1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
|
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_nir.h"
#include "brw_shader.h"
#include "dev/gen_debug.h"
#include "compiler/glsl_types.h"
#include "compiler/nir/nir_builder.h"
#include "util/u_math.h"
static bool
remap_tess_levels(nir_builder *b, nir_intrinsic_instr *intr,
GLenum primitive_mode)
{
const int location = nir_intrinsic_base(intr);
const unsigned component = nir_intrinsic_component(intr);
bool out_of_bounds;
if (location == VARYING_SLOT_TESS_LEVEL_INNER) {
switch (primitive_mode) {
case GL_QUADS:
/* gl_TessLevelInner[0..1] lives at DWords 3-2 (reversed). */
nir_intrinsic_set_base(intr, 0);
nir_intrinsic_set_component(intr, 3 - component);
out_of_bounds = false;
break;
case GL_TRIANGLES:
/* gl_TessLevelInner[0] lives at DWord 4. */
nir_intrinsic_set_base(intr, 1);
out_of_bounds = component > 0;
break;
case GL_ISOLINES:
out_of_bounds = true;
break;
default:
unreachable("Bogus tessellation domain");
}
} else if (location == VARYING_SLOT_TESS_LEVEL_OUTER) {
if (primitive_mode == GL_ISOLINES) {
/* gl_TessLevelOuter[0..1] lives at DWords 6-7 (in order). */
nir_intrinsic_set_base(intr, 1);
nir_intrinsic_set_component(intr, 2 + nir_intrinsic_component(intr));
out_of_bounds = component > 1;
} else {
/* Triangles use DWords 7-5 (reversed); Quads use 7-4 (reversed) */
nir_intrinsic_set_base(intr, 1);
nir_intrinsic_set_component(intr, 3 - nir_intrinsic_component(intr));
out_of_bounds = component == 3 && primitive_mode == GL_TRIANGLES;
}
} else {
return false;
}
if (out_of_bounds) {
if (nir_intrinsic_infos[intr->intrinsic].has_dest) {
b->cursor = nir_before_instr(&intr->instr);
nir_ssa_def *undef = nir_ssa_undef(b, 1, 32);
nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_src_for_ssa(undef));
}
nir_instr_remove(&intr->instr);
}
return true;
}
static bool
is_input(nir_intrinsic_instr *intrin)
{
return intrin->intrinsic == nir_intrinsic_load_input ||
intrin->intrinsic == nir_intrinsic_load_per_vertex_input ||
intrin->intrinsic == nir_intrinsic_load_interpolated_input;
}
static bool
is_output(nir_intrinsic_instr *intrin)
{
return intrin->intrinsic == nir_intrinsic_load_output ||
intrin->intrinsic == nir_intrinsic_load_per_vertex_output ||
intrin->intrinsic == nir_intrinsic_store_output ||
intrin->intrinsic == nir_intrinsic_store_per_vertex_output;
}
static bool
remap_patch_urb_offsets(nir_block *block, nir_builder *b,
const struct brw_vue_map *vue_map,
GLenum tes_primitive_mode)
{
const bool is_passthrough_tcs = b->shader->info.name &&
strcmp(b->shader->info.name, "passthrough") == 0;
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
gl_shader_stage stage = b->shader->info.stage;
if ((stage == MESA_SHADER_TESS_CTRL && is_output(intrin)) ||
(stage == MESA_SHADER_TESS_EVAL && is_input(intrin))) {
if (!is_passthrough_tcs &&
remap_tess_levels(b, intrin, tes_primitive_mode))
continue;
int vue_slot = vue_map->varying_to_slot[intrin->const_index[0]];
assert(vue_slot != -1);
intrin->const_index[0] = vue_slot;
nir_src *vertex = nir_get_io_vertex_index_src(intrin);
if (vertex) {
if (nir_src_is_const(*vertex)) {
intrin->const_index[0] += nir_src_as_uint(*vertex) *
vue_map->num_per_vertex_slots;
} else {
b->cursor = nir_before_instr(&intrin->instr);
/* Multiply by the number of per-vertex slots. */
nir_ssa_def *vertex_offset =
nir_imul(b,
nir_ssa_for_src(b, *vertex, 1),
nir_imm_int(b,
vue_map->num_per_vertex_slots));
/* Add it to the existing offset */
nir_src *offset = nir_get_io_offset_src(intrin);
nir_ssa_def *total_offset =
nir_iadd(b, vertex_offset,
nir_ssa_for_src(b, *offset, 1));
nir_instr_rewrite_src(&intrin->instr, offset,
nir_src_for_ssa(total_offset));
}
}
}
}
return true;
}
void
brw_nir_lower_vs_inputs(nir_shader *nir,
const uint8_t *vs_attrib_wa_flags)
{
/* Start with the location of the variable's base. */
foreach_list_typed(nir_variable, var, node, &nir->inputs) {
var->data.driver_location = var->data.location;
}
/* Now use nir_lower_io to walk dereference chains. Attribute arrays are
* loaded as one vec4 or dvec4 per element (or matrix column), depending on
* whether it is a double-precision type or not.
*/
nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
nir_lower_io_lower_64bit_to_32);
/* This pass needs actual constants */
nir_opt_constant_folding(nir);
nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
brw_nir_apply_attribute_workarounds(nir, vs_attrib_wa_flags);
/* The last step is to remap VERT_ATTRIB_* to actual registers */
/* Whether or not we have any system generated values. gl_DrawID is not
* included here as it lives in its own vec4.
*/
const bool has_sgvs =
nir->info.system_values_read &
(BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX) |
BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID));
const unsigned num_inputs = util_bitcount64(nir->info.inputs_read);
nir_foreach_function(function, nir) {
if (!function->impl)
continue;
nir_builder b;
nir_builder_init(&b, function->impl);
nir_foreach_block(block, function->impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_first_vertex:
case nir_intrinsic_load_base_instance:
case nir_intrinsic_load_vertex_id_zero_base:
case nir_intrinsic_load_instance_id:
case nir_intrinsic_load_is_indexed_draw:
case nir_intrinsic_load_draw_id: {
b.cursor = nir_after_instr(&intrin->instr);
/* gl_VertexID and friends are stored by the VF as the last
* vertex element. We convert them to load_input intrinsics at
* the right location.
*/
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(nir, nir_intrinsic_load_input);
load->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
nir_intrinsic_set_base(load, num_inputs);
switch (intrin->intrinsic) {
case nir_intrinsic_load_first_vertex:
nir_intrinsic_set_component(load, 0);
break;
case nir_intrinsic_load_base_instance:
nir_intrinsic_set_component(load, 1);
break;
case nir_intrinsic_load_vertex_id_zero_base:
nir_intrinsic_set_component(load, 2);
break;
case nir_intrinsic_load_instance_id:
nir_intrinsic_set_component(load, 3);
break;
case nir_intrinsic_load_draw_id:
case nir_intrinsic_load_is_indexed_draw:
/* gl_DrawID and IsIndexedDraw are stored right after
* gl_VertexID and friends if any of them exist.
*/
nir_intrinsic_set_base(load, num_inputs + has_sgvs);
if (intrin->intrinsic == nir_intrinsic_load_draw_id)
nir_intrinsic_set_component(load, 0);
else
nir_intrinsic_set_component(load, 1);
break;
default:
unreachable("Invalid system value intrinsic");
}
load->num_components = 1;
nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, NULL);
nir_builder_instr_insert(&b, &load->instr);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
nir_src_for_ssa(&load->dest.ssa));
nir_instr_remove(&intrin->instr);
break;
}
case nir_intrinsic_load_input: {
/* Attributes come in a contiguous block, ordered by their
* gl_vert_attrib value. That means we can compute the slot
* number for an attribute by masking out the enabled attributes
* before it and counting the bits.
*/
int attr = nir_intrinsic_base(intrin);
int slot = util_bitcount64(nir->info.inputs_read &
BITFIELD64_MASK(attr));
nir_intrinsic_set_base(intrin, slot);
break;
}
default:
break; /* Nothing to do */
}
}
}
}
}
void
brw_nir_lower_vue_inputs(nir_shader *nir,
const struct brw_vue_map *vue_map)
{
foreach_list_typed(nir_variable, var, node, &nir->inputs) {
var->data.driver_location = var->data.location;
}
/* Inputs are stored in vec4 slots, so use type_size_vec4(). */
nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
nir_lower_io_lower_64bit_to_32);
/* This pass needs actual constants */
nir_opt_constant_folding(nir);
nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
nir_foreach_function(function, nir) {
if (!function->impl)
continue;
nir_foreach_block(block, function->impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic == nir_intrinsic_load_input ||
intrin->intrinsic == nir_intrinsic_load_per_vertex_input) {
/* Offset 0 is the VUE header, which contains
* VARYING_SLOT_LAYER [.y], VARYING_SLOT_VIEWPORT [.z], and
* VARYING_SLOT_PSIZ [.w].
*/
int varying = nir_intrinsic_base(intrin);
int vue_slot;
switch (varying) {
case VARYING_SLOT_PSIZ:
nir_intrinsic_set_base(intrin, 0);
nir_intrinsic_set_component(intrin, 3);
break;
default:
vue_slot = vue_map->varying_to_slot[varying];
assert(vue_slot != -1);
nir_intrinsic_set_base(intrin, vue_slot);
break;
}
}
}
}
}
}
void
brw_nir_lower_tes_inputs(nir_shader *nir, const struct brw_vue_map *vue_map)
{
foreach_list_typed(nir_variable, var, node, &nir->inputs) {
var->data.driver_location = var->data.location;
}
nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
nir_lower_io_lower_64bit_to_32);
/* This pass needs actual constants */
nir_opt_constant_folding(nir);
nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
nir_foreach_function(function, nir) {
if (function->impl) {
nir_builder b;
nir_builder_init(&b, function->impl);
nir_foreach_block(block, function->impl) {
remap_patch_urb_offsets(block, &b, vue_map,
nir->info.tess.primitive_mode);
}
}
}
}
void
brw_nir_lower_fs_inputs(nir_shader *nir,
const struct gen_device_info *devinfo,
const struct brw_wm_prog_key *key)
{
foreach_list_typed(nir_variable, var, node, &nir->inputs) {
var->data.driver_location = var->data.location;
/* Apply default interpolation mode.
*
* Everything defaults to smooth except for the legacy GL color
* built-in variables, which might be flat depending on API state.
*/
if (var->data.interpolation == INTERP_MODE_NONE) {
const bool flat = key->flat_shade &&
(var->data.location == VARYING_SLOT_COL0 ||
var->data.location == VARYING_SLOT_COL1);
var->data.interpolation = flat ? INTERP_MODE_FLAT
: INTERP_MODE_SMOOTH;
}
/* On Ironlake and below, there is only one interpolation mode.
* Centroid interpolation doesn't mean anything on this hardware --
* there is no multisampling.
*/
if (devinfo->gen < 6) {
var->data.centroid = false;
var->data.sample = false;
}
}
nir_lower_io_options lower_io_options = nir_lower_io_lower_64bit_to_32;
if (key->persample_interp)
lower_io_options |= nir_lower_io_force_sample_interpolation;
nir_lower_io(nir, nir_var_shader_in, type_size_vec4, lower_io_options);
if (devinfo->gen >= 11)
nir_lower_interpolation(nir, ~0);
/* This pass needs actual constants */
nir_opt_constant_folding(nir);
nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
}
void
brw_nir_lower_vue_outputs(nir_shader *nir)
{
nir_foreach_variable(var, &nir->outputs) {
var->data.driver_location = var->data.location;
}
nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
nir_lower_io_lower_64bit_to_32);
}
void
brw_nir_lower_tcs_outputs(nir_shader *nir, const struct brw_vue_map *vue_map,
GLenum tes_primitive_mode)
{
nir_foreach_variable(var, &nir->outputs) {
var->data.driver_location = var->data.location;
}
nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
nir_lower_io_lower_64bit_to_32);
/* This pass needs actual constants */
nir_opt_constant_folding(nir);
nir_io_add_const_offset_to_base(nir, nir_var_shader_out);
nir_foreach_function(function, nir) {
if (function->impl) {
nir_builder b;
nir_builder_init(&b, function->impl);
nir_foreach_block(block, function->impl) {
remap_patch_urb_offsets(block, &b, vue_map, tes_primitive_mode);
}
}
}
}
void
brw_nir_lower_fs_outputs(nir_shader *nir)
{
nir_foreach_variable(var, &nir->outputs) {
var->data.driver_location =
SET_FIELD(var->data.index, BRW_NIR_FRAG_OUTPUT_INDEX) |
SET_FIELD(var->data.location, BRW_NIR_FRAG_OUTPUT_LOCATION);
}
nir_lower_io(nir, nir_var_shader_out, type_size_dvec4, 0);
}
#define OPT(pass, ...) ({ \
bool this_progress = false; \
NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \
if (this_progress) \
progress = true; \
this_progress; \
})
static nir_variable_mode
brw_nir_no_indirect_mask(const struct brw_compiler *compiler,
gl_shader_stage stage)
{
nir_variable_mode indirect_mask = 0;
if (compiler->glsl_compiler_options[stage].EmitNoIndirectInput)
indirect_mask |= nir_var_shader_in;
if (compiler->glsl_compiler_options[stage].EmitNoIndirectOutput)
indirect_mask |= nir_var_shader_out;
if (compiler->glsl_compiler_options[stage].EmitNoIndirectTemp)
indirect_mask |= nir_var_function_temp;
return indirect_mask;
}
void
brw_nir_optimize(nir_shader *nir, const struct brw_compiler *compiler,
bool is_scalar, bool allow_copies)
{
nir_variable_mode indirect_mask =
brw_nir_no_indirect_mask(compiler, nir->info.stage);
bool progress;
unsigned lower_flrp =
(nir->options->lower_flrp16 ? 16 : 0) |
(nir->options->lower_flrp32 ? 32 : 0) |
(nir->options->lower_flrp64 ? 64 : 0);
do {
progress = false;
OPT(nir_split_array_vars, nir_var_function_temp);
OPT(nir_shrink_vec_array_vars, nir_var_function_temp);
OPT(nir_opt_deref);
OPT(nir_lower_vars_to_ssa);
if (allow_copies) {
/* Only run this pass in the first call to brw_nir_optimize. Later
* calls assume that we've lowered away any copy_deref instructions
* and we don't want to introduce any more.
*/
OPT(nir_opt_find_array_copies);
}
OPT(nir_opt_copy_prop_vars);
OPT(nir_opt_dead_write_vars);
OPT(nir_opt_combine_stores, nir_var_all);
if (is_scalar) {
OPT(nir_lower_alu_to_scalar, NULL, NULL);
}
OPT(nir_copy_prop);
if (is_scalar) {
OPT(nir_lower_phis_to_scalar);
}
OPT(nir_copy_prop);
OPT(nir_opt_dce);
OPT(nir_opt_cse);
OPT(nir_opt_combine_stores, nir_var_all);
/* Passing 0 to the peephole select pass causes it to convert
* if-statements that contain only move instructions in the branches
* regardless of the count.
*
* Passing 1 to the peephole select pass causes it to convert
* if-statements that contain at most a single ALU instruction (total)
* in both branches. Before Gen6, some math instructions were
* prohibitively expensive and the results of compare operations need an
* extra resolve step. For these reasons, this pass is more harmful
* than good on those platforms.
*
* For indirect loads of uniforms (push constants), we assume that array
* indices will nearly always be in bounds and the cost of the load is
* low. Therefore there shouldn't be a performance benefit to avoid it.
* However, in vec4 tessellation shaders, these loads operate by
* actually pulling from memory.
*/
const bool is_vec4_tessellation = !is_scalar &&
(nir->info.stage == MESA_SHADER_TESS_CTRL ||
nir->info.stage == MESA_SHADER_TESS_EVAL);
OPT(nir_opt_peephole_select, 0, !is_vec4_tessellation, false);
OPT(nir_opt_peephole_select, 1, !is_vec4_tessellation,
compiler->devinfo->gen >= 6);
OPT(nir_opt_intrinsics);
OPT(nir_opt_idiv_const, 32);
OPT(nir_opt_algebraic);
OPT(nir_opt_constant_folding);
if (lower_flrp != 0) {
if (OPT(nir_lower_flrp,
lower_flrp,
false /* always_precise */,
compiler->devinfo->gen >= 6)) {
OPT(nir_opt_constant_folding);
}
/* Nothing should rematerialize any flrps, so we only need to do this
* lowering once.
*/
lower_flrp = 0;
}
OPT(nir_opt_dead_cf);
if (OPT(nir_opt_trivial_continues)) {
/* If nir_opt_trivial_continues makes progress, then we need to clean
* things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
* to make progress.
*/
OPT(nir_copy_prop);
OPT(nir_opt_dce);
}
OPT(nir_opt_if, false);
OPT(nir_opt_conditional_discard);
if (nir->options->max_unroll_iterations != 0) {
OPT(nir_opt_loop_unroll, indirect_mask);
}
OPT(nir_opt_remove_phis);
OPT(nir_opt_undef);
OPT(nir_lower_pack);
} while (progress);
/* Workaround Gfxbench unused local sampler variable which will trigger an
* assert in the opt_large_constants pass.
*/
OPT(nir_remove_dead_variables, nir_var_function_temp);
}
static unsigned
lower_bit_size_callback(const nir_alu_instr *alu, UNUSED void *data)
{
assert(alu->dest.dest.is_ssa);
if (alu->dest.dest.ssa.bit_size >= 32)
return 0;
const struct brw_compiler *compiler = (const struct brw_compiler *) data;
switch (alu->op) {
case nir_op_idiv:
case nir_op_imod:
case nir_op_irem:
case nir_op_udiv:
case nir_op_umod:
case nir_op_fceil:
case nir_op_ffloor:
case nir_op_ffract:
case nir_op_fround_even:
case nir_op_ftrunc:
return 32;
case nir_op_frcp:
case nir_op_frsq:
case nir_op_fsqrt:
case nir_op_fpow:
case nir_op_fexp2:
case nir_op_flog2:
case nir_op_fsin:
case nir_op_fcos:
return compiler->devinfo->gen < 9 ? 32 : 0;
default:
return 0;
}
}
/* Does some simple lowering and runs the standard suite of optimizations
*
* This is intended to be called more-or-less directly after you get the
* shader out of GLSL or some other source. While it is geared towards i965,
* it is not at all generator-specific except for the is_scalar flag. Even
* there, it is safe to call with is_scalar = false for a shader that is
* intended for the FS backend as long as nir_optimize is called again with
* is_scalar = true to scalarize everything prior to code gen.
*/
void
brw_preprocess_nir(const struct brw_compiler *compiler, nir_shader *nir,
const nir_shader *softfp64)
{
const struct gen_device_info *devinfo = compiler->devinfo;
UNUSED bool progress; /* Written by OPT */
const bool is_scalar = compiler->scalar_stage[nir->info.stage];
if (is_scalar) {
OPT(nir_lower_alu_to_scalar, NULL, NULL);
}
if (nir->info.stage == MESA_SHADER_GEOMETRY)
OPT(nir_lower_gs_intrinsics);
/* See also brw_nir_trig_workarounds.py */
if (compiler->precise_trig &&
!(devinfo->gen >= 10 || devinfo->is_kabylake))
OPT(brw_nir_apply_trig_workarounds);
static const nir_lower_tex_options tex_options = {
.lower_txp = ~0,
.lower_txf_offset = true,
.lower_rect_offset = true,
.lower_tex_without_implicit_lod = true,
.lower_txd_cube_map = true,
.lower_txb_shadow_clamp = true,
.lower_txd_shadow_clamp = true,
.lower_txd_offset_clamp = true,
.lower_tg4_offsets = true,
};
OPT(nir_lower_tex, &tex_options);
OPT(nir_normalize_cubemap_coords);
OPT(nir_lower_global_vars_to_local);
OPT(nir_split_var_copies);
OPT(nir_split_struct_vars, nir_var_function_temp);
brw_nir_optimize(nir, compiler, is_scalar, true);
OPT(nir_lower_doubles, softfp64, nir->options->lower_doubles_options);
OPT(nir_lower_int64, nir->options->lower_int64_options);
/* This needs to be run after the first optimization pass but before we
* lower indirect derefs away
*/
if (compiler->supports_shader_constants) {
OPT(nir_opt_large_constants, NULL, 32);
}
OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
if (is_scalar) {
OPT(nir_lower_load_const_to_scalar);
}
/* Lower a bunch of stuff */
OPT(nir_lower_var_copies);
OPT(nir_lower_system_values);
const nir_lower_subgroups_options subgroups_options = {
.ballot_bit_size = 32,
.lower_to_scalar = true,
.lower_vote_trivial = !is_scalar,
.lower_shuffle = true,
};
OPT(nir_lower_subgroups, &subgroups_options);
OPT(nir_lower_clip_cull_distance_arrays);
nir_variable_mode indirect_mask =
brw_nir_no_indirect_mask(compiler, nir->info.stage);
OPT(nir_lower_indirect_derefs, indirect_mask);
/* Lower array derefs of vectors for SSBO and UBO loads. For both UBOs and
* SSBOs, our back-end is capable of loading an entire vec4 at a time and
* we would like to take advantage of that whenever possible regardless of
* whether or not the app gives us full loads. This should allow the
* optimizer to combine UBO and SSBO load operations and save us some send
* messages.
*/
OPT(nir_lower_array_deref_of_vec,
nir_var_mem_ubo | nir_var_mem_ssbo,
nir_lower_direct_array_deref_of_vec_load);
/* Get rid of split copies */
brw_nir_optimize(nir, compiler, is_scalar, false);
}
void
brw_nir_link_shaders(const struct brw_compiler *compiler,
nir_shader *producer, nir_shader *consumer)
{
nir_lower_io_arrays_to_elements(producer, consumer);
nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements");
nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements");
const bool p_is_scalar = compiler->scalar_stage[producer->info.stage];
const bool c_is_scalar = compiler->scalar_stage[consumer->info.stage];
if (p_is_scalar && c_is_scalar) {
NIR_PASS_V(producer, nir_lower_io_to_scalar_early, nir_var_shader_out);
NIR_PASS_V(consumer, nir_lower_io_to_scalar_early, nir_var_shader_in);
brw_nir_optimize(producer, compiler, p_is_scalar, false);
brw_nir_optimize(consumer, compiler, c_is_scalar, false);
}
if (nir_link_opt_varyings(producer, consumer))
brw_nir_optimize(consumer, compiler, c_is_scalar, false);
NIR_PASS_V(producer, nir_remove_dead_variables, nir_var_shader_out);
NIR_PASS_V(consumer, nir_remove_dead_variables, nir_var_shader_in);
if (nir_remove_unused_varyings(producer, consumer)) {
NIR_PASS_V(producer, nir_lower_global_vars_to_local);
NIR_PASS_V(consumer, nir_lower_global_vars_to_local);
/* The backend might not be able to handle indirects on
* temporaries so we need to lower indirects on any of the
* varyings we have demoted here.
*/
NIR_PASS_V(producer, nir_lower_indirect_derefs,
brw_nir_no_indirect_mask(compiler, producer->info.stage));
NIR_PASS_V(consumer, nir_lower_indirect_derefs,
brw_nir_no_indirect_mask(compiler, consumer->info.stage));
brw_nir_optimize(producer, compiler, p_is_scalar, false);
brw_nir_optimize(consumer, compiler, c_is_scalar, false);
}
NIR_PASS_V(producer, nir_lower_io_to_vector, nir_var_shader_out);
NIR_PASS_V(producer, nir_opt_combine_stores, nir_var_shader_out);
NIR_PASS_V(consumer, nir_lower_io_to_vector, nir_var_shader_in);
if (producer->info.stage != MESA_SHADER_TESS_CTRL) {
/* Calling lower_io_to_vector creates output variable writes with
* write-masks. On non-TCS outputs, the back-end can't handle it and we
* need to call nir_lower_io_to_temporaries to get rid of them. This,
* in turn, creates temporary variables and extra copy_deref intrinsics
* that we need to clean up.
*/
NIR_PASS_V(producer, nir_lower_io_to_temporaries,
nir_shader_get_entrypoint(producer), true, false);
NIR_PASS_V(producer, nir_lower_global_vars_to_local);
NIR_PASS_V(producer, nir_split_var_copies);
NIR_PASS_V(producer, nir_lower_var_copies);
}
}
/* Prepare the given shader for codegen
*
* This function is intended to be called right before going into the actual
* backend and is highly backend-specific. Also, once this function has been
* called on a shader, it will no longer be in SSA form so most optimizations
* will not work.
*/
void
brw_postprocess_nir(nir_shader *nir, const struct brw_compiler *compiler,
bool is_scalar)
{
const struct gen_device_info *devinfo = compiler->devinfo;
bool debug_enabled =
(INTEL_DEBUG & intel_debug_flag_for_shader_stage(nir->info.stage));
UNUSED bool progress; /* Written by OPT */
OPT(brw_nir_lower_mem_access_bit_sizes);
do {
progress = false;
OPT(nir_opt_algebraic_before_ffma);
} while (progress);
brw_nir_optimize(nir, compiler, is_scalar, false);
if (OPT(nir_lower_int64, nir->options->lower_int64_options))
brw_nir_optimize(nir, compiler, is_scalar, false);
if (devinfo->gen >= 6) {
/* Try and fuse multiply-adds */
OPT(brw_nir_opt_peephole_ffma);
}
if (OPT(nir_opt_comparison_pre)) {
OPT(nir_copy_prop);
OPT(nir_opt_dce);
OPT(nir_opt_cse);
/* Do the select peepehole again. nir_opt_comparison_pre (combined with
* the other optimization passes) will have removed at least one
* instruction from one of the branches of the if-statement, so now it
* might be under the threshold of conversion to bcsel.
*
* See brw_nir_optimize for the explanation of is_vec4_tessellation.
*/
const bool is_vec4_tessellation = !is_scalar &&
(nir->info.stage == MESA_SHADER_TESS_CTRL ||
nir->info.stage == MESA_SHADER_TESS_EVAL);
OPT(nir_opt_peephole_select, 0, is_vec4_tessellation, false);
OPT(nir_opt_peephole_select, 1, is_vec4_tessellation,
compiler->devinfo->gen >= 6);
}
do {
progress = false;
if (OPT(nir_opt_algebraic_late)) {
/* At this late stage, anything that makes more constants will wreak
* havok on the vec4 backend. The handling of constants in the vec4
* backend is not good.
*/
if (is_scalar) {
OPT(nir_opt_constant_folding);
OPT(nir_copy_prop);
}
OPT(nir_opt_dce);
OPT(nir_opt_cse);
}
} while (progress);
OPT(brw_nir_lower_conversions);
if (is_scalar)
OPT(nir_lower_alu_to_scalar, NULL, NULL);
OPT(nir_lower_to_source_mods, nir_lower_all_source_mods);
OPT(nir_copy_prop);
OPT(nir_opt_dce);
OPT(nir_opt_move, nir_move_comparisons);
OPT(nir_lower_bool_to_int32);
OPT(nir_lower_locals_to_regs);
if (unlikely(debug_enabled)) {
/* Re-index SSA defs so we print more sensible numbers. */
nir_foreach_function(function, nir) {
if (function->impl)
nir_index_ssa_defs(function->impl);
}
fprintf(stderr, "NIR (SSA form) for %s shader:\n",
_mesa_shader_stage_to_string(nir->info.stage));
nir_print_shader(nir, stderr);
}
OPT(nir_convert_from_ssa, true);
if (!is_scalar) {
OPT(nir_move_vec_src_uses_to_dest);
OPT(nir_lower_vec_to_movs);
}
OPT(nir_opt_dce);
if (OPT(nir_opt_rematerialize_compares))
OPT(nir_opt_dce);
/* This is the last pass we run before we start emitting stuff. It
* determines when we need to insert boolean resolves on Gen <= 5. We
* run it last because it stashes data in instr->pass_flags and we don't
* want that to be squashed by other NIR passes.
*/
if (devinfo->gen <= 5)
brw_nir_analyze_boolean_resolves(nir);
nir_sweep(nir);
if (unlikely(debug_enabled)) {
fprintf(stderr, "NIR (final form) for %s shader:\n",
_mesa_shader_stage_to_string(nir->info.stage));
nir_print_shader(nir, stderr);
}
}
static bool
brw_nir_apply_sampler_key(nir_shader *nir,
const struct brw_compiler *compiler,
const struct brw_sampler_prog_key_data *key_tex)
{
const struct gen_device_info *devinfo = compiler->devinfo;
nir_lower_tex_options tex_options = {
.lower_txd_clamp_bindless_sampler = true,
.lower_txd_clamp_if_sampler_index_not_lt_16 = true,
};
/* Iron Lake and prior require lowering of all rectangle textures */
if (devinfo->gen < 6)
tex_options.lower_rect = true;
/* Prior to Broadwell, our hardware can't actually do GL_CLAMP */
if (devinfo->gen < 8) {
tex_options.saturate_s = key_tex->gl_clamp_mask[0];
tex_options.saturate_t = key_tex->gl_clamp_mask[1];
tex_options.saturate_r = key_tex->gl_clamp_mask[2];
}
/* Prior to Haswell, we have to fake texture swizzle */
for (unsigned s = 0; s < MAX_SAMPLERS; s++) {
if (key_tex->swizzles[s] == SWIZZLE_NOOP)
continue;
tex_options.swizzle_result |= (1 << s);
for (unsigned c = 0; c < 4; c++)
tex_options.swizzles[s][c] = GET_SWZ(key_tex->swizzles[s], c);
}
/* Prior to Haswell, we have to lower gradients on shadow samplers */
tex_options.lower_txd_shadow = devinfo->gen < 8 && !devinfo->is_haswell;
tex_options.lower_y_uv_external = key_tex->y_uv_image_mask;
tex_options.lower_y_u_v_external = key_tex->y_u_v_image_mask;
tex_options.lower_yx_xuxv_external = key_tex->yx_xuxv_image_mask;
tex_options.lower_xy_uxvx_external = key_tex->xy_uxvx_image_mask;
tex_options.lower_ayuv_external = key_tex->ayuv_image_mask;
tex_options.lower_xyuv_external = key_tex->xyuv_image_mask;
/* Setup array of scaling factors for each texture. */
memcpy(&tex_options.scale_factors, &key_tex->scale_factors,
sizeof(tex_options.scale_factors));
return nir_lower_tex(nir, &tex_options);
}
static unsigned
get_subgroup_size(gl_shader_stage stage,
const struct brw_base_prog_key *key,
unsigned max_subgroup_size)
{
switch (key->subgroup_size_type) {
case BRW_SUBGROUP_SIZE_API_CONSTANT:
/* We have to use the global constant size. */
return BRW_SUBGROUP_SIZE;
case BRW_SUBGROUP_SIZE_UNIFORM:
/* It has to be uniform across all invocations but can vary per stage
* if we want. This gives us a bit more freedom.
*
* For compute, brw_nir_apply_key is called per-dispatch-width so this
* is the actual subgroup size and not a maximum. However, we only
* invoke one size of any given compute shader so it's still guaranteed
* to be uniform across invocations.
*/
return max_subgroup_size;
case BRW_SUBGROUP_SIZE_VARYING:
/* The subgroup size is allowed to be fully varying. For geometry
* stages, we know it's always 8 which is max_subgroup_size so we can
* return that. For compute, brw_nir_apply_key is called once per
* dispatch-width so max_subgroup_size is the real subgroup size.
*
* For fragment, we return 0 and let it fall through to the back-end
* compiler. This means we can't optimize based on subgroup size but
* that's a risk the client took when it asked for a varying subgroup
* size.
*/
return stage == MESA_SHADER_FRAGMENT ? 0 : max_subgroup_size;
case BRW_SUBGROUP_SIZE_REQUIRE_8:
case BRW_SUBGROUP_SIZE_REQUIRE_16:
case BRW_SUBGROUP_SIZE_REQUIRE_32:
assert(stage == MESA_SHADER_COMPUTE);
/* These enum values are expressly chosen to be equal to the subgroup
* size that they require.
*/
return key->subgroup_size_type;
}
unreachable("Invalid subgroup size type");
}
void
brw_nir_apply_key(nir_shader *nir,
const struct brw_compiler *compiler,
const struct brw_base_prog_key *key,
unsigned max_subgroup_size,
bool is_scalar)
{
bool progress = false;
OPT(brw_nir_apply_sampler_key, compiler, &key->tex);
const nir_lower_subgroups_options subgroups_options = {
.subgroup_size = get_subgroup_size(nir->info.stage, key,
max_subgroup_size),
.ballot_bit_size = 32,
.lower_subgroup_masks = true,
};
OPT(nir_lower_subgroups, &subgroups_options);
if (progress)
brw_nir_optimize(nir, compiler, is_scalar, false);
}
enum brw_conditional_mod
brw_cmod_for_nir_comparison(nir_op op)
{
switch (op) {
case nir_op_flt:
case nir_op_flt32:
case nir_op_ilt:
case nir_op_ilt32:
case nir_op_ult:
case nir_op_ult32:
return BRW_CONDITIONAL_L;
case nir_op_fge:
case nir_op_fge32:
case nir_op_ige:
case nir_op_ige32:
case nir_op_uge:
case nir_op_uge32:
return BRW_CONDITIONAL_GE;
case nir_op_feq:
case nir_op_feq32:
case nir_op_ieq:
case nir_op_ieq32:
case nir_op_b32all_fequal2:
case nir_op_b32all_iequal2:
case nir_op_b32all_fequal3:
case nir_op_b32all_iequal3:
case nir_op_b32all_fequal4:
case nir_op_b32all_iequal4:
return BRW_CONDITIONAL_Z;
case nir_op_fne:
case nir_op_fne32:
case nir_op_ine:
case nir_op_ine32:
case nir_op_b32any_fnequal2:
case nir_op_b32any_inequal2:
case nir_op_b32any_fnequal3:
case nir_op_b32any_inequal3:
case nir_op_b32any_fnequal4:
case nir_op_b32any_inequal4:
return BRW_CONDITIONAL_NZ;
default:
unreachable("Unsupported NIR comparison op");
}
}
uint32_t
brw_aop_for_nir_intrinsic(const nir_intrinsic_instr *atomic)
{
switch (atomic->intrinsic) {
#define AOP_CASE(atom) \
case nir_intrinsic_image_atomic_##atom: \
case nir_intrinsic_bindless_image_atomic_##atom: \
case nir_intrinsic_ssbo_atomic_##atom: \
case nir_intrinsic_shared_atomic_##atom: \
case nir_intrinsic_global_atomic_##atom
AOP_CASE(add): {
unsigned src_idx;
switch (atomic->intrinsic) {
case nir_intrinsic_image_atomic_add:
case nir_intrinsic_bindless_image_atomic_add:
src_idx = 3;
break;
case nir_intrinsic_ssbo_atomic_add:
src_idx = 2;
break;
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_global_atomic_add:
src_idx = 1;
break;
default:
unreachable("Invalid add atomic opcode");
}
if (nir_src_is_const(atomic->src[src_idx])) {
int64_t add_val = nir_src_as_int(atomic->src[src_idx]);
if (add_val == 1)
return BRW_AOP_INC;
else if (add_val == -1)
return BRW_AOP_DEC;
}
return BRW_AOP_ADD;
}
AOP_CASE(imin): return BRW_AOP_IMIN;
AOP_CASE(umin): return BRW_AOP_UMIN;
AOP_CASE(imax): return BRW_AOP_IMAX;
AOP_CASE(umax): return BRW_AOP_UMAX;
AOP_CASE(and): return BRW_AOP_AND;
AOP_CASE(or): return BRW_AOP_OR;
AOP_CASE(xor): return BRW_AOP_XOR;
AOP_CASE(exchange): return BRW_AOP_MOV;
AOP_CASE(comp_swap): return BRW_AOP_CMPWR;
#undef AOP_CASE
#define AOP_CASE(atom) \
case nir_intrinsic_ssbo_atomic_##atom: \
case nir_intrinsic_shared_atomic_##atom: \
case nir_intrinsic_global_atomic_##atom
AOP_CASE(fmin): return BRW_AOP_FMIN;
AOP_CASE(fmax): return BRW_AOP_FMAX;
AOP_CASE(fcomp_swap): return BRW_AOP_FCMPWR;
#undef AOP_CASE
default:
unreachable("Unsupported NIR atomic intrinsic");
}
}
enum brw_reg_type
brw_type_for_nir_type(const struct gen_device_info *devinfo, nir_alu_type type)
{
switch (type) {
case nir_type_uint:
case nir_type_uint32:
return BRW_REGISTER_TYPE_UD;
case nir_type_bool:
case nir_type_int:
case nir_type_bool32:
case nir_type_int32:
return BRW_REGISTER_TYPE_D;
case nir_type_float:
case nir_type_float32:
return BRW_REGISTER_TYPE_F;
case nir_type_float16:
return BRW_REGISTER_TYPE_HF;
case nir_type_float64:
return BRW_REGISTER_TYPE_DF;
case nir_type_int64:
return devinfo->gen < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_Q;
case nir_type_uint64:
return devinfo->gen < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_UQ;
case nir_type_int16:
return BRW_REGISTER_TYPE_W;
case nir_type_uint16:
return BRW_REGISTER_TYPE_UW;
case nir_type_int8:
return BRW_REGISTER_TYPE_B;
case nir_type_uint8:
return BRW_REGISTER_TYPE_UB;
default:
unreachable("unknown type");
}
return BRW_REGISTER_TYPE_F;
}
/* Returns the glsl_base_type corresponding to a nir_alu_type.
* This is used by both brw_vec4_nir and brw_fs_nir.
*/
enum glsl_base_type
brw_glsl_base_type_for_nir_type(nir_alu_type type)
{
switch (type) {
case nir_type_float:
case nir_type_float32:
return GLSL_TYPE_FLOAT;
case nir_type_float16:
return GLSL_TYPE_FLOAT16;
case nir_type_float64:
return GLSL_TYPE_DOUBLE;
case nir_type_int:
case nir_type_int32:
return GLSL_TYPE_INT;
case nir_type_uint:
case nir_type_uint32:
return GLSL_TYPE_UINT;
case nir_type_int16:
return GLSL_TYPE_INT16;
case nir_type_uint16:
return GLSL_TYPE_UINT16;
default:
unreachable("bad type");
}
}
nir_shader *
brw_nir_create_passthrough_tcs(void *mem_ctx, const struct brw_compiler *compiler,
const nir_shader_compiler_options *options,
const struct brw_tcs_prog_key *key)
{
nir_builder b;
nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_TESS_CTRL,
options);
nir_shader *nir = b.shader;
nir_variable *var;
nir_intrinsic_instr *load;
nir_intrinsic_instr *store;
nir_ssa_def *zero = nir_imm_int(&b, 0);
nir_ssa_def *invoc_id = nir_load_invocation_id(&b);
nir->info.inputs_read = key->outputs_written &
~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
nir->info.outputs_written = key->outputs_written;
nir->info.tess.tcs_vertices_out = key->input_vertices;
nir->info.name = ralloc_strdup(nir, "passthrough");
nir->num_uniforms = 8 * sizeof(uint32_t);
var = nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "hdr_0");
var->data.location = 0;
var = nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "hdr_1");
var->data.location = 1;
/* Write the patch URB header. */
for (int i = 0; i <= 1; i++) {
load = nir_intrinsic_instr_create(nir, nir_intrinsic_load_uniform);
load->num_components = 4;
load->src[0] = nir_src_for_ssa(zero);
nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
nir_intrinsic_set_base(load, i * 4 * sizeof(uint32_t));
nir_builder_instr_insert(&b, &load->instr);
store = nir_intrinsic_instr_create(nir, nir_intrinsic_store_output);
store->num_components = 4;
store->src[0] = nir_src_for_ssa(&load->dest.ssa);
store->src[1] = nir_src_for_ssa(zero);
nir_intrinsic_set_base(store, VARYING_SLOT_TESS_LEVEL_INNER - i);
nir_intrinsic_set_write_mask(store, WRITEMASK_XYZW);
nir_builder_instr_insert(&b, &store->instr);
}
/* Copy inputs to outputs. */
uint64_t varyings = nir->info.inputs_read;
while (varyings != 0) {
const int varying = ffsll(varyings) - 1;
load = nir_intrinsic_instr_create(nir,
nir_intrinsic_load_per_vertex_input);
load->num_components = 4;
load->src[0] = nir_src_for_ssa(invoc_id);
load->src[1] = nir_src_for_ssa(zero);
nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
nir_intrinsic_set_base(load, varying);
nir_builder_instr_insert(&b, &load->instr);
store = nir_intrinsic_instr_create(nir,
nir_intrinsic_store_per_vertex_output);
store->num_components = 4;
store->src[0] = nir_src_for_ssa(&load->dest.ssa);
store->src[1] = nir_src_for_ssa(invoc_id);
store->src[2] = nir_src_for_ssa(zero);
nir_intrinsic_set_base(store, varying);
nir_intrinsic_set_write_mask(store, WRITEMASK_XYZW);
nir_builder_instr_insert(&b, &store->instr);
varyings &= ~BITFIELD64_BIT(varying);
}
nir_validate_shader(nir, "in brw_nir_create_passthrough_tcs");
brw_preprocess_nir(compiler, nir, NULL);
return nir;
}
|