
                                           "Trace Block");
      } else {
         dword_out(aub, CMD_AUB_TRACE_HEADER_BLOCK |
                        ((aub->addr_bits > 32 ? 6 : 5) - 2));
         dword_out(aub, AUB_TRACE_MEMTYPE_GTT |
                        type | AUB_TRACE_OP_DATA_WRITE);
         dword_out(aub, subtype);
         dword_out(aub, gtt_offset + offset);
         dword_out(aub, align_u32(block_size, 4));
         if (aub->addr_bits > 32)
            dword_out(aub, (gtt_offset + offset) >> 32);
      }

      if (virtual)
         data_out(aub, ((char *) virtual) + offset, block_size);
      else
         data_out(aub, null_block, block_size);

      /* Pad to a multiple of 4 bytes. */
      data_out(aub, null_block, -block_size & 3);
   }
}

static void
aub_dump_ring_buffer_execlist(struct aub_file *aub,
                              const struct engine *cs,
                              uint64_t batch_offset)
{
   mem_trace_memory_write_header_out(aub, aub->engine_setup[cs->engine_class].ring_addr, 16,
                                     AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
                                     "RING MI_BATCH_BUFFER_START user");
   dword_out(aub, AUB_MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965 | (3 - 2));
   dword_out(aub, batch_offset & 0xFFFFFFFF);
   dword_out(aub, batch_offset >> 32);
   dword_out(aub, 0 /* MI_NOOP */);

   mem_trace_memory_write_header_out(aub, aub->engine_setup[cs->engine_class].ring_addr + 8192 + 20, 4,
                                     AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
                                     "RING BUFFER HEAD");
   dword_out(aub, 0); /* RING_BUFFER_HEAD */
   mem_trace_memory_write_header_out(aub, aub->engine_setup[cs->engine_class].ring_addr + 8192 + 28, 4,
                                     AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
                                     "RING BUFFER TAIL");
   dword_out(aub, 16); /* RING_BUFFER_TAIL */
}

static void
aub_dump_execlist(struct aub_file *aub, const struct engine *cs, uint64_t descriptor)
{
   if (aub->devinfo.gen >= 11) {
      register_write_out(aub, cs->elsq_reg, descriptor & 0xFFFFFFFF);
      register_write_out(aub, cs->elsq_reg + sizeof(uint32_t), descriptor >> 32);
      register_write_out(aub, cs->control_reg, 1);
   } else {
      register_write_out(aub, cs->elsp_reg, 0);
      register_write_out(aub, cs->elsp_reg, 0);
      register_write_out(aub, cs->elsp_reg, descriptor >> 32);
      register_write_out(aub, cs->elsp_reg, descriptor & 0xFFFFFFFF);
   }

   dword_out(aub, CMD_MEM_TRACE_REGISTER_POLL | (5 + 1 - 1));
   dword_out(aub, cs->status_reg);
   dword_out(aub, AUB_MEM_TRACE_REGISTER_SIZE_DWORD |
                  AUB_MEM_TRACE_REGISTER_SPACE_MMIO);
   if (aub->devinfo.gen >= 11) {
      dword_out(aub, 0x00000001);   /* mask lo */
      dword_out(aub, 0x00000000);   /* mask hi */
      dword_out(aub, 0x00000001);
   } else {
      dword_out(aub, 0x00000010);   /* mask lo */
      dword_out(aub, 0x00000000);   /* mask hi */
      dword_out(aub, 0x00000000);
   }
}

static void
aub_dump_ring_buffer_legacy(struct aub_file *aub,
                            uint64_t batch_offset,
                            uint64_t offset,
                            enum drm_i915_gem_engine_class engine_class)
{
   uint32_t ringbuffer[4096];
   unsigned aub_mi_bbs_len;
   int ring_count = 0;
   static const int engine_class_to_ring[] = {
      [I915_ENGINE_CLASS_RENDER] = AUB_TRACE_TYPE_RING_PRB0,
      [I915_ENGINE_CLASS_VIDEO]  = AUB_TRACE_TYPE_RING_PRB1,
      [I915_ENGINE_CLASS_COPY]   = AUB_TRACE_TYPE_RING_PRB2,
   };
   int ring = engine_class_to_ring[engine_class];

   /* Make a ring buffer to execute our batchbuffer. */
   memset(ringbuffer, 0, sizeof(ringbuffer));

   aub_mi_bbs_len = aub->addr_bits > 32 ? 3 : 2;
   ringbuffer[ring_count] = AUB_MI_BATCH_BUFFER_START | (aub_mi_bbs_len - 2);
   aub_write_reloc(&aub->devinfo, &ringbuffer[ring_count + 1], batch_offset);
   ring_count += aub_mi_bbs_len;

   /* Write out the ring.  This appears to trigger execution of
    * the ring in the simulator.
    */
   dword_out(aub, CMD_AUB_TRACE_HEADER_BLOCK |
                  ((aub->addr_bits > 32 ? 6 : 5) - 2));
   dword_out(aub, AUB_TRACE_MEMTYPE_GTT | ring | AUB_TRACE_OP_COMMAND_WRITE);
   dword_out(aub, 0); /* general/surface subtype */
   dword_out(aub, offset);
   dword_out(aub, ring_count * 4);
   if (aub->addr_bits > 32)
      dword_out(aub, offset >> 32);

   data_out(aub, ringbuffer, ring_count * 4);
}

void
aub_write_exec(struct aub_file *aub, uint64_t batch_addr,
               uint64_t offset, enum drm_i915_gem_engine_class engine_class)
{
   const struct engine *cs = engine_from_engine_class(engine_class);

   if (aub_use_execlists(aub)) {
      aub_dump_ring_buffer_execlist(aub, cs, batch_addr);
      aub_dump_execlist(aub, cs, aub->engine_setup[engine_class].descriptor);
   } else {
      /* Dump ring buffer */
      aub_dump_ring_buffer_legacy(aub, batch_addr, offset, engine_class);
   }
   fflush(aub->file);
}

void
aub_write_context_execlists(struct aub_file *aub, uint64_t context_addr,
                            enum drm_i915_gem_engine_class engine_class)
{
   const struct engine *cs = engine_from_engine_class(engine_class);
   uint64_t descriptor = ((uint64_t)1 << 62 | context_addr  | CONTEXT_FLAGS);
   aub_dump_execlist(aub, cs, descriptor);
}