1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
|
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* This code is based on original work by Ilia Mirkin.
*/
/**
* \file gen6_gs_visitor.cpp
*
* Gen6 geometry shader implementation
*/
#include "gen6_gs_visitor.h"
#include "brw_eu.h"
namespace brw {
void
gen6_gs_visitor::emit_prolog()
{
vec4_gs_visitor::emit_prolog();
/* Gen6 geometry shaders require to allocate an initial VUE handle via
* FF_SYNC message, however the documentation remarks that only one thread
* can write to the URB simultaneously and the FF_SYNC message provides the
* synchronization mechanism for this, so using this message effectively
* stalls the thread until it is its turn to write to the URB. Because of
* this, the best way to implement geometry shader algorithms in gen6 is to
* execute the algorithm before the FF_SYNC message to maximize parallelism.
*
* To achieve this we buffer the geometry shader outputs for each emitted
* vertex in vertex_output during operation. Then, when we have processed
* the last vertex (that is, at thread end time), we send the FF_SYNC
* message to allocate the initial VUE handle and write all buffered vertex
* data to the URB in one go.
*
* For each emitted vertex, vertex_output will hold vue_map.num_slots
* data items plus one additional item to hold required flags
* (PrimType, PrimStart, PrimEnd, as expected by the URB_WRITE message)
* which come right after the data items for that vertex. Vertex data and
* flags for the next vertex come right after the data items and flags for
* the previous vertex.
*/
this->current_annotation = "gen6 prolog";
this->vertex_output = src_reg(this,
glsl_type::uint_type,
(prog_data->vue_map.num_slots + 1) *
nir->info.gs.vertices_out);
this->vertex_output_offset = src_reg(this, glsl_type::uint_type);
emit(MOV(dst_reg(this->vertex_output_offset), brw_imm_ud(0u)));
/* MRF 1 will be the header for all messages (FF_SYNC and URB_WRITES),
* so initialize it once to R0.
*/
vec4_instruction *inst = emit(MOV(dst_reg(MRF, 1),
retype(brw_vec8_grf(0, 0),
BRW_REGISTER_TYPE_UD)));
inst->force_writemask_all = true;
/* This will be used as a temporary to store writeback data of FF_SYNC
* and URB_WRITE messages.
*/
this->temp = src_reg(this, glsl_type::uint_type);
/* This will be used to know when we are processing the first vertex of
* a primitive. We will set this to URB_WRITE_PRIM_START only when we know
* that we are processing the first vertex in the primitive and to zero
* otherwise. This way we can use its value directly in the URB write
* headers.
*/
this->first_vertex = src_reg(this, glsl_type::uint_type);
emit(MOV(dst_reg(this->first_vertex), brw_imm_ud(URB_WRITE_PRIM_START)));
/* The FF_SYNC message requires to know the number of primitives generated,
* so keep a counter for this.
*/
this->prim_count = src_reg(this, glsl_type::uint_type);
emit(MOV(dst_reg(this->prim_count), brw_imm_ud(0u)));
if (prog->info.has_transform_feedback_varyings) {
/* Create a virtual register to hold destination indices in SOL */
this->destination_indices = src_reg(this, glsl_type::uvec4_type);
/* Create a virtual register to hold number of written primitives */
this->sol_prim_written = src_reg(this, glsl_type::uint_type);
/* Create a virtual register to hold Streamed Vertex Buffer Indices */
this->svbi = src_reg(this, glsl_type::uvec4_type);
/* Create a virtual register to hold max values of SVBI */
this->max_svbi = src_reg(this, glsl_type::uvec4_type);
emit(MOV(dst_reg(this->max_svbi),
src_reg(retype(brw_vec1_grf(1, 4), BRW_REGISTER_TYPE_UD))));
xfb_setup();
}
/* PrimitveID is delivered in r0.1 of the thread payload. If the program
* needs it we have to move it to a separate register where we can map
* the atttribute.
*
* Notice that we cannot use a virtual register for this, because we need to
* map all input attributes to hardware registers in setup_payload(),
* which happens before virtual registers are mapped to hardware registers.
* We could work around that issue if we were able to compute the first
* non-payload register here and move the PrimitiveID information to that
* register, but we can't because at this point we don't know the final
* number uniforms that will be included in the payload.
*
* So, what we do is to place PrimitiveID information in r1, which is always
* delivered as part of the payload, but its only populated with data
* relevant for transform feedback when we set GEN6_GS_SVBI_PAYLOAD_ENABLE
* in the 3DSTATE_GS state packet. That information can be obtained by other
* means though, so we can safely use r1 for this purpose.
*/
if (gs_prog_data->include_primitive_id) {
this->primitive_id =
src_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
emit(GS_OPCODE_SET_PRIMITIVE_ID, dst_reg(this->primitive_id));
}
}
void
gen6_gs_visitor::gs_emit_vertex(int stream_id)
{
this->current_annotation = "gen6 emit vertex";
/* Buffer all output slots for this vertex in vertex_output */
for (int slot = 0; slot < prog_data->vue_map.num_slots; ++slot) {
int varying = prog_data->vue_map.slot_to_varying[slot];
if (varying != VARYING_SLOT_PSIZ) {
dst_reg dst(this->vertex_output);
dst.reladdr = ralloc(mem_ctx, src_reg);
memcpy(dst.reladdr, &this->vertex_output_offset, sizeof(src_reg));
emit_urb_slot(dst, varying);
} else {
/* The PSIZ slot can pack multiple varyings in different channels
* and emit_urb_slot() will produce a MOV instruction for each of
* them. Since we are writing to an array, that will translate to
* possibly multiple MOV instructions with an array destination and
* each will generate a scratch write with the same offset into
* scratch space (thus, each one overwriting the previous). This is
* not what we want. What we will do instead is emit PSIZ to a
* a regular temporary register, then move that resgister into the
* array. This way we only have one instruction with an array
* destination and we only produce a single scratch write.
*/
dst_reg tmp = dst_reg(src_reg(this, glsl_type::uvec4_type));
emit_urb_slot(tmp, varying);
dst_reg dst(this->vertex_output);
dst.reladdr = ralloc(mem_ctx, src_reg);
memcpy(dst.reladdr, &this->vertex_output_offset, sizeof(src_reg));
vec4_instruction *inst = emit(MOV(dst, src_reg(tmp)));
inst->force_writemask_all = true;
}
emit(ADD(dst_reg(this->vertex_output_offset),
this->vertex_output_offset, brw_imm_ud(1u)));
}
/* Now buffer flags for this vertex */
dst_reg dst(this->vertex_output);
dst.reladdr = ralloc(mem_ctx, src_reg);
memcpy(dst.reladdr, &this->vertex_output_offset, sizeof(src_reg));
if (nir->info.gs.output_primitive == GL_POINTS) {
/* If we are outputting points, then every vertex has PrimStart and
* PrimEnd set.
*/
emit(MOV(dst, brw_imm_d((_3DPRIM_POINTLIST << URB_WRITE_PRIM_TYPE_SHIFT) |
URB_WRITE_PRIM_START | URB_WRITE_PRIM_END)));
emit(ADD(dst_reg(this->prim_count), this->prim_count, brw_imm_ud(1u)));
} else {
/* Otherwise, we can only set the PrimStart flag, which we have stored
* in the first_vertex register. We will have to wait until we execute
* EndPrimitive() or we end the thread to set the PrimEnd flag on a
* vertex.
*/
emit(OR(dst, this->first_vertex,
brw_imm_ud(gs_prog_data->output_topology <<
URB_WRITE_PRIM_TYPE_SHIFT)));
emit(MOV(dst_reg(this->first_vertex), brw_imm_ud(0u)));
}
emit(ADD(dst_reg(this->vertex_output_offset),
this->vertex_output_offset, brw_imm_ud(1u)));
}
void
gen6_gs_visitor::gs_end_primitive()
{
this->current_annotation = "gen6 end primitive";
/* Calling EndPrimitive() is optional for point output. In this case we set
* the PrimEnd flag when we process EmitVertex().
*/
if (nir->info.gs.output_primitive == GL_POINTS)
return;
/* Otherwise we know that the last vertex we have processed was the last
* vertex in the primitive and we need to set its PrimEnd flag, so do this
* unless we haven't emitted that vertex at all (vertex_count != 0).
*
* Notice that we have already incremented vertex_count when we processed
* the last emit_vertex, so we need to take that into account in the
* comparison below (hence the num_output_vertices + 1 in the comparison
* below).
*/
unsigned num_output_vertices = nir->info.gs.vertices_out;
emit(CMP(dst_null_ud(), this->vertex_count,
brw_imm_ud(num_output_vertices + 1), BRW_CONDITIONAL_L));
vec4_instruction *inst = emit(CMP(dst_null_ud(),
this->vertex_count, brw_imm_ud(0u),
BRW_CONDITIONAL_NEQ));
inst->predicate = BRW_PREDICATE_NORMAL;
emit(IF(BRW_PREDICATE_NORMAL));
{
/* vertex_output_offset is already pointing at the first entry of the
* next vertex. So subtract 1 to modify the flags for the previous
* vertex.
*/
src_reg offset(this, glsl_type::uint_type);
emit(ADD(dst_reg(offset), this->vertex_output_offset, brw_imm_d(-1)));
src_reg dst(this->vertex_output);
dst.reladdr = ralloc(mem_ctx, src_reg);
memcpy(dst.reladdr, &offset, sizeof(src_reg));
emit(OR(dst_reg(dst), dst, brw_imm_d(URB_WRITE_PRIM_END)));
emit(ADD(dst_reg(this->prim_count), this->prim_count, brw_imm_ud(1u)));
/* Set the first vertex flag to indicate that the next vertex will start
* a primitive.
*/
emit(MOV(dst_reg(this->first_vertex), brw_imm_d(URB_WRITE_PRIM_START)));
}
emit(BRW_OPCODE_ENDIF);
}
void
gen6_gs_visitor::emit_urb_write_header(int mrf)
{
this->current_annotation = "gen6 urb header";
/* Compute offset of the flags for the current vertex in vertex_output and
* write them in dw2 of the message header.
*
* Notice that by the time that emit_thread_end() calls here
* vertex_output_offset should point to the first data item of the current
* vertex in vertex_output, thus we only need to add the number of output
* slots per vertex to that offset to obtain the flags data offset.
*/
src_reg flags_offset(this, glsl_type::uint_type);
emit(ADD(dst_reg(flags_offset),
this->vertex_output_offset,
brw_imm_d(prog_data->vue_map.num_slots)));
src_reg flags_data(this->vertex_output);
flags_data.reladdr = ralloc(mem_ctx, src_reg);
memcpy(flags_data.reladdr, &flags_offset, sizeof(src_reg));
emit(GS_OPCODE_SET_DWORD_2, dst_reg(MRF, mrf), flags_data);
}
static int
align_interleaved_urb_mlen(int mlen)
{
/* URB data written (does not include the message header reg) must
* be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
* section 5.4.3.2.2: URB_INTERLEAVED.
*/
if ((mlen % 2) != 1)
mlen++;
return mlen;
}
void
gen6_gs_visitor::emit_urb_write_opcode(bool complete, int base_mrf,
int last_mrf, int urb_offset)
{
vec4_instruction *inst = NULL;
if (!complete) {
/* If the vertex is not complete we don't have to do anything special */
inst = emit(GS_OPCODE_URB_WRITE);
inst->urb_write_flags = BRW_URB_WRITE_NO_FLAGS;
} else {
/* Otherwise we always request to allocate a new VUE handle. If this is
* the last write before the EOT message and the new handle never gets
* used it will be dereferenced when we send the EOT message. This is
* necessary to avoid different setups for the EOT message (one for the
* case when there is no output and another for the case when there is)
* which would require to end the program with an IF/ELSE/ENDIF block,
* something we do not want.
*/
inst = emit(GS_OPCODE_URB_WRITE_ALLOCATE);
inst->urb_write_flags = BRW_URB_WRITE_COMPLETE;
inst->dst = dst_reg(MRF, base_mrf);
inst->src[0] = this->temp;
}
inst->base_mrf = base_mrf;
inst->mlen = align_interleaved_urb_mlen(last_mrf - base_mrf);
inst->offset = urb_offset;
}
void
gen6_gs_visitor::emit_thread_end()
{
/* Make sure the current primitive is ended: we know it is not ended when
* first_vertex is not zero. This is only relevant for outputs other than
* points because in the point case we set PrimEnd on all vertices.
*/
if (nir->info.gs.output_primitive != GL_POINTS) {
emit(CMP(dst_null_ud(), this->first_vertex, brw_imm_ud(0u), BRW_CONDITIONAL_Z));
emit(IF(BRW_PREDICATE_NORMAL));
gs_end_primitive();
emit(BRW_OPCODE_ENDIF);
}
/* Here we have to:
* 1) Emit an FF_SYNC messsage to obtain an initial VUE handle.
* 2) Loop over all buffered vertex data and write it to corresponding
* URB entries.
* 3) Allocate new VUE handles for all vertices other than the first.
* 4) Send a final EOT message.
*/
/* MRF 0 is reserved for the debugger, so start with message header
* in MRF 1.
*/
int base_mrf = 1;
/* In the process of generating our URB write message contents, we
* may need to unspill a register or load from an array. Those
* reads would use MRFs 21..23
*/
int max_usable_mrf = FIRST_SPILL_MRF(devinfo->gen);
/* Issue the FF_SYNC message and obtain the initial VUE handle. */
this->current_annotation = "gen6 thread end: ff_sync";
vec4_instruction *inst = NULL;
if (prog->info.has_transform_feedback_varyings) {
src_reg sol_temp(this, glsl_type::uvec4_type);
emit(GS_OPCODE_FF_SYNC_SET_PRIMITIVES,
dst_reg(this->svbi),
this->vertex_count,
this->prim_count,
sol_temp);
inst = emit(GS_OPCODE_FF_SYNC,
dst_reg(this->temp), this->prim_count, this->svbi);
} else {
inst = emit(GS_OPCODE_FF_SYNC,
dst_reg(this->temp), this->prim_count, brw_imm_ud(0u));
}
inst->base_mrf = base_mrf;
emit(CMP(dst_null_ud(), this->vertex_count, brw_imm_ud(0u), BRW_CONDITIONAL_G));
emit(IF(BRW_PREDICATE_NORMAL));
{
/* Loop over all buffered vertices and emit URB write messages */
this->current_annotation = "gen6 thread end: urb writes init";
src_reg vertex(this, glsl_type::uint_type);
emit(MOV(dst_reg(vertex), brw_imm_ud(0u)));
emit(MOV(dst_reg(this->vertex_output_offset), brw_imm_ud(0u)));
this->current_annotation = "gen6 thread end: urb writes";
emit(BRW_OPCODE_DO);
{
emit(CMP(dst_null_d(), vertex, this->vertex_count, BRW_CONDITIONAL_GE));
inst = emit(BRW_OPCODE_BREAK);
inst->predicate = BRW_PREDICATE_NORMAL;
/* First we prepare the message header */
emit_urb_write_header(base_mrf);
/* Then add vertex data to the message in interleaved fashion */
int slot = 0;
bool complete = false;
do {
int mrf = base_mrf + 1;
/* URB offset is in URB row increments, and each of our MRFs is half
* of one of those, since we're doing interleaved writes.
*/
int urb_offset = slot / 2;
for (; slot < prog_data->vue_map.num_slots; ++slot) {
int varying = prog_data->vue_map.slot_to_varying[slot];
current_annotation = output_reg_annotation[varying];
/* Compute offset of this slot for the current vertex
* in vertex_output
*/
src_reg data(this->vertex_output);
data.reladdr = ralloc(mem_ctx, src_reg);
memcpy(data.reladdr, &this->vertex_output_offset,
sizeof(src_reg));
/* Copy this slot to the appropriate message register */
dst_reg reg = dst_reg(MRF, mrf);
reg.type = output_reg[varying][0].type;
data.type = reg.type;
inst = emit(MOV(reg, data));
inst->force_writemask_all = true;
mrf++;
emit(ADD(dst_reg(this->vertex_output_offset),
this->vertex_output_offset, brw_imm_ud(1u)));
/* If this was max_usable_mrf, we can't fit anything more into
* this URB WRITE. Same if we reached the max. message length.
*/
if (mrf > max_usable_mrf ||
align_interleaved_urb_mlen(mrf - base_mrf + 1) > BRW_MAX_MSG_LENGTH) {
slot++;
break;
}
}
complete = slot >= prog_data->vue_map.num_slots;
emit_urb_write_opcode(complete, base_mrf, mrf, urb_offset);
} while (!complete);
/* Skip over the flags data item so that vertex_output_offset points
* to the first data item of the next vertex, so that we can start
* writing the next vertex.
*/
emit(ADD(dst_reg(this->vertex_output_offset),
this->vertex_output_offset, brw_imm_ud(1u)));
emit(ADD(dst_reg(vertex), vertex, brw_imm_ud(1u)));
}
emit(BRW_OPCODE_WHILE);
if (prog->info.has_transform_feedback_varyings)
xfb_write();
}
emit(BRW_OPCODE_ENDIF);
/* Finally, emit EOT message.
*
* In gen6 we need to end the thread differently depending on whether we have
* emitted at least one vertex or not. In case we did, the EOT message must
* always include the COMPLETE flag or else the GPU hangs. If we have not
* produced any output we can't use the COMPLETE flag.
*
* However, this would lead us to end the program with an ENDIF opcode,
* which we want to avoid, so what we do is that we always request a new
* VUE handle every time, even if GS produces no output.
* With this we make sure that whether we have emitted at least one vertex
* or none at all, we have to finish the thread without writing to the URB,
* which works for both cases by setting the COMPLETE and UNUSED flags in
* the EOT message.
*/
this->current_annotation = "gen6 thread end: EOT";
if (prog->info.has_transform_feedback_varyings) {
/* When emitting EOT, set SONumPrimsWritten Increment Value. */
src_reg data(this, glsl_type::uint_type);
emit(AND(dst_reg(data), this->sol_prim_written, brw_imm_ud(0xffffu)));
emit(SHL(dst_reg(data), data, brw_imm_ud(16u)));
emit(GS_OPCODE_SET_DWORD_2, dst_reg(MRF, base_mrf), data);
}
inst = emit(GS_OPCODE_THREAD_END);
inst->urb_write_flags = BRW_URB_WRITE_COMPLETE | BRW_URB_WRITE_UNUSED;
inst->base_mrf = base_mrf;
inst->mlen = 1;
}
void
gen6_gs_visitor::setup_payload()
{
int attribute_map[BRW_VARYING_SLOT_COUNT * MAX_GS_INPUT_VERTICES];
/* Attributes are going to be interleaved, so one register contains two
* attribute slots.
*/
int attributes_per_reg = 2;
/* If a geometry shader tries to read from an input that wasn't written by
* the vertex shader, that produces undefined results, but it shouldn't
* crash anything. So initialize attribute_map to zeros--that ensures that
* these undefined results are read from r0.
*/
memset(attribute_map, 0, sizeof(attribute_map));
int reg = 0;
/* The payload always contains important data in r0. */
reg++;
/* r1 is always part of the payload and it holds information relevant
* for transform feedback when we set the GEN6_GS_SVBI_PAYLOAD_ENABLE bit in
* the 3DSTATE_GS packet. We will overwrite it with the PrimitiveID
* information (and move the original value to a virtual register if
* necessary).
*/
if (gs_prog_data->include_primitive_id)
attribute_map[VARYING_SLOT_PRIMITIVE_ID] = attributes_per_reg * reg;
reg++;
reg = setup_uniforms(reg);
reg = setup_varying_inputs(reg, attributes_per_reg);
this->first_non_payload_grf = reg;
}
void
gen6_gs_visitor::xfb_setup()
{
static const unsigned swizzle_for_offset[4] = {
BRW_SWIZZLE4(0, 1, 2, 3),
BRW_SWIZZLE4(1, 2, 3, 3),
BRW_SWIZZLE4(2, 3, 3, 3),
BRW_SWIZZLE4(3, 3, 3, 3)
};
const struct gl_transform_feedback_info *linked_xfb_info =
this->prog->sh.LinkedTransformFeedback;
int i;
/* Make sure that the VUE slots won't overflow the unsigned chars in
* prog_data->transform_feedback_bindings[].
*/
STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 256);
/* Make sure that we don't need more binding table entries than we've
* set aside for use in transform feedback. (We shouldn't, since we
* set aside enough binding table entries to have one per component).
*/
assert(linked_xfb_info->NumOutputs <= BRW_MAX_SOL_BINDINGS);
gs_prog_data->num_transform_feedback_bindings = linked_xfb_info->NumOutputs;
for (i = 0; i < gs_prog_data->num_transform_feedback_bindings; i++) {
gs_prog_data->transform_feedback_bindings[i] =
linked_xfb_info->Outputs[i].OutputRegister;
gs_prog_data->transform_feedback_swizzles[i] =
swizzle_for_offset[linked_xfb_info->Outputs[i].ComponentOffset];
}
}
void
gen6_gs_visitor::xfb_write()
{
unsigned num_verts;
if (!gs_prog_data->num_transform_feedback_bindings)
return;
switch (gs_prog_data->output_topology) {
case _3DPRIM_POINTLIST:
num_verts = 1;
break;
case _3DPRIM_LINELIST:
case _3DPRIM_LINESTRIP:
case _3DPRIM_LINELOOP:
num_verts = 2;
break;
case _3DPRIM_TRILIST:
case _3DPRIM_TRIFAN:
case _3DPRIM_TRISTRIP:
case _3DPRIM_RECTLIST:
num_verts = 3;
break;
case _3DPRIM_QUADLIST:
case _3DPRIM_QUADSTRIP:
case _3DPRIM_POLYGON:
num_verts = 3;
break;
default:
unreachable("Unexpected primitive type in Gen6 SOL program.");
}
this->current_annotation = "gen6 thread end: svb writes init";
emit(MOV(dst_reg(this->vertex_output_offset), brw_imm_ud(0u)));
emit(MOV(dst_reg(this->sol_prim_written), brw_imm_ud(0u)));
/* Check that at least one primitive can be written
*
* Note: since we use the binding table to keep track of buffer offsets
* and stride, the GS doesn't need to keep track of a separate pointer
* into each buffer; it uses a single pointer which increments by 1 for
* each vertex. So we use SVBI0 for this pointer, regardless of whether
* transform feedback is in interleaved or separate attribs mode.
*/
src_reg sol_temp(this, glsl_type::uvec4_type);
emit(ADD(dst_reg(sol_temp), this->svbi, brw_imm_ud(num_verts)));
/* Compare SVBI calculated number with the maximum value, which is
* in R1.4 (previously saved in this->max_svbi) for gen6.
*/
emit(CMP(dst_null_d(), sol_temp, this->max_svbi, BRW_CONDITIONAL_LE));
emit(IF(BRW_PREDICATE_NORMAL));
{
vec4_instruction *inst = emit(MOV(dst_reg(destination_indices),
brw_imm_vf4(brw_float_to_vf(0.0),
brw_float_to_vf(1.0),
brw_float_to_vf(2.0),
brw_float_to_vf(0.0))));
inst->force_writemask_all = true;
emit(ADD(dst_reg(this->destination_indices),
this->destination_indices,
this->svbi));
}
emit(BRW_OPCODE_ENDIF);
/* Write transform feedback data for all processed vertices. */
for (int i = 0; i < (int)nir->info.gs.vertices_out; i++) {
emit(MOV(dst_reg(sol_temp), brw_imm_d(i)));
emit(CMP(dst_null_d(), sol_temp, this->vertex_count,
BRW_CONDITIONAL_L));
emit(IF(BRW_PREDICATE_NORMAL));
{
xfb_program(i, num_verts);
}
emit(BRW_OPCODE_ENDIF);
}
}
void
gen6_gs_visitor::xfb_program(unsigned vertex, unsigned num_verts)
{
unsigned binding;
unsigned num_bindings = gs_prog_data->num_transform_feedback_bindings;
src_reg sol_temp(this, glsl_type::uvec4_type);
/* Check for buffer overflow: we need room to write the complete primitive
* (all vertices). Otherwise, avoid writing any vertices for it
*/
emit(ADD(dst_reg(sol_temp), this->sol_prim_written, brw_imm_ud(1u)));
emit(MUL(dst_reg(sol_temp), sol_temp, brw_imm_ud(num_verts)));
emit(ADD(dst_reg(sol_temp), sol_temp, this->svbi));
emit(CMP(dst_null_d(), sol_temp, this->max_svbi, BRW_CONDITIONAL_LE));
emit(IF(BRW_PREDICATE_NORMAL));
{
/* Avoid overwriting MRF 1 as it is used as URB write message header */
dst_reg mrf_reg(MRF, 2);
this->current_annotation = "gen6: emit SOL vertex data";
/* For each vertex, generate code to output each varying using the
* appropriate binding table entry.
*/
for (binding = 0; binding < num_bindings; ++binding) {
unsigned char varying =
gs_prog_data->transform_feedback_bindings[binding];
/* Set up the correct destination index for this vertex */
vec4_instruction *inst = emit(GS_OPCODE_SVB_SET_DST_INDEX,
mrf_reg,
this->destination_indices);
inst->sol_vertex = vertex % num_verts;
/* From the Sandybridge PRM, Volume 2, Part 1, Section 4.5.1:
*
* "Prior to End of Thread with a URB_WRITE, the kernel must
* ensure that all writes are complete by sending the final
* write as a committed write."
*/
bool final_write = binding == (unsigned) num_bindings - 1 &&
inst->sol_vertex == num_verts - 1;
/* Compute offset of this varying for the current vertex
* in vertex_output
*/
this->current_annotation = output_reg_annotation[varying];
src_reg data(this->vertex_output);
data.reladdr = ralloc(mem_ctx, src_reg);
int offset = get_vertex_output_offset_for_varying(vertex, varying);
emit(MOV(dst_reg(this->vertex_output_offset), brw_imm_d(offset)));
memcpy(data.reladdr, &this->vertex_output_offset, sizeof(src_reg));
data.type = output_reg[varying][0].type;
data.swizzle = gs_prog_data->transform_feedback_swizzles[binding];
/* Write data */
inst = emit(GS_OPCODE_SVB_WRITE, mrf_reg, data, sol_temp);
inst->sol_binding = binding;
inst->sol_final_write = final_write;
if (final_write) {
/* This is the last vertex of the primitive, then increment
* SO num primitive counter and destination indices.
*/
emit(ADD(dst_reg(this->destination_indices),
this->destination_indices,
brw_imm_ud(num_verts)));
emit(ADD(dst_reg(this->sol_prim_written),
this->sol_prim_written, brw_imm_ud(1u)));
}
}
this->current_annotation = NULL;
}
emit(BRW_OPCODE_ENDIF);
}
int
gen6_gs_visitor::get_vertex_output_offset_for_varying(int vertex, int varying)
{
/* Find the output slot assigned to this varying.
*
* VARYING_SLOT_LAYER and VARYING_SLOT_VIEWPORT are packed in the same slot
* as VARYING_SLOT_PSIZ.
*/
if (varying == VARYING_SLOT_LAYER || varying == VARYING_SLOT_VIEWPORT)
varying = VARYING_SLOT_PSIZ;
int slot = prog_data->vue_map.varying_to_slot[varying];
if (slot < 0) {
/* This varying does not exist in the VUE so we are not writing to it
* and its value is undefined. We still want to return a valid offset
* into vertex_output though, to prevent any out-of-bound accesses into
* the vertex_output array. Since the value for this varying is undefined
* we don't really care for the value we assign to it, so any offset
* within the limits of vertex_output will do.
*/
slot = 0;
}
return vertex * (prog_data->vue_map.num_slots + 1) + slot;
}
} /* namespace brw */
|