1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
|
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_nir.h"
#include "brw_vec4.h"
#include "brw_vec4_builder.h"
#include "brw_vec4_surface_builder.h"
using namespace brw;
using namespace brw::surface_access;
namespace brw {
void
vec4_visitor::emit_nir_code()
{
if (nir->num_uniforms > 0)
nir_setup_uniforms();
/* get the main function and emit it */
nir_foreach_function(function, nir) {
assert(strcmp(function->name, "main") == 0);
assert(function->impl);
nir_emit_impl(function->impl);
}
}
void
vec4_visitor::nir_setup_uniforms()
{
uniforms = nir->num_uniforms / 16;
}
void
vec4_visitor::nir_emit_impl(nir_function_impl *impl)
{
nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
for (unsigned i = 0; i < impl->reg_alloc; i++) {
nir_locals[i] = dst_reg();
}
foreach_list_typed(nir_register, reg, node, &impl->registers) {
unsigned array_elems =
reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
const unsigned num_regs = array_elems * DIV_ROUND_UP(reg->bit_size, 32);
nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(num_regs));
if (reg->bit_size == 64)
nir_locals[reg->index].type = BRW_REGISTER_TYPE_DF;
}
nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
nir_emit_cf_list(&impl->body);
}
void
vec4_visitor::nir_emit_cf_list(exec_list *list)
{
exec_list_validate(list);
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_if:
nir_emit_if(nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
nir_emit_loop(nir_cf_node_as_loop(node));
break;
case nir_cf_node_block:
nir_emit_block(nir_cf_node_as_block(node));
break;
default:
unreachable("Invalid CFG node block");
}
}
}
void
vec4_visitor::nir_emit_if(nir_if *if_stmt)
{
/* First, put the condition in f0 */
src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
/* We can just predicate based on the X channel, as the condition only
* goes on its own line */
emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
nir_emit_cf_list(&if_stmt->then_list);
/* note: if the else is empty, dead CF elimination will remove it */
emit(BRW_OPCODE_ELSE);
nir_emit_cf_list(&if_stmt->else_list);
emit(BRW_OPCODE_ENDIF);
}
void
vec4_visitor::nir_emit_loop(nir_loop *loop)
{
emit(BRW_OPCODE_DO);
nir_emit_cf_list(&loop->body);
emit(BRW_OPCODE_WHILE);
}
void
vec4_visitor::nir_emit_block(nir_block *block)
{
nir_foreach_instr(instr, block) {
nir_emit_instr(instr);
}
}
void
vec4_visitor::nir_emit_instr(nir_instr *instr)
{
base_ir = instr;
switch (instr->type) {
case nir_instr_type_load_const:
nir_emit_load_const(nir_instr_as_load_const(instr));
break;
case nir_instr_type_intrinsic:
nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_alu:
nir_emit_alu(nir_instr_as_alu(instr));
break;
case nir_instr_type_jump:
nir_emit_jump(nir_instr_as_jump(instr));
break;
case nir_instr_type_tex:
nir_emit_texture(nir_instr_as_tex(instr));
break;
case nir_instr_type_ssa_undef:
nir_emit_undef(nir_instr_as_ssa_undef(instr));
break;
default:
fprintf(stderr, "VS instruction not yet implemented by NIR->vec4\n");
break;
}
}
static dst_reg
dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
unsigned base_offset, nir_src *indirect)
{
dst_reg reg;
reg = v->nir_locals[nir_reg->index];
if (nir_reg->bit_size == 64)
reg.type = BRW_REGISTER_TYPE_DF;
reg = offset(reg, 8, base_offset);
if (indirect) {
reg.reladdr =
new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
BRW_REGISTER_TYPE_D,
1));
}
return reg;
}
dst_reg
vec4_visitor::get_nir_dest(const nir_dest &dest)
{
if (dest.is_ssa) {
dst_reg dst =
dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(dest.ssa.bit_size, 32)));
if (dest.ssa.bit_size == 64)
dst.type = BRW_REGISTER_TYPE_DF;
nir_ssa_values[dest.ssa.index] = dst;
return dst;
} else {
return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
dest.reg.indirect);
}
}
dst_reg
vec4_visitor::get_nir_dest(const nir_dest &dest, enum brw_reg_type type)
{
return retype(get_nir_dest(dest), type);
}
dst_reg
vec4_visitor::get_nir_dest(const nir_dest &dest, nir_alu_type type)
{
return get_nir_dest(dest, brw_type_for_nir_type(devinfo, type));
}
src_reg
vec4_visitor::get_nir_src(const nir_src &src, enum brw_reg_type type,
unsigned num_components)
{
dst_reg reg;
if (src.is_ssa) {
assert(src.ssa != NULL);
reg = nir_ssa_values[src.ssa->index];
}
else {
reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
src.reg.indirect);
}
reg = retype(reg, type);
src_reg reg_as_src = src_reg(reg);
reg_as_src.swizzle = brw_swizzle_for_size(num_components);
return reg_as_src;
}
src_reg
vec4_visitor::get_nir_src(const nir_src &src, nir_alu_type type,
unsigned num_components)
{
return get_nir_src(src, brw_type_for_nir_type(devinfo, type),
num_components);
}
src_reg
vec4_visitor::get_nir_src(const nir_src &src, unsigned num_components)
{
/* if type is not specified, default to signed int */
return get_nir_src(src, nir_type_int32, num_components);
}
src_reg
vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
{
nir_src *offset_src = nir_get_io_offset_src(instr);
nir_const_value *const_value = nir_src_as_const_value(*offset_src);
if (const_value) {
/* The only constant offset we should find is 0. brw_nir.c's
* add_const_offset_to_base() will fold other constant offsets
* into instr->const_index[0].
*/
assert(const_value->u32[0] == 0);
return src_reg();
}
return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
}
static src_reg
setup_imm_df(const vec4_builder &bld, double v)
{
const gen_device_info *devinfo = bld.shader->devinfo;
assert(devinfo->gen >= 7);
if (devinfo->gen >= 8)
return brw_imm_df(v);
/* gen7.5 does not support DF immediates straighforward but the DIM
* instruction allows to set the 64-bit immediate value.
*/
if (devinfo->is_haswell) {
const vec4_builder ubld = bld.exec_all();
const dst_reg dst = bld.vgrf(BRW_REGISTER_TYPE_DF);
ubld.DIM(dst, brw_imm_df(v));
return swizzle(src_reg(dst), BRW_SWIZZLE_XXXX);
}
/* gen7 does not support DF immediates */
union {
double d;
struct {
uint32_t i1;
uint32_t i2;
};
} di;
di.d = v;
/* Write the low 32-bit of the constant to the X:UD channel and the
* high 32-bit to the Y:UD channel to build the constant in a VGRF.
* We have to do this twice (offset 0 and offset 1), since a DF VGRF takes
* two SIMD8 registers in SIMD4x2 execution. Finally, return a swizzle
* XXXX so any access to the VGRF only reads the constant data in these
* channels.
*/
const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
for (unsigned n = 0; n < 2; n++) {
const vec4_builder ubld = bld.exec_all().group(4, n);
ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_X), brw_imm_ud(di.i1));
ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_Y), brw_imm_ud(di.i2));
}
return swizzle(src_reg(retype(tmp, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX);
}
void
vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
{
dst_reg reg;
if (instr->def.bit_size == 64) {
reg = dst_reg(VGRF, alloc.allocate(2));
reg.type = BRW_REGISTER_TYPE_DF;
} else {
reg = dst_reg(VGRF, alloc.allocate(1));
reg.type = BRW_REGISTER_TYPE_D;
}
const vec4_builder ibld = vec4_builder(this).at_end();
unsigned remaining = brw_writemask_for_size(instr->def.num_components);
/* @FIXME: consider emitting vector operations to save some MOVs in
* cases where the components are representable in 8 bits.
* For now, we emit a MOV for each distinct value.
*/
for (unsigned i = 0; i < instr->def.num_components; i++) {
unsigned writemask = 1 << i;
if ((remaining & writemask) == 0)
continue;
for (unsigned j = i; j < instr->def.num_components; j++) {
if ((instr->def.bit_size == 32 &&
instr->value.u32[i] == instr->value.u32[j]) ||
(instr->def.bit_size == 64 &&
instr->value.f64[i] == instr->value.f64[j])) {
writemask |= 1 << j;
}
}
reg.writemask = writemask;
if (instr->def.bit_size == 64) {
emit(MOV(reg, setup_imm_df(ibld, instr->value.f64[i])));
} else {
emit(MOV(reg, brw_imm_d(instr->value.i32[i])));
}
remaining &= ~writemask;
}
/* Set final writemask */
reg.writemask = brw_writemask_for_size(instr->def.num_components);
nir_ssa_values[instr->def.index] = reg;
}
void
vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
{
dst_reg dest;
src_reg src;
switch (instr->intrinsic) {
case nir_intrinsic_load_input: {
nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
/* We set EmitNoIndirectInput for VS */
assert(const_offset);
dest = get_nir_dest(instr->dest);
dest.writemask = brw_writemask_for_size(instr->num_components);
src = src_reg(ATTR, instr->const_index[0] + const_offset->u32[0],
glsl_type::uvec4_type);
src = retype(src, dest.type);
bool is_64bit = nir_dest_bit_size(instr->dest) == 64;
if (is_64bit) {
dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
src.swizzle = BRW_SWIZZLE_XYZW;
shuffle_64bit_data(tmp, src, false);
emit(MOV(dest, src_reg(tmp)));
} else {
/* Swizzle source based on component layout qualifier */
src.swizzle = BRW_SWZ_COMP_INPUT(nir_intrinsic_component(instr));
emit(MOV(dest, src));
}
break;
}
case nir_intrinsic_store_output: {
nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
assert(const_offset);
int varying = instr->const_index[0] + const_offset->u32[0];
bool is_64bit = nir_src_bit_size(instr->src[0]) == 64;
if (is_64bit) {
src_reg data;
src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_DF,
instr->num_components);
data = src_reg(this, glsl_type::dvec4_type);
shuffle_64bit_data(dst_reg(data), src, true);
src = retype(data, BRW_REGISTER_TYPE_F);
} else {
src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
instr->num_components);
}
unsigned c = nir_intrinsic_component(instr);
output_reg[varying][c] = dst_reg(src);
output_num_components[varying][c] = instr->num_components;
unsigned num_components = instr->num_components;
if (is_64bit)
num_components *= 2;
output_reg[varying][c] = dst_reg(src);
output_num_components[varying][c] = MIN2(4, num_components);
if (is_64bit && num_components > 4) {
assert(num_components <= 8);
output_reg[varying + 1][c] = byte_offset(dst_reg(src), REG_SIZE);
output_num_components[varying + 1][c] = num_components - 4;
}
break;
}
case nir_intrinsic_get_buffer_size: {
nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
const unsigned index =
prog_data->base.binding_table.ssbo_start + ssbo_index;
dst_reg result_dst = get_nir_dest(instr->dest);
vec4_instruction *inst = new(mem_ctx)
vec4_instruction(SHADER_OPCODE_GET_BUFFER_SIZE, result_dst);
inst->base_mrf = 2;
inst->mlen = 1; /* always at least one */
inst->src[1] = brw_imm_ud(index);
/* MRF for the first parameter */
src_reg lod = brw_imm_d(0);
int param_base = inst->base_mrf;
int writemask = WRITEMASK_X;
emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
emit(inst);
brw_mark_surface_used(&prog_data->base, index);
break;
}
case nir_intrinsic_store_ssbo: {
assert(devinfo->gen >= 7);
/* Block index */
src_reg surf_index;
nir_const_value *const_uniform_block =
nir_src_as_const_value(instr->src[1]);
if (const_uniform_block) {
unsigned index = prog_data->base.binding_table.ssbo_start +
const_uniform_block->u32[0];
surf_index = brw_imm_ud(index);
brw_mark_surface_used(&prog_data->base, index);
} else {
surf_index = src_reg(this, glsl_type::uint_type);
emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[1], 1),
brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
surf_index = emit_uniformize(surf_index);
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.ssbo_start +
nir->info.num_ssbos - 1);
}
/* Offset */
src_reg offset_reg;
nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
if (const_offset) {
offset_reg = brw_imm_ud(const_offset->u32[0]);
} else {
offset_reg = get_nir_src(instr->src[2], 1);
}
/* Value */
src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4);
/* Writemask */
unsigned write_mask = instr->const_index[0];
/* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
* writes will use SIMD8 mode. In order to hide this and keep symmetry across
* typed and untyped messages and across hardware platforms, the
* current implementation of the untyped messages will transparently convert
* the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
* and enabling only channel X on the SEND instruction.
*
* The above, works well for full vector writes, but not for partial writes
* where we want to write some channels and not others, like when we have
* code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
* quite restrictive with regards to the channel enables we can configure in
* the message descriptor (not all combinations are allowed) we cannot simply
* implement these scenarios with a single message while keeping the
* aforementioned symmetry in the implementation. For now we de decided that
* it is better to keep the symmetry to reduce complexity, so in situations
* such as the one described we end up emitting two untyped write messages
* (one for xy and another for w).
*
* The code below packs consecutive channels into a single write message,
* detects gaps in the vector write and if needed, sends a second message
* with the remaining channels. If in the future we decide that we want to
* emit a single message at the expense of losing the symmetry in the
* implementation we can:
*
* 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
* message payload. In this mode we can write up to 8 offsets and dwords
* to the red channel only (for the two vec4s in the SIMD4x2 execution)
* and select which of the 8 channels carry data to write by setting the
* appropriate writemask in the dst register of the SEND instruction.
* It would require to write a new generator opcode specifically for
* IvyBridge since we would need to prepare a SIMD8 payload that could
* use any channel, not just X.
*
* 2) For Haswell+: Simply send a single write message but set the writemask
* on the dst of the SEND instruction to select the channels we want to
* write. It would require to modify the current messages to receive
* and honor the writemask provided.
*/
const vec4_builder bld = vec4_builder(this).at_end()
.annotate(current_annotation, base_ir);
unsigned type_slots = nir_src_bit_size(instr->src[0]) / 32;
if (type_slots == 2) {
dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
shuffle_64bit_data(tmp, retype(val_reg, tmp.type), true);
val_reg = src_reg(retype(tmp, BRW_REGISTER_TYPE_F));
}
uint8_t swizzle[4] = { 0, 0, 0, 0};
int num_channels = 0;
unsigned skipped_channels = 0;
int num_components = instr->num_components;
for (int i = 0; i < num_components; i++) {
/* Read components Z/W of a dvec from the appropriate place. We will
* also have to adjust the swizzle (we do that with the '% 4' below)
*/
if (i == 2 && type_slots == 2)
val_reg = byte_offset(val_reg, REG_SIZE);
/* Check if this channel needs to be written. If so, record the
* channel we need to take the data from in the swizzle array
*/
int component_mask = 1 << i;
int write_test = write_mask & component_mask;
if (write_test) {
/* If we are writing doubles we have to write 2 channels worth of
* of data (64 bits) for each double component.
*/
swizzle[num_channels++] = (i * type_slots) % 4;
if (type_slots == 2)
swizzle[num_channels++] = (i * type_slots + 1) % 4;
}
/* If we don't have to write this channel it means we have a gap in the
* vector, so write the channels we accumulated until now, if any. Do
* the same if this was the last component in the vector, if we have
* enough channels for a full vec4 write or if we have processed
* components XY of a dvec (since components ZW are not in the same
* SIMD register)
*/
if (!write_test || i == num_components - 1 || num_channels == 4 ||
(i == 1 && type_slots == 2)) {
if (num_channels > 0) {
/* We have channels to write, so update the offset we need to
* write at to skip the channels we skipped, if any.
*/
if (skipped_channels > 0) {
if (offset_reg.file == IMM) {
offset_reg.ud += 4 * skipped_channels;
} else {
emit(ADD(dst_reg(offset_reg), offset_reg,
brw_imm_ud(4 * skipped_channels)));
}
}
/* Swizzle the data register so we take the data from the channels
* we need to write and send the write message. This will write
* num_channels consecutive dwords starting at offset.
*/
val_reg.swizzle =
BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
emit_untyped_write(bld, surf_index, offset_reg, val_reg,
1 /* dims */, num_channels /* size */,
BRW_PREDICATE_NONE);
/* If we have to do a second write we will have to update the
* offset so that we jump over the channels we have just written
* now.
*/
skipped_channels = num_channels;
/* Restart the count for the next write message */
num_channels = 0;
}
/* If we didn't write the channel, increase skipped count */
if (!write_test)
skipped_channels += type_slots;
}
}
break;
}
case nir_intrinsic_load_ssbo: {
assert(devinfo->gen >= 7);
nir_const_value *const_uniform_block =
nir_src_as_const_value(instr->src[0]);
src_reg surf_index;
if (const_uniform_block) {
unsigned index = prog_data->base.binding_table.ssbo_start +
const_uniform_block->u32[0];
surf_index = brw_imm_ud(index);
brw_mark_surface_used(&prog_data->base, index);
} else {
surf_index = src_reg(this, glsl_type::uint_type);
emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], 1),
brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
surf_index = emit_uniformize(surf_index);
/* Assume this may touch any UBO. It would be nice to provide
* a tighter bound, but the array information is already lowered away.
*/
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.ssbo_start +
nir->info.num_ssbos - 1);
}
src_reg offset_reg;
nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
if (const_offset) {
offset_reg = brw_imm_ud(const_offset->u32[0]);
} else {
offset_reg = get_nir_src(instr->src[1], 1);
}
/* Read the vector */
const vec4_builder bld = vec4_builder(this).at_end()
.annotate(current_annotation, base_ir);
src_reg read_result;
dst_reg dest = get_nir_dest(instr->dest);
if (type_sz(dest.type) < 8) {
read_result = emit_untyped_read(bld, surf_index, offset_reg,
1 /* dims */, 4 /* size*/,
BRW_PREDICATE_NONE);
} else {
src_reg shuffled = src_reg(this, glsl_type::dvec4_type);
src_reg temp;
temp = emit_untyped_read(bld, surf_index, offset_reg,
1 /* dims */, 4 /* size*/,
BRW_PREDICATE_NONE);
emit(MOV(dst_reg(retype(shuffled, temp.type)), temp));
if (offset_reg.file == IMM)
offset_reg.ud += 16;
else
emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16)));
temp = emit_untyped_read(bld, surf_index, offset_reg,
1 /* dims */, 4 /* size*/,
BRW_PREDICATE_NONE);
emit(MOV(dst_reg(retype(byte_offset(shuffled, REG_SIZE), temp.type)),
temp));
read_result = src_reg(this, glsl_type::dvec4_type);
shuffle_64bit_data(dst_reg(read_result), shuffled, false);
}
read_result.type = dest.type;
read_result.swizzle = brw_swizzle_for_size(instr->num_components);
emit(MOV(dest, read_result));
break;
}
case nir_intrinsic_ssbo_atomic_add:
nir_emit_ssbo_atomic(BRW_AOP_ADD, instr);
break;
case nir_intrinsic_ssbo_atomic_imin:
nir_emit_ssbo_atomic(BRW_AOP_IMIN, instr);
break;
case nir_intrinsic_ssbo_atomic_umin:
nir_emit_ssbo_atomic(BRW_AOP_UMIN, instr);
break;
case nir_intrinsic_ssbo_atomic_imax:
nir_emit_ssbo_atomic(BRW_AOP_IMAX, instr);
break;
case nir_intrinsic_ssbo_atomic_umax:
nir_emit_ssbo_atomic(BRW_AOP_UMAX, instr);
break;
case nir_intrinsic_ssbo_atomic_and:
nir_emit_ssbo_atomic(BRW_AOP_AND, instr);
break;
case nir_intrinsic_ssbo_atomic_or:
nir_emit_ssbo_atomic(BRW_AOP_OR, instr);
break;
case nir_intrinsic_ssbo_atomic_xor:
nir_emit_ssbo_atomic(BRW_AOP_XOR, instr);
break;
case nir_intrinsic_ssbo_atomic_exchange:
nir_emit_ssbo_atomic(BRW_AOP_MOV, instr);
break;
case nir_intrinsic_ssbo_atomic_comp_swap:
nir_emit_ssbo_atomic(BRW_AOP_CMPWR, instr);
break;
case nir_intrinsic_load_vertex_id:
unreachable("should be lowered by lower_vertex_id()");
case nir_intrinsic_load_vertex_id_zero_base:
case nir_intrinsic_load_base_vertex:
case nir_intrinsic_load_instance_id:
case nir_intrinsic_load_base_instance:
case nir_intrinsic_load_draw_id:
case nir_intrinsic_load_invocation_id:
unreachable("should be lowered by brw_nir_lower_vs_inputs()");
case nir_intrinsic_load_uniform: {
/* Offsets are in bytes but they should always be multiples of 4 */
assert(nir_intrinsic_base(instr) % 4 == 0);
dest = get_nir_dest(instr->dest);
src = src_reg(dst_reg(UNIFORM, nir_intrinsic_base(instr) / 16));
src.type = dest.type;
/* Uniforms don't actually have to be vec4 aligned. In the case that
* it isn't, we have to use a swizzle to shift things around. They
* do still have the std140 alignment requirement that vec2's have to
* be vec2-aligned and vec3's and vec4's have to be vec4-aligned.
*
* The swizzle also works in the indirect case as the generator adds
* the swizzle to the offset for us.
*/
const int type_size = type_sz(src.type);
unsigned shift = (nir_intrinsic_base(instr) % 16) / type_size;
assert(shift + instr->num_components <= 4);
nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
if (const_offset) {
/* Offsets are in bytes but they should always be multiples of 4 */
assert(const_offset->u32[0] % 4 == 0);
src.swizzle = brw_swizzle_for_size(instr->num_components);
dest.writemask = brw_writemask_for_size(instr->num_components);
unsigned offset = const_offset->u32[0] + shift * type_size;
src.offset = ROUND_DOWN_TO(offset, 16);
shift = (offset % 16) / type_size;
assert(shift + instr->num_components <= 4);
src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
emit(MOV(dest, src));
} else {
/* Uniform arrays are vec4 aligned, because of std140 alignment
* rules.
*/
assert(shift == 0);
src_reg indirect = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
/* MOV_INDIRECT is going to stomp the whole thing anyway */
dest.writemask = WRITEMASK_XYZW;
emit(SHADER_OPCODE_MOV_INDIRECT, dest, src,
indirect, brw_imm_ud(instr->const_index[1]));
}
break;
}
case nir_intrinsic_load_ubo: {
nir_const_value *const_block_index = nir_src_as_const_value(instr->src[0]);
src_reg surf_index;
dest = get_nir_dest(instr->dest);
if (const_block_index) {
/* The block index is a constant, so just emit the binding table entry
* as an immediate.
*/
const unsigned index = prog_data->base.binding_table.ubo_start +
const_block_index->u32[0];
surf_index = brw_imm_ud(index);
brw_mark_surface_used(&prog_data->base, index);
} else {
/* The block index is not a constant. Evaluate the index expression
* per-channel and add the base UBO index; we have to select a value
* from any live channel.
*/
surf_index = src_reg(this, glsl_type::uint_type);
emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int32,
instr->num_components),
brw_imm_ud(prog_data->base.binding_table.ubo_start)));
surf_index = emit_uniformize(surf_index);
/* Assume this may touch any UBO. It would be nice to provide
* a tighter bound, but the array information is already lowered away.
*/
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.ubo_start +
nir->info.num_ubos - 1);
}
src_reg offset_reg;
nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
if (const_offset) {
offset_reg = brw_imm_ud(const_offset->u32[0] & ~15);
} else {
offset_reg = src_reg(this, glsl_type::uint_type);
emit(MOV(dst_reg(offset_reg),
get_nir_src(instr->src[1], nir_type_uint32, 1)));
}
src_reg packed_consts;
if (nir_dest_bit_size(instr->dest) == 32) {
packed_consts = src_reg(this, glsl_type::vec4_type);
emit_pull_constant_load_reg(dst_reg(packed_consts),
surf_index,
offset_reg,
NULL, NULL /* before_block/inst */);
} else {
src_reg temp = src_reg(this, glsl_type::dvec4_type);
src_reg temp_float = retype(temp, BRW_REGISTER_TYPE_F);
emit_pull_constant_load_reg(dst_reg(temp_float),
surf_index, offset_reg, NULL, NULL);
if (offset_reg.file == IMM)
offset_reg.ud += 16;
else
emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16u)));
emit_pull_constant_load_reg(dst_reg(byte_offset(temp_float, REG_SIZE)),
surf_index, offset_reg, NULL, NULL);
packed_consts = src_reg(this, glsl_type::dvec4_type);
shuffle_64bit_data(dst_reg(packed_consts), temp, false);
}
packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
if (const_offset) {
unsigned type_size = type_sz(dest.type);
packed_consts.swizzle +=
BRW_SWIZZLE4(const_offset->u32[0] % 16 / type_size,
const_offset->u32[0] % 16 / type_size,
const_offset->u32[0] % 16 / type_size,
const_offset->u32[0] % 16 / type_size);
}
emit(MOV(dest, retype(packed_consts, dest.type)));
break;
}
case nir_intrinsic_memory_barrier: {
const vec4_builder bld =
vec4_builder(this).at_end().annotate(current_annotation, base_ir);
const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
->size_written = 2 * REG_SIZE;
break;
}
case nir_intrinsic_shader_clock: {
/* We cannot do anything if there is an event, so ignore it for now */
const src_reg shader_clock = get_timestamp();
const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
dest = get_nir_dest(instr->dest, type);
emit(MOV(dest, shader_clock));
break;
}
default:
unreachable("Unknown intrinsic");
}
}
void
vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
{
dst_reg dest;
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
dest = get_nir_dest(instr->dest);
src_reg surface;
nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
if (const_surface) {
unsigned surf_index = prog_data->base.binding_table.ssbo_start +
const_surface->u32[0];
surface = brw_imm_ud(surf_index);
brw_mark_surface_used(&prog_data->base, surf_index);
} else {
surface = src_reg(this, glsl_type::uint_type);
emit(ADD(dst_reg(surface), get_nir_src(instr->src[0]),
brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
/* Assume this may touch any UBO. This is the same we do for other
* UBO/SSBO accesses with non-constant surface.
*/
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.ssbo_start +
nir->info.num_ssbos - 1);
}
src_reg offset = get_nir_src(instr->src[1], 1);
src_reg data1 = get_nir_src(instr->src[2], 1);
src_reg data2;
if (op == BRW_AOP_CMPWR)
data2 = get_nir_src(instr->src[3], 1);
/* Emit the actual atomic operation operation */
const vec4_builder bld =
vec4_builder(this).at_end().annotate(current_annotation, base_ir);
src_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
data1, data2,
1 /* dims */, 1 /* rsize */,
op,
BRW_PREDICATE_NONE);
dest.type = atomic_result.type;
bld.MOV(dest, atomic_result);
}
static unsigned
brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
{
return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
}
static enum brw_conditional_mod
brw_conditional_for_nir_comparison(nir_op op)
{
switch (op) {
case nir_op_flt:
case nir_op_ilt:
case nir_op_ult:
return BRW_CONDITIONAL_L;
case nir_op_fge:
case nir_op_ige:
case nir_op_uge:
return BRW_CONDITIONAL_GE;
case nir_op_feq:
case nir_op_ieq:
case nir_op_ball_fequal2:
case nir_op_ball_iequal2:
case nir_op_ball_fequal3:
case nir_op_ball_iequal3:
case nir_op_ball_fequal4:
case nir_op_ball_iequal4:
return BRW_CONDITIONAL_Z;
case nir_op_fne:
case nir_op_ine:
case nir_op_bany_fnequal2:
case nir_op_bany_inequal2:
case nir_op_bany_fnequal3:
case nir_op_bany_inequal3:
case nir_op_bany_fnequal4:
case nir_op_bany_inequal4:
return BRW_CONDITIONAL_NZ;
default:
unreachable("not reached: bad operation for comparison");
}
}
bool
vec4_visitor::optimize_predicate(nir_alu_instr *instr,
enum brw_predicate *predicate)
{
if (!instr->src[0].src.is_ssa ||
instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
return false;
nir_alu_instr *cmp_instr =
nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
switch (cmp_instr->op) {
case nir_op_bany_fnequal2:
case nir_op_bany_inequal2:
case nir_op_bany_fnequal3:
case nir_op_bany_inequal3:
case nir_op_bany_fnequal4:
case nir_op_bany_inequal4:
*predicate = BRW_PREDICATE_ALIGN16_ANY4H;
break;
case nir_op_ball_fequal2:
case nir_op_ball_iequal2:
case nir_op_ball_fequal3:
case nir_op_ball_iequal3:
case nir_op_ball_fequal4:
case nir_op_ball_iequal4:
*predicate = BRW_PREDICATE_ALIGN16_ALL4H;
break;
default:
return false;
}
unsigned size_swizzle =
brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
src_reg op[2];
assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
for (unsigned i = 0; i < 2; i++) {
nir_alu_type type = nir_op_infos[cmp_instr->op].input_types[i];
unsigned bit_size = nir_src_bit_size(cmp_instr->src[i].src);
type = (nir_alu_type) (((unsigned) type) | bit_size);
op[i] = get_nir_src(cmp_instr->src[i].src, type, 4);
unsigned base_swizzle =
brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
op[i].abs = cmp_instr->src[i].abs;
op[i].negate = cmp_instr->src[i].negate;
}
emit(CMP(dst_null_d(), op[0], op[1],
brw_conditional_for_nir_comparison(cmp_instr->op)));
return true;
}
static void
emit_find_msb_using_lzd(const vec4_builder &bld,
const dst_reg &dst,
const src_reg &src,
bool is_signed)
{
vec4_instruction *inst;
src_reg temp = src;
if (is_signed) {
/* LZD of an absolute value source almost always does the right
* thing. There are two problem values:
*
* * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
* 0. However, findMSB(int(0x80000000)) == 30.
*
* * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
* 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
*
* For a value of zero or negative one, -1 will be returned.
*
* * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
* findMSB(-(1<<x)) should return x-1.
*
* For all negative number cases, including 0x80000000 and
* 0xffffffff, the correct value is obtained from LZD if instead of
* negating the (already negative) value the logical-not is used. A
* conditonal logical-not can be achieved in two instructions.
*/
temp = src_reg(bld.vgrf(BRW_REGISTER_TYPE_D));
bld.ASR(dst_reg(temp), src, brw_imm_d(31));
bld.XOR(dst_reg(temp), temp, src);
}
bld.LZD(retype(dst, BRW_REGISTER_TYPE_UD),
retype(temp, BRW_REGISTER_TYPE_UD));
/* LZD counts from the MSB side, while GLSL's findMSB() wants the count
* from the LSB side. Subtract the result from 31 to convert the MSB count
* into an LSB count. If no bits are set, LZD will return 32. 31-32 = -1,
* which is exactly what findMSB() is supposed to return.
*/
inst = bld.ADD(dst, retype(src_reg(dst), BRW_REGISTER_TYPE_D),
brw_imm_d(31));
inst->src[0].negate = true;
}
void
vec4_visitor::emit_conversion_from_double(dst_reg dst, src_reg src,
bool saturate)
{
/* BDW PRM vol 15 - workarounds:
* DF->f format conversion for Align16 has wrong emask calculation when
* source is immediate.
*/
if (devinfo->gen == 8 && dst.type == BRW_REGISTER_TYPE_F &&
src.file == BRW_IMMEDIATE_VALUE) {
vec4_instruction *inst = emit(MOV(dst, brw_imm_f(src.df)));
inst->saturate = saturate;
return;
}
enum opcode op;
switch (dst.type) {
case BRW_REGISTER_TYPE_D:
op = VEC4_OPCODE_DOUBLE_TO_D32;
break;
case BRW_REGISTER_TYPE_UD:
op = VEC4_OPCODE_DOUBLE_TO_U32;
break;
case BRW_REGISTER_TYPE_F:
op = VEC4_OPCODE_DOUBLE_TO_F32;
break;
default:
unreachable("Unknown conversion");
}
dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
emit(MOV(temp, src));
dst_reg temp2 = dst_reg(this, glsl_type::dvec4_type);
emit(op, temp2, src_reg(temp));
emit(VEC4_OPCODE_PICK_LOW_32BIT, retype(temp2, dst.type), src_reg(temp2));
vec4_instruction *inst = emit(MOV(dst, src_reg(retype(temp2, dst.type))));
inst->saturate = saturate;
}
void
vec4_visitor::emit_conversion_to_double(dst_reg dst, src_reg src,
bool saturate)
{
dst_reg tmp_dst = dst_reg(src_reg(this, glsl_type::dvec4_type));
src_reg tmp_src = retype(src_reg(this, glsl_type::vec4_type), src.type);
emit(MOV(dst_reg(tmp_src), src));
emit(VEC4_OPCODE_TO_DOUBLE, tmp_dst, tmp_src);
vec4_instruction *inst = emit(MOV(dst, src_reg(tmp_dst)));
inst->saturate = saturate;
}
void
vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
{
vec4_instruction *inst;
nir_alu_type dst_type = (nir_alu_type) (nir_op_infos[instr->op].output_type |
nir_dest_bit_size(instr->dest.dest));
dst_reg dst = get_nir_dest(instr->dest.dest, dst_type);
dst.writemask = instr->dest.write_mask;
src_reg op[4];
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
nir_alu_type src_type = (nir_alu_type)
(nir_op_infos[instr->op].input_types[i] |
nir_src_bit_size(instr->src[i].src));
op[i] = get_nir_src(instr->src[i].src, src_type, 4);
op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
op[i].abs = instr->src[i].abs;
op[i].negate = instr->src[i].negate;
}
switch (instr->op) {
case nir_op_imov:
case nir_op_fmov:
inst = emit(MOV(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
unreachable("not reached: should be handled by lower_vec_to_movs()");
case nir_op_i2f32:
case nir_op_u2f32:
inst = emit(MOV(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_f2f32:
case nir_op_f2i32:
case nir_op_f2u32:
if (nir_src_bit_size(instr->src[0].src) == 64)
emit_conversion_from_double(dst, op[0], instr->dest.saturate);
else
inst = emit(MOV(dst, op[0]));
break;
case nir_op_f2f64:
case nir_op_i2f64:
case nir_op_u2f64:
emit_conversion_to_double(dst, op[0], instr->dest.saturate);
break;
case nir_op_iadd:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
/* fall through */
case nir_op_fadd:
inst = emit(ADD(dst, op[0], op[1]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fmul:
inst = emit(MUL(dst, op[0], op[1]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_imul: {
assert(nir_dest_bit_size(instr->dest.dest) < 64);
if (devinfo->gen < 8) {
nir_const_value *value0 = nir_src_as_const_value(instr->src[0].src);
nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
/* For integer multiplication, the MUL uses the low 16 bits of one of
* the operands (src0 through SNB, src1 on IVB and later). The MACH
* accumulates in the contribution of the upper 16 bits of that
* operand. If we can determine that one of the args is in the low
* 16 bits, though, we can just emit a single MUL.
*/
if (value0 && value0->u32[0] < (1 << 16)) {
if (devinfo->gen < 7)
emit(MUL(dst, op[0], op[1]));
else
emit(MUL(dst, op[1], op[0]));
} else if (value1 && value1->u32[0] < (1 << 16)) {
if (devinfo->gen < 7)
emit(MUL(dst, op[1], op[0]));
else
emit(MUL(dst, op[0], op[1]));
} else {
struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
emit(MUL(acc, op[0], op[1]));
emit(MACH(dst_null_d(), op[0], op[1]));
emit(MOV(dst, src_reg(acc)));
}
} else {
emit(MUL(dst, op[0], op[1]));
}
break;
}
case nir_op_imul_high:
case nir_op_umul_high: {
assert(nir_dest_bit_size(instr->dest.dest) < 64);
struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
if (devinfo->gen >= 8)
emit(MUL(acc, op[0], retype(op[1], BRW_REGISTER_TYPE_UW)));
else
emit(MUL(acc, op[0], op[1]));
emit(MACH(dst, op[0], op[1]));
break;
}
case nir_op_frcp:
inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fexp2:
inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_flog2:
inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fsin:
inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fcos:
inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_idiv:
case nir_op_udiv:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
break;
case nir_op_umod:
case nir_op_irem:
/* According to the sign table for INT DIV in the Ivy Bridge PRM, it
* appears that our hardware just does the right thing for signed
* remainder.
*/
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
break;
case nir_op_imod: {
/* Get a regular C-style remainder. If a % b == 0, set the predicate. */
inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
/* Math instructions don't support conditional mod */
inst = emit(MOV(dst_null_d(), src_reg(dst)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
/* Now, we need to determine if signs of the sources are different.
* When we XOR the sources, the top bit is 0 if they are the same and 1
* if they are different. We can then use a conditional modifier to
* turn that into a predicate. This leads us to an XOR.l instruction.
*
* Technically, according to the PRM, you're not allowed to use .l on a
* XOR instruction. However, emperical experiments and Curro's reading
* of the simulator source both indicate that it's safe.
*/
src_reg tmp = src_reg(this, glsl_type::ivec4_type);
inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
inst->predicate = BRW_PREDICATE_NORMAL;
inst->conditional_mod = BRW_CONDITIONAL_L;
/* If the result of the initial remainder operation is non-zero and the
* two sources have different signs, add in a copy of op[1] to get the
* final integer modulus value.
*/
inst = emit(ADD(dst, src_reg(dst), op[1]));
inst->predicate = BRW_PREDICATE_NORMAL;
break;
}
case nir_op_ldexp:
unreachable("not reached: should be handled by ldexp_to_arith()");
case nir_op_fsqrt:
inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_frsq:
inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fpow:
inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_uadd_carry: {
assert(nir_dest_bit_size(instr->dest.dest) < 64);
struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
emit(ADDC(dst_null_ud(), op[0], op[1]));
emit(MOV(dst, src_reg(acc)));
break;
}
case nir_op_usub_borrow: {
assert(nir_dest_bit_size(instr->dest.dest) < 64);
struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
emit(SUBB(dst_null_ud(), op[0], op[1]));
emit(MOV(dst, src_reg(acc)));
break;
}
case nir_op_ftrunc:
inst = emit(RNDZ(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fceil: {
src_reg tmp = src_reg(this, glsl_type::float_type);
tmp.swizzle =
brw_swizzle_for_size(instr->src[0].src.is_ssa ?
instr->src[0].src.ssa->num_components :
instr->src[0].src.reg.reg->num_components);
op[0].negate = !op[0].negate;
emit(RNDD(dst_reg(tmp), op[0]));
tmp.negate = true;
inst = emit(MOV(dst, tmp));
inst->saturate = instr->dest.saturate;
break;
}
case nir_op_ffloor:
inst = emit(RNDD(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_ffract:
inst = emit(FRC(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fround_even:
inst = emit(RNDE(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fquantize2f16: {
/* See also vec4_visitor::emit_pack_half_2x16() */
src_reg tmp16 = src_reg(this, glsl_type::uvec4_type);
src_reg tmp32 = src_reg(this, glsl_type::vec4_type);
src_reg zero = src_reg(this, glsl_type::vec4_type);
/* Check for denormal */
src_reg abs_src0 = op[0];
abs_src0.abs = true;
emit(CMP(dst_null_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
BRW_CONDITIONAL_L));
/* Get the appropriately signed zero */
emit(AND(retype(dst_reg(zero), BRW_REGISTER_TYPE_UD),
retype(op[0], BRW_REGISTER_TYPE_UD),
brw_imm_ud(0x80000000)));
/* Do the actual F32 -> F16 -> F32 conversion */
emit(F32TO16(dst_reg(tmp16), op[0]));
emit(F16TO32(dst_reg(tmp32), tmp16));
/* Select that or zero based on normal status */
inst = emit(BRW_OPCODE_SEL, dst, zero, tmp32);
inst->predicate = BRW_PREDICATE_NORMAL;
inst->saturate = instr->dest.saturate;
break;
}
case nir_op_imin:
case nir_op_umin:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
/* fall through */
case nir_op_fmin:
inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_imax:
case nir_op_umax:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
/* fall through */
case nir_op_fmax:
inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddx:
case nir_op_fddx_coarse:
case nir_op_fddx_fine:
case nir_op_fddy:
case nir_op_fddy_coarse:
case nir_op_fddy_fine:
unreachable("derivatives are not valid in vertex shaders");
case nir_op_ilt:
case nir_op_ult:
case nir_op_ige:
case nir_op_uge:
case nir_op_ieq:
case nir_op_ine:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
/* Fallthrough */
case nir_op_flt:
case nir_op_fge:
case nir_op_feq:
case nir_op_fne: {
enum brw_conditional_mod conditional_mod =
brw_conditional_for_nir_comparison(instr->op);
if (nir_src_bit_size(instr->src[0].src) < 64) {
emit(CMP(dst, op[0], op[1], conditional_mod));
} else {
/* Produce a 32-bit boolean result from the DF comparison by selecting
* only the low 32-bit in each DF produced. Do this in a temporary
* so we can then move from there to the result using align16 again
* to honor the original writemask.
*/
dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
emit(CMP(temp, op[0], op[1], conditional_mod));
dst_reg result = dst_reg(this, glsl_type::bvec4_type);
emit(VEC4_OPCODE_PICK_LOW_32BIT, result, src_reg(temp));
emit(MOV(dst, src_reg(result)));
}
break;
}
case nir_op_ball_iequal2:
case nir_op_ball_iequal3:
case nir_op_ball_iequal4:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
/* Fallthrough */
case nir_op_ball_fequal2:
case nir_op_ball_fequal3:
case nir_op_ball_fequal4: {
unsigned swiz =
brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
brw_conditional_for_nir_comparison(instr->op)));
emit(MOV(dst, brw_imm_d(0)));
inst = emit(MOV(dst, brw_imm_d(~0)));
inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
break;
}
case nir_op_bany_inequal2:
case nir_op_bany_inequal3:
case nir_op_bany_inequal4:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
/* Fallthrough */
case nir_op_bany_fnequal2:
case nir_op_bany_fnequal3:
case nir_op_bany_fnequal4: {
unsigned swiz =
brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
brw_conditional_for_nir_comparison(instr->op)));
emit(MOV(dst, brw_imm_d(0)));
inst = emit(MOV(dst, brw_imm_d(~0)));
inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
break;
}
case nir_op_inot:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
}
emit(NOT(dst, op[0]));
break;
case nir_op_ixor:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
emit(XOR(dst, op[0], op[1]));
break;
case nir_op_ior:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
emit(OR(dst, op[0], op[1]));
break;
case nir_op_iand:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
emit(AND(dst, op[0], op[1]));
break;
case nir_op_b2i:
case nir_op_b2f:
emit(MOV(dst, negate(op[0])));
break;
case nir_op_f2b:
if (nir_src_bit_size(instr->src[0].src) == 64) {
/* We use a MOV with conditional_mod to check if the provided value is
* 0.0. We want this to flush denormalized numbers to zero, so we set a
* source modifier on the source operand to trigger this, as source
* modifiers don't affect the result of the testing against 0.0.
*/
src_reg value = op[0];
value.abs = true;
vec4_instruction *inst = emit(MOV(dst_null_df(), value));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
src_reg one = src_reg(this, glsl_type::ivec4_type);
emit(MOV(dst_reg(one), brw_imm_d(~0)));
inst = emit(BRW_OPCODE_SEL, dst, one, brw_imm_d(0));
inst->predicate = BRW_PREDICATE_NORMAL;
} else {
emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
}
break;
case nir_op_i2b:
emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
break;
case nir_op_fnoise1_1:
case nir_op_fnoise1_2:
case nir_op_fnoise1_3:
case nir_op_fnoise1_4:
case nir_op_fnoise2_1:
case nir_op_fnoise2_2:
case nir_op_fnoise2_3:
case nir_op_fnoise2_4:
case nir_op_fnoise3_1:
case nir_op_fnoise3_2:
case nir_op_fnoise3_3:
case nir_op_fnoise3_4:
case nir_op_fnoise4_1:
case nir_op_fnoise4_2:
case nir_op_fnoise4_3:
case nir_op_fnoise4_4:
unreachable("not reached: should be handled by lower_noise");
case nir_op_unpack_half_2x16_split_x:
case nir_op_unpack_half_2x16_split_y:
case nir_op_pack_half_2x16_split:
unreachable("not reached: should not occur in vertex shader");
case nir_op_unpack_snorm_2x16:
case nir_op_unpack_unorm_2x16:
case nir_op_pack_snorm_2x16:
case nir_op_pack_unorm_2x16:
unreachable("not reached: should be handled by lower_packing_builtins");
case nir_op_pack_uvec4_to_uint:
unreachable("not reached");
case nir_op_pack_uvec2_to_uint: {
dst_reg tmp1 = dst_reg(this, glsl_type::uint_type);
tmp1.writemask = WRITEMASK_X;
op[0].swizzle = BRW_SWIZZLE_YYYY;
emit(SHL(tmp1, op[0], src_reg(brw_imm_ud(16u))));
dst_reg tmp2 = dst_reg(this, glsl_type::uint_type);
tmp2.writemask = WRITEMASK_X;
op[0].swizzle = BRW_SWIZZLE_XXXX;
emit(AND(tmp2, op[0], src_reg(brw_imm_ud(0xffffu))));
emit(OR(dst, src_reg(tmp1), src_reg(tmp2)));
break;
}
case nir_op_pack_64_2x32_split: {
dst_reg result = dst_reg(this, glsl_type::dvec4_type);
dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
emit(MOV(tmp, retype(op[0], BRW_REGISTER_TYPE_UD)));
emit(VEC4_OPCODE_SET_LOW_32BIT, result, src_reg(tmp));
emit(MOV(tmp, retype(op[1], BRW_REGISTER_TYPE_UD)));
emit(VEC4_OPCODE_SET_HIGH_32BIT, result, src_reg(tmp));
emit(MOV(dst, src_reg(result)));
break;
}
case nir_op_unpack_64_2x32_split_x:
case nir_op_unpack_64_2x32_split_y: {
enum opcode oper = (instr->op == nir_op_unpack_64_2x32_split_x) ?
VEC4_OPCODE_PICK_LOW_32BIT : VEC4_OPCODE_PICK_HIGH_32BIT;
dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
emit(MOV(tmp, op[0]));
dst_reg tmp2 = dst_reg(this, glsl_type::uvec4_type);
emit(oper, tmp2, src_reg(tmp));
emit(MOV(dst, src_reg(tmp2)));
break;
}
case nir_op_unpack_half_2x16:
/* As NIR does not guarantee that we have a correct swizzle outside the
* boundaries of a vector, and the implementation of emit_unpack_half_2x16
* uses the source operand in an operation with WRITEMASK_Y while our
* source operand has only size 1, it accessed incorrect data producing
* regressions in Piglit. We repeat the swizzle of the first component on the
* rest of components to avoid regressions. In the vec4_visitor IR code path
* this is not needed because the operand has already the correct swizzle.
*/
op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
emit_unpack_half_2x16(dst, op[0]);
break;
case nir_op_pack_half_2x16:
emit_pack_half_2x16(dst, op[0]);
break;
case nir_op_unpack_unorm_4x8:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_unpack_unorm_4x8(dst, op[0]);
break;
case nir_op_pack_unorm_4x8:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_pack_unorm_4x8(dst, op[0]);
break;
case nir_op_unpack_snorm_4x8:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_unpack_snorm_4x8(dst, op[0]);
break;
case nir_op_pack_snorm_4x8:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_pack_snorm_4x8(dst, op[0]);
break;
case nir_op_bitfield_reverse:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit(BFREV(dst, op[0]));
break;
case nir_op_bit_count:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit(CBIT(dst, op[0]));
break;
case nir_op_ufind_msb:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_find_msb_using_lzd(vec4_builder(this).at_end(), dst, op[0], false);
break;
case nir_op_ifind_msb: {
assert(nir_dest_bit_size(instr->dest.dest) < 64);
vec4_builder bld = vec4_builder(this).at_end();
src_reg src(dst);
if (devinfo->gen < 7) {
emit_find_msb_using_lzd(bld, dst, op[0], true);
} else {
emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
/* FBH counts from the MSB side, while GLSL's findMSB() wants the
* count from the LSB side. If FBH didn't return an error
* (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
* count into an LSB count.
*/
bld.CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
inst = bld.ADD(dst, src, brw_imm_d(31));
inst->predicate = BRW_PREDICATE_NORMAL;
inst->src[0].negate = true;
}
break;
}
case nir_op_find_lsb: {
assert(nir_dest_bit_size(instr->dest.dest) < 64);
vec4_builder bld = vec4_builder(this).at_end();
if (devinfo->gen < 7) {
dst_reg temp = bld.vgrf(BRW_REGISTER_TYPE_D);
/* (x & -x) generates a value that consists of only the LSB of x.
* For all powers of 2, findMSB(y) == findLSB(y).
*/
src_reg src = src_reg(retype(op[0], BRW_REGISTER_TYPE_D));
src_reg negated_src = src;
/* One must be negated, and the other must be non-negated. It
* doesn't matter which is which.
*/
negated_src.negate = true;
src.negate = false;
bld.AND(temp, src, negated_src);
emit_find_msb_using_lzd(bld, dst, src_reg(temp), false);
} else {
bld.FBL(dst, op[0]);
}
break;
}
case nir_op_ubitfield_extract:
case nir_op_ibitfield_extract:
unreachable("should have been lowered");
case nir_op_ubfe:
case nir_op_ibfe:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
op[0] = fix_3src_operand(op[0]);
op[1] = fix_3src_operand(op[1]);
op[2] = fix_3src_operand(op[2]);
emit(BFE(dst, op[2], op[1], op[0]));
break;
case nir_op_bfm:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit(BFI1(dst, op[0], op[1]));
break;
case nir_op_bfi:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
op[0] = fix_3src_operand(op[0]);
op[1] = fix_3src_operand(op[1]);
op[2] = fix_3src_operand(op[2]);
emit(BFI2(dst, op[0], op[1], op[2]));
break;
case nir_op_bitfield_insert:
unreachable("not reached: should have been lowered");
case nir_op_fsign:
if (type_sz(op[0].type) < 8) {
/* AND(val, 0x80000000) gives the sign bit.
*
* Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
* zero.
*/
emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
op[0].type = BRW_REGISTER_TYPE_UD;
dst.type = BRW_REGISTER_TYPE_UD;
emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
inst->predicate = BRW_PREDICATE_NORMAL;
dst.type = BRW_REGISTER_TYPE_F;
if (instr->dest.saturate) {
inst = emit(MOV(dst, src_reg(dst)));
inst->saturate = true;
}
} else {
/* For doubles we do the same but we need to consider:
*
* - We use a MOV with conditional_mod instead of a CMP so that we can
* skip loading a 0.0 immediate. We use a source modifier on the
* source of the MOV so that we flush denormalized values to 0.
* Since we want to compare against 0, this won't alter the result.
* - We need to extract the high 32-bit of each DF where the sign
* is stored.
* - We need to produce a DF result.
*/
/* Check for zero */
src_reg value = op[0];
value.abs = true;
inst = emit(MOV(dst_null_df(), value));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
/* AND each high 32-bit channel with 0x80000000u */
dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
emit(VEC4_OPCODE_PICK_HIGH_32BIT, tmp, op[0]);
emit(AND(tmp, src_reg(tmp), brw_imm_ud(0x80000000u)));
/* Add 1.0 to each channel, predicated to skip the cases where the
* channel's value was 0
*/
inst = emit(OR(tmp, src_reg(tmp), brw_imm_ud(0x3f800000u)));
inst->predicate = BRW_PREDICATE_NORMAL;
/* Now convert the result from float to double */
emit_conversion_to_double(dst, retype(src_reg(tmp),
BRW_REGISTER_TYPE_F),
instr->dest.saturate);
}
break;
case nir_op_isign:
/* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
* -> non-negative val generates 0x00000000.
* Predicated OR sets 1 if val is positive.
*/
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G));
emit(ASR(dst, op[0], brw_imm_d(31)));
inst = emit(OR(dst, src_reg(dst), brw_imm_d(1)));
inst->predicate = BRW_PREDICATE_NORMAL;
break;
case nir_op_ishl:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit(SHL(dst, op[0], op[1]));
break;
case nir_op_ishr:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit(ASR(dst, op[0], op[1]));
break;
case nir_op_ushr:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit(SHR(dst, op[0], op[1]));
break;
case nir_op_ffma:
if (type_sz(dst.type) == 8) {
dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
emit(MUL(mul_dst, op[1], op[0]));
inst = emit(ADD(dst, src_reg(mul_dst), op[2]));
inst->saturate = instr->dest.saturate;
} else {
op[0] = fix_3src_operand(op[0]);
op[1] = fix_3src_operand(op[1]);
op[2] = fix_3src_operand(op[2]);
inst = emit(MAD(dst, op[2], op[1], op[0]));
inst->saturate = instr->dest.saturate;
}
break;
case nir_op_flrp:
inst = emit_lrp(dst, op[0], op[1], op[2]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_bcsel:
enum brw_predicate predicate;
if (!optimize_predicate(instr, &predicate)) {
emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
switch (dst.writemask) {
case WRITEMASK_X:
predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
break;
case WRITEMASK_Y:
predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
break;
case WRITEMASK_Z:
predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
break;
case WRITEMASK_W:
predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
break;
default:
predicate = BRW_PREDICATE_NORMAL;
break;
}
}
inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
inst->predicate = predicate;
break;
case nir_op_fdot_replicated2:
inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fdot_replicated3:
inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fdot_replicated4:
inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fdph_replicated:
inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_iabs:
case nir_op_ineg:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
/* fall through */
case nir_op_fabs:
case nir_op_fneg:
case nir_op_fsat:
unreachable("not reached: should be lowered by lower_source mods");
case nir_op_fdiv:
unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
case nir_op_fmod:
unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
case nir_op_fsub:
case nir_op_isub:
unreachable("not reached: should be handled by ir_sub_to_add_neg");
default:
unreachable("Unimplemented ALU operation");
}
/* If we need to do a boolean resolve, replace the result with -(x & 1)
* to sign extend the low bit to 0/~0
*/
if (devinfo->gen <= 5 &&
(instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
dst_reg masked = dst_reg(this, glsl_type::int_type);
masked.writemask = dst.writemask;
emit(AND(masked, src_reg(dst), brw_imm_d(1)));
src_reg masked_neg = src_reg(masked);
masked_neg.negate = true;
emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
}
}
void
vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
{
switch (instr->type) {
case nir_jump_break:
emit(BRW_OPCODE_BREAK);
break;
case nir_jump_continue:
emit(BRW_OPCODE_CONTINUE);
break;
case nir_jump_return:
/* fall through */
default:
unreachable("unknown jump");
}
}
static enum ir_texture_opcode
ir_texture_opcode_for_nir_texop(nir_texop texop)
{
enum ir_texture_opcode op;
switch (texop) {
case nir_texop_lod: op = ir_lod; break;
case nir_texop_query_levels: op = ir_query_levels; break;
case nir_texop_texture_samples: op = ir_texture_samples; break;
case nir_texop_tex: op = ir_tex; break;
case nir_texop_tg4: op = ir_tg4; break;
case nir_texop_txb: op = ir_txb; break;
case nir_texop_txd: op = ir_txd; break;
case nir_texop_txf: op = ir_txf; break;
case nir_texop_txf_ms: op = ir_txf_ms; break;
case nir_texop_txl: op = ir_txl; break;
case nir_texop_txs: op = ir_txs; break;
case nir_texop_samples_identical: op = ir_samples_identical; break;
default:
unreachable("unknown texture opcode");
}
return op;
}
static const glsl_type *
glsl_type_for_nir_alu_type(nir_alu_type alu_type,
unsigned components)
{
return glsl_type::get_instance(brw_glsl_base_type_for_nir_type(alu_type),
components, 1);
}
void
vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
{
unsigned texture = instr->texture_index;
unsigned sampler = instr->sampler_index;
src_reg texture_reg = brw_imm_ud(texture);
src_reg sampler_reg = brw_imm_ud(sampler);
src_reg coordinate;
const glsl_type *coord_type = NULL;
src_reg shadow_comparator;
src_reg offset_value;
src_reg lod, lod2;
src_reg sample_index;
src_reg mcs;
const glsl_type *dest_type =
glsl_type_for_nir_alu_type(instr->dest_type,
nir_tex_instr_dest_size(instr));
dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
/* The hardware requires a LOD for buffer textures */
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
lod = brw_imm_d(0);
/* Load the texture operation sources */
uint32_t constant_offset = 0;
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_comparator:
shadow_comparator = get_nir_src(instr->src[i].src,
BRW_REGISTER_TYPE_F, 1);
break;
case nir_tex_src_coord: {
unsigned src_size = nir_tex_instr_src_size(instr, i);
switch (instr->op) {
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_samples_identical:
coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
src_size);
coord_type = glsl_type::ivec(src_size);
break;
default:
coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
src_size);
coord_type = glsl_type::vec(src_size);
break;
}
break;
}
case nir_tex_src_ddx:
lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
nir_tex_instr_src_size(instr, i));
break;
case nir_tex_src_ddy:
lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
nir_tex_instr_src_size(instr, i));
break;
case nir_tex_src_lod:
switch (instr->op) {
case nir_texop_txs:
case nir_texop_txf:
lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
break;
default:
lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
break;
}
break;
case nir_tex_src_ms_index: {
sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
break;
}
case nir_tex_src_offset: {
nir_const_value *const_offset =
nir_src_as_const_value(instr->src[i].src);
if (!const_offset ||
!brw_texture_offset(const_offset->i32,
nir_tex_instr_src_size(instr, i),
&constant_offset)) {
offset_value =
get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
}
break;
}
case nir_tex_src_texture_offset: {
/* The highest texture which may be used by this operation is
* the last element of the array. Mark it here, because the generator
* doesn't have enough information to determine the bound.
*/
uint32_t array_size = instr->texture_array_size;
uint32_t max_used = texture + array_size - 1;
if (instr->op == nir_texop_tg4) {
max_used += prog_data->base.binding_table.gather_texture_start;
} else {
max_used += prog_data->base.binding_table.texture_start;
}
brw_mark_surface_used(&prog_data->base, max_used);
/* Emit code to evaluate the actual indexing expression */
src_reg src = get_nir_src(instr->src[i].src, 1);
src_reg temp(this, glsl_type::uint_type);
emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
texture_reg = emit_uniformize(temp);
break;
}
case nir_tex_src_sampler_offset: {
/* Emit code to evaluate the actual indexing expression */
src_reg src = get_nir_src(instr->src[i].src, 1);
src_reg temp(this, glsl_type::uint_type);
emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
sampler_reg = emit_uniformize(temp);
break;
}
case nir_tex_src_projector:
unreachable("Should be lowered by do_lower_texture_projection");
case nir_tex_src_bias:
unreachable("LOD bias is not valid for vertex shaders.\n");
default:
unreachable("unknown texture source");
}
}
if (instr->op == nir_texop_txf_ms ||
instr->op == nir_texop_samples_identical) {
assert(coord_type != NULL);
if (devinfo->gen >= 7 &&
key_tex->compressed_multisample_layout_mask & (1 << texture)) {
mcs = emit_mcs_fetch(coord_type, coordinate, texture_reg);
} else {
mcs = brw_imm_ud(0u);
}
}
/* Stuff the channel select bits in the top of the texture offset */
if (instr->op == nir_texop_tg4) {
if (instr->component == 1 &&
(key_tex->gather_channel_quirk_mask & (1 << texture))) {
/* gather4 sampler is broken for green channel on RG32F --
* we must ask for blue instead.
*/
constant_offset |= 2 << 16;
} else {
constant_offset |= instr->component << 16;
}
}
ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
emit_texture(op, dest, dest_type, coordinate, instr->coord_components,
shadow_comparator,
lod, lod2, sample_index,
constant_offset, offset_value, mcs,
texture, texture_reg, sampler_reg);
}
void
vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
{
nir_ssa_values[instr->def.index] =
dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(instr->def.bit_size, 32)));
}
/* SIMD4x2 64bit data is stored in register space like this:
*
* r0.0:DF x0 y0 z0 w0
* r1.0:DF x1 y1 z1 w1
*
* When we need to write data such as this to memory using 32-bit write
* messages we need to shuffle it in this fashion:
*
* r0.0:DF x0 y0 x1 y1 (to be written at base offset)
* r0.0:DF z0 w0 z1 w1 (to be written at base offset + 16)
*
* We need to do the inverse operation when we read using 32-bit messages,
* which we can do by applying the same exact shuffling on the 64-bit data
* read, only that because the data for each vertex is positioned differently
* we need to apply different channel enables.
*
* This function takes 64bit data and shuffles it as explained above.
*
* The @for_write parameter is used to specify if the shuffling is being done
* for proper SIMD4x2 64-bit data that needs to be shuffled prior to a 32-bit
* write message (for_write = true), or instead we are doing the inverse
* operation and we have just read 64-bit data using a 32-bit messages that we
* need to shuffle to create valid SIMD4x2 64-bit data (for_write = false).
*
* If @block and @ref are non-NULL, then the shuffling is done after @ref,
* otherwise the instructions are emitted normally at the end. The function
* returns the last instruction inserted.
*
* Notice that @src and @dst cannot be the same register.
*/
vec4_instruction *
vec4_visitor::shuffle_64bit_data(dst_reg dst, src_reg src, bool for_write,
bblock_t *block, vec4_instruction *ref)
{
assert(type_sz(src.type) == 8);
assert(type_sz(dst.type) == 8);
assert(!regions_overlap(dst, 2 * REG_SIZE, src, 2 * REG_SIZE));
assert(!ref == !block);
const vec4_builder bld = !ref ? vec4_builder(this).at_end() :
vec4_builder(this).at(block, ref->next);
/* Resolve swizzle in src */
vec4_instruction *inst;
if (src.swizzle != BRW_SWIZZLE_XYZW) {
dst_reg data = dst_reg(this, glsl_type::dvec4_type);
inst = bld.MOV(data, src);
src = src_reg(data);
}
/* dst+0.XY = src+0.XY */
inst = bld.group(4, 0).MOV(writemask(dst, WRITEMASK_XY), src);
/* dst+0.ZW = src+1.XY */
inst = bld.group(4, for_write ? 1 : 0)
.MOV(writemask(dst, WRITEMASK_ZW),
swizzle(byte_offset(src, REG_SIZE), BRW_SWIZZLE_XYXY));
/* dst+1.XY = src+0.ZW */
inst = bld.group(4, for_write ? 0 : 1)
.MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_XY),
swizzle(src, BRW_SWIZZLE_ZWZW));
/* dst+1.ZW = src+1.ZW */
inst = bld.group(4, 1)
.MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_ZW),
byte_offset(src, REG_SIZE));
return inst;
}
}
|