summaryrefslogtreecommitdiffstats
path: root/src/intel/compiler/brw_fs_visitor.cpp
blob: 4ee1d4e002282c2f9234066db64fe57b03226280 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
/*
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

/** @file brw_fs_visitor.cpp
 *
 * This file supports generating the FS LIR from the GLSL IR.  The LIR
 * makes it easier to do backend-specific optimizations than doing so
 * in the GLSL IR or in the native code.
 */
#include "brw_fs.h"
#include "compiler/glsl_types.h"

using namespace brw;

/* Sample from the MCS surface attached to this multisample texture. */
fs_reg
fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
                           const fs_reg &texture)
{
   const fs_reg dest = vgrf(glsl_type::uvec4_type);

   fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
   srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
   srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
   srcs[TEX_LOGICAL_SRC_SAMPLER] = texture;
   srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
   srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);

   fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
                            ARRAY_SIZE(srcs));

   /* We only care about one or two regs of response, but the sampler always
    * writes 4/8.
    */
   inst->size_written = 4 * dest.component_size(inst->exec_size);

   return dest;
}

/**
 * Apply workarounds for Gen6 gather with UINT/SINT
 */
void
fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
{
   if (!wa)
      return;

   int width = (wa & WA_8BIT) ? 8 : 16;

   for (int i = 0; i < 4; i++) {
      fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
      /* Convert from UNORM to UINT */
      bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
      bld.MOV(dst, dst_f);

      if (wa & WA_SIGN) {
         /* Reinterpret the UINT value as a signed INT value by
          * shifting the sign bit into place, then shifting back
          * preserving sign.
          */
         bld.SHL(dst, dst, brw_imm_d(32 - width));
         bld.ASR(dst, dst, brw_imm_d(32 - width));
      }

      dst = offset(dst, bld, 1);
   }
}

/** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
void
fs_visitor::emit_dummy_fs()
{
   int reg_width = dispatch_width / 8;

   /* Everyone's favorite color. */
   const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
   for (int i = 0; i < 4; i++) {
      bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
              brw_imm_f(color[i]));
   }

   fs_inst *write;
   write = bld.emit(FS_OPCODE_FB_WRITE);
   write->eot = true;
   if (devinfo->gen >= 6) {
      write->base_mrf = 2;
      write->mlen = 4 * reg_width;
   } else {
      write->header_size = 2;
      write->base_mrf = 0;
      write->mlen = 2 + 4 * reg_width;
   }

   /* Tell the SF we don't have any inputs.  Gen4-5 require at least one
    * varying to avoid GPU hangs, so set that.
    */
   struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
   wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
   memset(wm_prog_data->urb_setup, -1,
          sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);

   /* We don't have any uniforms. */
   stage_prog_data->nr_params = 0;
   stage_prog_data->nr_pull_params = 0;
   stage_prog_data->curb_read_length = 0;
   stage_prog_data->dispatch_grf_start_reg = 2;
   wm_prog_data->dispatch_grf_start_reg_2 = 2;
   grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */

   calculate_cfg();
}

/* The register location here is relative to the start of the URB
 * data.  It will get adjusted to be a real location before
 * generate_code() time.
 */
struct brw_reg
fs_visitor::interp_reg(int location, int channel)
{
   assert(stage == MESA_SHADER_FRAGMENT);
   struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
   int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
   int stride = (channel & 1) * 4;

   assert(prog_data->urb_setup[location] != -1);

   return brw_vec1_grf(regnr, stride);
}

/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup_gen4()
{
   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);

   fs_builder abld = bld.annotate("compute pixel centers");
   this->pixel_x = vgrf(glsl_type::uint_type);
   this->pixel_y = vgrf(glsl_type::uint_type);
   this->pixel_x.type = BRW_REGISTER_TYPE_UW;
   this->pixel_y.type = BRW_REGISTER_TYPE_UW;
   abld.ADD(this->pixel_x,
            fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
            fs_reg(brw_imm_v(0x10101010)));
   abld.ADD(this->pixel_y,
            fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
            fs_reg(brw_imm_v(0x11001100)));

   abld = bld.annotate("compute pixel deltas from v0");

   this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
      vgrf(glsl_type::vec2_type);
   const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
   const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
   const fs_reg ystart(negate(brw_vec1_grf(1, 1)));

   if (devinfo->has_pln && dispatch_width == 16) {
      for (unsigned i = 0; i < 2; i++) {
         abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
                          half(this->pixel_x, i), xstart);
         abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
                          half(this->pixel_y, i), ystart);
      }
   } else {
      abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
      abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
   }

   abld = bld.annotate("compute pos.w and 1/pos.w");
   /* Compute wpos.w.  It's always in our setup, since it's needed to
    * interpolate the other attributes.
    */
   this->wpos_w = vgrf(glsl_type::float_type);
   abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
             interp_reg(VARYING_SLOT_POS, 3));
   /* Compute the pixel 1/W value from wpos.w. */
   this->pixel_w = vgrf(glsl_type::float_type);
   abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
}

/** Emits the interpolation for the varying inputs. */
void
fs_visitor::emit_interpolation_setup_gen6()
{
   struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);

   fs_builder abld = bld.annotate("compute pixel centers");
   if (devinfo->gen >= 8 || dispatch_width == 8) {
      /* The "Register Region Restrictions" page says for BDW (and newer,
       * presumably):
       *
       *     "When destination spans two registers, the source may be one or
       *      two registers. The destination elements must be evenly split
       *      between the two registers."
       *
       * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
       * compute our pixel centers.
       */
      fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
                          BRW_REGISTER_TYPE_UW);

      const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
      dbld.ADD(int_pixel_xy,
               fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
               fs_reg(brw_imm_v(0x11001010)));

      this->pixel_x = vgrf(glsl_type::float_type);
      this->pixel_y = vgrf(glsl_type::float_type);
      abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
      abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
   } else {
      /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
       *
       *     "When destination spans two registers, the source MUST span two
       *      registers."
       *
       * Since the GRF source of the ADD will only read a single register, we
       * must do two separate ADDs in SIMD16.
       */
      fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
      fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
      int_pixel_x.type = BRW_REGISTER_TYPE_UW;
      int_pixel_y.type = BRW_REGISTER_TYPE_UW;
      abld.ADD(int_pixel_x,
               fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
               fs_reg(brw_imm_v(0x10101010)));
      abld.ADD(int_pixel_y,
               fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
               fs_reg(brw_imm_v(0x11001100)));

      /* As of gen6, we can no longer mix float and int sources.  We have
       * to turn the integer pixel centers into floats for their actual
       * use.
       */
      this->pixel_x = vgrf(glsl_type::float_type);
      this->pixel_y = vgrf(glsl_type::float_type);
      abld.MOV(this->pixel_x, int_pixel_x);
      abld.MOV(this->pixel_y, int_pixel_y);
   }

   abld = bld.annotate("compute pos.w");
   this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
   this->wpos_w = vgrf(glsl_type::float_type);
   abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);

   struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
   uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
      (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
       1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);

   for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
      uint8_t reg = payload.barycentric_coord_reg[i];
      this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));

      if (devinfo->needs_unlit_centroid_workaround &&
          (centroid_modes & (1 << i))) {
         /* Get the pixel/sample mask into f0 so that we know which
          * pixels are lit.  Then, for each channel that is unlit,
          * replace the centroid data with non-centroid data.
          */
         bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);

         uint8_t pixel_reg = payload.barycentric_coord_reg[i - 1];

         set_predicate_inv(BRW_PREDICATE_NORMAL, true,
                           bld.half(0).MOV(brw_vec8_grf(reg, 0),
                                           brw_vec8_grf(pixel_reg, 0)));
         set_predicate_inv(BRW_PREDICATE_NORMAL, true,
                           bld.half(0).MOV(brw_vec8_grf(reg + 1, 0),
                                           brw_vec8_grf(pixel_reg + 1, 0)));
         if (dispatch_width == 16) {
            set_predicate_inv(BRW_PREDICATE_NORMAL, true,
                              bld.half(1).MOV(brw_vec8_grf(reg + 2, 0),
                                              brw_vec8_grf(pixel_reg + 2, 0)));
            set_predicate_inv(BRW_PREDICATE_NORMAL, true,
                              bld.half(1).MOV(brw_vec8_grf(reg + 3, 0),
                                              brw_vec8_grf(pixel_reg + 3, 0)));
         }
         assert(dispatch_width != 32); /* not implemented yet */
      }
   }
}

static enum brw_conditional_mod
cond_for_alpha_func(GLenum func)
{
   switch(func) {
      case GL_GREATER:
         return BRW_CONDITIONAL_G;
      case GL_GEQUAL:
         return BRW_CONDITIONAL_GE;
      case GL_LESS:
         return BRW_CONDITIONAL_L;
      case GL_LEQUAL:
         return BRW_CONDITIONAL_LE;
      case GL_EQUAL:
         return BRW_CONDITIONAL_EQ;
      case GL_NOTEQUAL:
         return BRW_CONDITIONAL_NEQ;
      default:
         unreachable("Not reached");
   }
}

/**
 * Alpha test support for when we compile it into the shader instead
 * of using the normal fixed-function alpha test.
 */
void
fs_visitor::emit_alpha_test()
{
   assert(stage == MESA_SHADER_FRAGMENT);
   brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
   const fs_builder abld = bld.annotate("Alpha test");

   fs_inst *cmp;
   if (key->alpha_test_func == GL_ALWAYS)
      return;

   if (key->alpha_test_func == GL_NEVER) {
      /* f0.1 = 0 */
      fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
                                      BRW_REGISTER_TYPE_UW));
      cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
                     BRW_CONDITIONAL_NEQ);
   } else {
      /* RT0 alpha */
      fs_reg color = offset(outputs[0], bld, 3);

      /* f0.1 &= func(color, ref) */
      cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
                     cond_for_alpha_func(key->alpha_test_func));
   }
   cmp->predicate = BRW_PREDICATE_NORMAL;
   cmp->flag_subreg = 1;
}

fs_inst *
fs_visitor::emit_single_fb_write(const fs_builder &bld,
                                 fs_reg color0, fs_reg color1,
                                 fs_reg src0_alpha, unsigned components)
{
   assert(stage == MESA_SHADER_FRAGMENT);
   struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);

   /* Hand over gl_FragDepth or the payload depth. */
   const fs_reg dst_depth = (payload.dest_depth_reg ?
                             fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
                             fs_reg());
   fs_reg src_depth, src_stencil;

   if (source_depth_to_render_target) {
      if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
         src_depth = frag_depth;
      else
         src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
   }

   if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
      src_stencil = frag_stencil;

   const fs_reg sources[] = {
      color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
      (prog_data->uses_omask ? sample_mask : fs_reg()),
      brw_imm_ud(components)
   };
   assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
   fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
                             sources, ARRAY_SIZE(sources));

   if (prog_data->uses_kill) {
      write->predicate = BRW_PREDICATE_NORMAL;
      write->flag_subreg = 1;
   }

   return write;
}

void
fs_visitor::emit_fb_writes()
{
   assert(stage == MESA_SHADER_FRAGMENT);
   struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
   brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;

   fs_inst *inst = NULL;

   if (source_depth_to_render_target && devinfo->gen == 6) {
      /* For outputting oDepth on gen6, SIMD8 writes have to be used.  This
       * would require SIMD8 moves of each half to message regs, e.g. by using
       * the SIMD lowering pass.  Unfortunately this is more difficult than it
       * sounds because the SIMD8 single-source message lacks channel selects
       * for the second and third subspans.
       */
      limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
   }

   if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
      /* From the 'Render Target Write message' section of the docs:
       * "Output Stencil is not supported with SIMD16 Render Target Write
       * Messages."
       */
      limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
                           "in SIMD16+ mode.\n");
   }

   for (int target = 0; target < key->nr_color_regions; target++) {
      /* Skip over outputs that weren't written. */
      if (this->outputs[target].file == BAD_FILE)
         continue;

      const fs_builder abld = bld.annotate(
         ralloc_asprintf(this->mem_ctx, "FB write target %d", target));

      fs_reg src0_alpha;
      if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
         src0_alpha = offset(outputs[0], bld, 3);

      inst = emit_single_fb_write(abld, this->outputs[target],
                                  this->dual_src_output, src0_alpha, 4);
      inst->target = target;
   }

   prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE);
   assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);

   if (inst == NULL) {
      /* Even if there's no color buffers enabled, we still need to send
       * alpha out the pipeline to our null renderbuffer to support
       * alpha-testing, alpha-to-coverage, and so on.
       */
      /* FINISHME: Factor out this frequently recurring pattern into a
       * helper function.
       */
      const fs_reg srcs[] = { reg_undef, reg_undef,
                              reg_undef, offset(this->outputs[0], bld, 3) };
      const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
      bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);

      inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
      inst->target = 0;
   }

   inst->eot = true;
}

void
fs_visitor::setup_uniform_clipplane_values()
{
   const struct brw_vs_prog_key *key =
      (const struct brw_vs_prog_key *) this->key;

   for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
      this->userplane[i] = fs_reg(UNIFORM, uniforms);
      for (int j = 0; j < 4; ++j) {
         stage_prog_data->param[uniforms + j] =
            BRW_PARAM_BUILTIN_CLIP_PLANE(i, j);
      }
      uniforms += 4;
   }
}

/**
 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
 *
 * This does nothing if the shader uses gl_ClipDistance or user clipping is
 * disabled altogether.
 */
void fs_visitor::compute_clip_distance()
{
   struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
   const struct brw_vs_prog_key *key =
      (const struct brw_vs_prog_key *) this->key;

   /* Bail unless some sort of legacy clipping is enabled */
   if (key->nr_userclip_plane_consts == 0)
      return;

   /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
    *
    *     "If a linked set of shaders forming the vertex stage contains no
    *     static write to gl_ClipVertex or gl_ClipDistance, but the
    *     application has requested clipping against user clip planes through
    *     the API, then the coordinate written to gl_Position is used for
    *     comparison against the user clip planes."
    *
    * This function is only called if the shader didn't write to
    * gl_ClipDistance.  Accordingly, we use gl_ClipVertex to perform clipping
    * if the user wrote to it; otherwise we use gl_Position.
    */

   gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
   if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
      clip_vertex = VARYING_SLOT_POS;

   /* If the clip vertex isn't written, skip this.  Typically this means
    * the GS will set up clipping. */
   if (outputs[clip_vertex].file == BAD_FILE)
      return;

   setup_uniform_clipplane_values();

   const fs_builder abld = bld.annotate("user clip distances");

   this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
   this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);

   for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
      fs_reg u = userplane[i];
      const fs_reg output = offset(outputs[VARYING_SLOT_CLIP_DIST0 + i / 4],
                                   bld, i & 3);

      abld.MUL(output, outputs[clip_vertex], u);
      for (int j = 1; j < 4; j++) {
         u.nr = userplane[i].nr + j;
         abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
      }
   }
}

void
fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
{
   int slot, urb_offset, length;
   int starting_urb_offset = 0;
   const struct brw_vue_prog_data *vue_prog_data =
      brw_vue_prog_data(this->prog_data);
   const struct brw_vs_prog_key *vs_key =
      (const struct brw_vs_prog_key *) this->key;
   const GLbitfield64 psiz_mask =
      VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
   const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
   bool flush;
   fs_reg sources[8];
   fs_reg urb_handle;

   if (stage == MESA_SHADER_TESS_EVAL)
      urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
   else
      urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));

   /* If we don't have any valid slots to write, just do a minimal urb write
    * send to terminate the shader.  This includes 1 slot of undefined data,
    * because it's invalid to write 0 data:
    *
    * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
    * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
    * Write Data Payload:
    *
    *    "The write data payload can be between 1 and 8 message phases long."
    */
   if (vue_map->slots_valid == 0) {
      /* For GS, just turn EmitVertex() into a no-op.  We don't want it to
       * end the thread, and emit_gs_thread_end() already emits a SEND with
       * EOT at the end of the program for us.
       */
      if (stage == MESA_SHADER_GEOMETRY)
         return;

      fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
      bld.exec_all().MOV(payload, urb_handle);

      fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
      inst->eot = true;
      inst->mlen = 2;
      inst->offset = 1;
      return;
   }

   opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
   int header_size = 1;
   fs_reg per_slot_offsets;

   if (stage == MESA_SHADER_GEOMETRY) {
      const struct brw_gs_prog_data *gs_prog_data =
         brw_gs_prog_data(this->prog_data);

      /* We need to increment the Global Offset to skip over the control data
       * header and the extra "Vertex Count" field (1 HWord) at the beginning
       * of the VUE.  We're counting in OWords, so the units are doubled.
       */
      starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
      if (gs_prog_data->static_vertex_count == -1)
         starting_urb_offset += 2;

      /* We also need to use per-slot offsets.  The per-slot offset is the
       * Vertex Count.  SIMD8 mode processes 8 different primitives at a
       * time; each may output a different number of vertices.
       */
      opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
      header_size++;

      /* The URB offset is in 128-bit units, so we need to multiply by 2 */
      const int output_vertex_size_owords =
         gs_prog_data->output_vertex_size_hwords * 2;

      if (gs_vertex_count.file == IMM) {
         per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
                                       gs_vertex_count.ud);
      } else {
         per_slot_offsets = vgrf(glsl_type::int_type);
         bld.MUL(per_slot_offsets, gs_vertex_count,
                 brw_imm_ud(output_vertex_size_owords));
      }
   }

   length = 0;
   urb_offset = starting_urb_offset;
   flush = false;

   /* SSO shaders can have VUE slots allocated which are never actually
    * written to, so ignore them when looking for the last (written) slot.
    */
   int last_slot = vue_map->num_slots - 1;
   while (last_slot > 0 &&
          (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
           outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
      last_slot--;
   }

   for (slot = 0; slot < vue_map->num_slots; slot++) {
      int varying = vue_map->slot_to_varying[slot];
      switch (varying) {
      case VARYING_SLOT_PSIZ: {
         /* The point size varying slot is the vue header and is always in the
          * vue map.  But often none of the special varyings that live there
          * are written and in that case we can skip writing to the vue
          * header, provided the corresponding state properly clamps the
          * values further down the pipeline. */
         if ((vue_map->slots_valid & psiz_mask) == 0) {
            assert(length == 0);
            urb_offset++;
            break;
         }

         fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
         bld.MOV(zero, brw_imm_ud(0u));

         sources[length++] = zero;
         if (vue_map->slots_valid & VARYING_BIT_LAYER)
            sources[length++] = this->outputs[VARYING_SLOT_LAYER];
         else
            sources[length++] = zero;

         if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
            sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
         else
            sources[length++] = zero;

         if (vue_map->slots_valid & VARYING_BIT_PSIZ)
            sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
         else
            sources[length++] = zero;
         break;
      }
      case BRW_VARYING_SLOT_NDC:
      case VARYING_SLOT_EDGE:
         unreachable("unexpected scalar vs output");
         break;

      default:
         /* gl_Position is always in the vue map, but isn't always written by
          * the shader.  Other varyings (clip distances) get added to the vue
          * map but don't always get written.  In those cases, the
          * corresponding this->output[] slot will be invalid we and can skip
          * the urb write for the varying.  If we've already queued up a vue
          * slot for writing we flush a mlen 5 urb write, otherwise we just
          * advance the urb_offset.
          */
         if (varying == BRW_VARYING_SLOT_PAD ||
             this->outputs[varying].file == BAD_FILE) {
            if (length > 0)
               flush = true;
            else
               urb_offset++;
            break;
         }

         if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
             (varying == VARYING_SLOT_COL0 ||
              varying == VARYING_SLOT_COL1 ||
              varying == VARYING_SLOT_BFC0 ||
              varying == VARYING_SLOT_BFC1)) {
            /* We need to clamp these guys, so do a saturating MOV into a
             * temp register and use that for the payload.
             */
            for (int i = 0; i < 4; i++) {
               fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
               fs_reg src = offset(this->outputs[varying], bld, i);
               set_saturate(true, bld.MOV(reg, src));
               sources[length++] = reg;
            }
         } else {
            for (unsigned i = 0; i < 4; i++)
               sources[length++] = offset(this->outputs[varying], bld, i);
         }
         break;
      }

      const fs_builder abld = bld.annotate("URB write");

      /* If we've queued up 8 registers of payload (2 VUE slots), if this is
       * the last slot or if we need to flush (see BAD_FILE varying case
       * above), emit a URB write send now to flush out the data.
       */
      if (length == 8 || slot == last_slot)
         flush = true;
      if (flush) {
         fs_reg *payload_sources =
            ralloc_array(mem_ctx, fs_reg, length + header_size);
         fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
                                 BRW_REGISTER_TYPE_F);
         payload_sources[0] = urb_handle;

         if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
            payload_sources[1] = per_slot_offsets;

         memcpy(&payload_sources[header_size], sources,
                length * sizeof sources[0]);

         abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
                           header_size);

         fs_inst *inst = abld.emit(opcode, reg_undef, payload);
         inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
         inst->mlen = length + header_size;
         inst->offset = urb_offset;
         urb_offset = starting_urb_offset + slot + 1;
         length = 0;
         flush = false;
      }
   }
}

void
fs_visitor::emit_cs_terminate()
{
   assert(devinfo->gen >= 7);

   /* We are getting the thread ID from the compute shader header */
   assert(stage == MESA_SHADER_COMPUTE);

   /* We can't directly send from g0, since sends with EOT have to use
    * g112-127. So, copy it to a virtual register, The register allocator will
    * make sure it uses the appropriate register range.
    */
   struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
   fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
   bld.group(8, 0).exec_all().MOV(payload, g0);

   /* Send a message to the thread spawner to terminate the thread. */
   fs_inst *inst = bld.exec_all()
                      .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
   inst->eot = true;
}

void
fs_visitor::emit_barrier()
{
   assert(devinfo->gen >= 7);
   const uint32_t barrier_id_mask =
      devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;

   /* We are getting the barrier ID from the compute shader header */
   assert(stage == MESA_SHADER_COMPUTE);

   fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);

   const fs_builder pbld = bld.exec_all().group(8, 0);

   /* Clear the message payload */
   pbld.MOV(payload, brw_imm_ud(0u));

   /* Copy the barrier id from r0.2 to the message payload reg.2 */
   fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
   pbld.AND(component(payload, 2), r0_2, brw_imm_ud(barrier_id_mask));

   /* Emit a gateway "barrier" message using the payload we set up, followed
    * by a wait instruction.
    */
   bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
}

fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
                       void *mem_ctx,
                       const void *key,
                       struct brw_stage_prog_data *prog_data,
                       struct gl_program *prog,
                       const nir_shader *shader,
                       unsigned dispatch_width,
                       int shader_time_index,
                       const struct brw_vue_map *input_vue_map)
   : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
     key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
     input_vue_map(input_vue_map),
     dispatch_width(dispatch_width),
     shader_time_index(shader_time_index),
     bld(fs_builder(this, dispatch_width).at_end())
{
   init();
}

fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
                       void *mem_ctx,
                       struct brw_gs_compile *c,
                       struct brw_gs_prog_data *prog_data,
                       const nir_shader *shader,
                       int shader_time_index)
   : backend_shader(compiler, log_data, mem_ctx, shader,
                    &prog_data->base.base),
     key(&c->key), gs_compile(c),
     prog_data(&prog_data->base.base), prog(NULL),
     dispatch_width(8),
     shader_time_index(shader_time_index),
     bld(fs_builder(this, dispatch_width).at_end())
{
   init();
}


void
fs_visitor::init()
{
   switch (stage) {
   case MESA_SHADER_FRAGMENT:
      key_tex = &((const brw_wm_prog_key *) key)->tex;
      break;
   case MESA_SHADER_VERTEX:
      key_tex = &((const brw_vs_prog_key *) key)->tex;
      break;
   case MESA_SHADER_TESS_CTRL:
      key_tex = &((const brw_tcs_prog_key *) key)->tex;
      break;
   case MESA_SHADER_TESS_EVAL:
      key_tex = &((const brw_tes_prog_key *) key)->tex;
      break;
   case MESA_SHADER_GEOMETRY:
      key_tex = &((const brw_gs_prog_key *) key)->tex;
      break;
   case MESA_SHADER_COMPUTE:
      key_tex = &((const brw_cs_prog_key*) key)->tex;
      break;
   default:
      unreachable("unhandled shader stage");
   }

   if (stage == MESA_SHADER_COMPUTE) {
      const struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
      unsigned size = cs_prog_data->local_size[0] *
                      cs_prog_data->local_size[1] *
                      cs_prog_data->local_size[2];
      size = DIV_ROUND_UP(size, devinfo->max_cs_threads);
      min_dispatch_width = size > 16 ? 32 : (size > 8 ? 16 : 8);
   } else {
      min_dispatch_width = 8;
   }

   this->max_dispatch_width = 32;
   this->prog_data = this->stage_prog_data;

   this->failed = false;

   this->nir_locals = NULL;
   this->nir_ssa_values = NULL;

   memset(&this->payload, 0, sizeof(this->payload));
   this->source_depth_to_render_target = false;
   this->runtime_check_aads_emit = false;
   this->first_non_payload_grf = 0;
   this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;

   this->virtual_grf_start = NULL;
   this->virtual_grf_end = NULL;
   this->live_intervals = NULL;
   this->regs_live_at_ip = NULL;

   this->uniforms = 0;
   this->last_scratch = 0;
   this->pull_constant_loc = NULL;
   this->push_constant_loc = NULL;

   this->promoted_constants = 0,

   this->spilled_any_registers = false;
}

fs_visitor::~fs_visitor()
{
}