summaryrefslogtreecommitdiffstats
path: root/src/intel/compiler/brw_fs_surface_builder.cpp
blob: 8990a5ca71019d9fa77fc7ffde106028a3948ddf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
/*
 * Copyright © 2013-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "isl/isl.h"
#include "brw_fs_surface_builder.h"
#include "brw_fs.h"

using namespace brw;

namespace brw {
   namespace surface_access {
      namespace {
         /**
          * Generate a logical send opcode for a surface message and return
          * the result.
          */
         fs_reg
         emit_send(const fs_builder &bld, enum opcode opcode,
                   const fs_reg &addr, const fs_reg &src, const fs_reg &surface,
                   unsigned dims, unsigned arg, unsigned rsize,
                   brw_predicate pred = BRW_PREDICATE_NONE)
         {
            /* Reduce the dynamically uniform surface index to a single
             * scalar.
             */
            const fs_reg usurface = bld.emit_uniformize(surface);
            const fs_reg srcs[] = {
               addr, src, usurface, brw_imm_ud(dims), brw_imm_ud(arg)
            };
            const fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_UD, rsize);
            fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));

            inst->size_written = rsize * dst.component_size(inst->exec_size);
            inst->predicate = pred;
            return dst;
         }
      }

      /**
       * Emit an untyped surface read opcode.  \p dims determines the number
       * of components of the address and \p size the number of components of
       * the returned value.
       */
      fs_reg
      emit_untyped_read(const fs_builder &bld,
                        const fs_reg &surface, const fs_reg &addr,
                        unsigned dims, unsigned size,
                        brw_predicate pred)
      {
         return emit_send(bld, SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
                          addr, fs_reg(), surface, dims, size, size, pred);
      }

      /**
       * Emit an untyped surface write opcode.  \p dims determines the number
       * of components of the address and \p size the number of components of
       * the argument.
       */
      void
      emit_untyped_write(const fs_builder &bld, const fs_reg &surface,
                         const fs_reg &addr, const fs_reg &src,
                         unsigned dims, unsigned size,
                         brw_predicate pred)
      {
         emit_send(bld, SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
                   addr, src, surface, dims, size, 0, pred);
      }

      /**
       * Emit an untyped surface atomic opcode.  \p dims determines the number
       * of components of the address and \p rsize the number of components of
       * the returned value (either zero or one).
       */
      fs_reg
      emit_untyped_atomic(const fs_builder &bld,
                          const fs_reg &surface, const fs_reg &addr,
                          const fs_reg &src0, const fs_reg &src1,
                          unsigned dims, unsigned rsize, unsigned op,
                          brw_predicate pred)
      {
         /* FINISHME: Factor out this frequently recurring pattern into a
          * helper function.
          */
         const unsigned n = (src0.file != BAD_FILE) + (src1.file != BAD_FILE);
         const fs_reg srcs[] = { src0, src1 };
         const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, n);
         bld.LOAD_PAYLOAD(tmp, srcs, n, 0);

         return emit_send(bld, SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
                          addr, tmp, surface, dims, op, rsize, pred);
      }

      /**
       * Emit a typed surface read opcode.  \p dims determines the number of
       * components of the address and \p size the number of components of the
       * returned value.
       */
      fs_reg
      emit_typed_read(const fs_builder &bld, const fs_reg &surface,
                      const fs_reg &addr, unsigned dims, unsigned size)
      {
         return emit_send(bld, SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
                          addr, fs_reg(), surface, dims, size, size);
      }

      /**
       * Emit a typed surface write opcode.  \p dims determines the number of
       * components of the address and \p size the number of components of the
       * argument.
       */
      void
      emit_typed_write(const fs_builder &bld, const fs_reg &surface,
                       const fs_reg &addr, const fs_reg &src,
                       unsigned dims, unsigned size)
      {
         emit_send(bld, SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
                   addr, src, surface, dims, size, 0);
      }

      /**
       * Emit a typed surface atomic opcode.  \p dims determines the number of
       * components of the address and \p rsize the number of components of
       * the returned value (either zero or one).
       */
      fs_reg
      emit_typed_atomic(const fs_builder &bld, const fs_reg &surface,
                        const fs_reg &addr,
                        const fs_reg &src0, const fs_reg &src1,
                        unsigned dims, unsigned rsize, unsigned op,
                        brw_predicate pred)
      {
         /* FINISHME: Factor out this frequently recurring pattern into a
          * helper function.
          */
         const unsigned n = (src0.file != BAD_FILE) + (src1.file != BAD_FILE);
         const fs_reg srcs[] = { src0, src1 };
         const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, n);
         bld.LOAD_PAYLOAD(tmp, srcs, n, 0);

         return emit_send(bld, SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
                          addr, tmp, surface, dims, op, rsize);
      }
   }
}

namespace {
   namespace image_format_info {
      /* The higher compiler layers use the GL enums for image formats even if
       * they come in from SPIR-V or Vulkan.  We need to turn them into an ISL
       * enum before we can use them.
       */
      enum isl_format
      isl_format_for_gl_format(uint32_t gl_format)
      {
         switch (gl_format) {
         case GL_R8:             return ISL_FORMAT_R8_UNORM;
         case GL_R8_SNORM:       return ISL_FORMAT_R8_SNORM;
         case GL_R8UI:           return ISL_FORMAT_R8_UINT;
         case GL_R8I:            return ISL_FORMAT_R8_SINT;
         case GL_RG8:            return ISL_FORMAT_R8G8_UNORM;
         case GL_RG8_SNORM:      return ISL_FORMAT_R8G8_SNORM;
         case GL_RG8UI:          return ISL_FORMAT_R8G8_UINT;
         case GL_RG8I:           return ISL_FORMAT_R8G8_SINT;
         case GL_RGBA8:          return ISL_FORMAT_R8G8B8A8_UNORM;
         case GL_RGBA8_SNORM:    return ISL_FORMAT_R8G8B8A8_SNORM;
         case GL_RGBA8UI:        return ISL_FORMAT_R8G8B8A8_UINT;
         case GL_RGBA8I:         return ISL_FORMAT_R8G8B8A8_SINT;
         case GL_R11F_G11F_B10F: return ISL_FORMAT_R11G11B10_FLOAT;
         case GL_RGB10_A2:       return ISL_FORMAT_R10G10B10A2_UNORM;
         case GL_RGB10_A2UI:     return ISL_FORMAT_R10G10B10A2_UINT;
         case GL_R16:            return ISL_FORMAT_R16_UNORM;
         case GL_R16_SNORM:      return ISL_FORMAT_R16_SNORM;
         case GL_R16F:           return ISL_FORMAT_R16_FLOAT;
         case GL_R16UI:          return ISL_FORMAT_R16_UINT;
         case GL_R16I:           return ISL_FORMAT_R16_SINT;
         case GL_RG16:           return ISL_FORMAT_R16G16_UNORM;
         case GL_RG16_SNORM:     return ISL_FORMAT_R16G16_SNORM;
         case GL_RG16F:          return ISL_FORMAT_R16G16_FLOAT;
         case GL_RG16UI:         return ISL_FORMAT_R16G16_UINT;
         case GL_RG16I:          return ISL_FORMAT_R16G16_SINT;
         case GL_RGBA16:         return ISL_FORMAT_R16G16B16A16_UNORM;
         case GL_RGBA16_SNORM:   return ISL_FORMAT_R16G16B16A16_SNORM;
         case GL_RGBA16F:        return ISL_FORMAT_R16G16B16A16_FLOAT;
         case GL_RGBA16UI:       return ISL_FORMAT_R16G16B16A16_UINT;
         case GL_RGBA16I:        return ISL_FORMAT_R16G16B16A16_SINT;
         case GL_R32F:           return ISL_FORMAT_R32_FLOAT;
         case GL_R32UI:          return ISL_FORMAT_R32_UINT;
         case GL_R32I:           return ISL_FORMAT_R32_SINT;
         case GL_RG32F:          return ISL_FORMAT_R32G32_FLOAT;
         case GL_RG32UI:         return ISL_FORMAT_R32G32_UINT;
         case GL_RG32I:          return ISL_FORMAT_R32G32_SINT;
         case GL_RGBA32F:        return ISL_FORMAT_R32G32B32A32_FLOAT;
         case GL_RGBA32UI:       return ISL_FORMAT_R32G32B32A32_UINT;
         case GL_RGBA32I:        return ISL_FORMAT_R32G32B32A32_SINT;
         case GL_NONE:           return ISL_FORMAT_UNSUPPORTED;
         default:
            assert(!"Invalid image format");
            return ISL_FORMAT_UNSUPPORTED;
         }
      }

      /**
       * Simple 4-tuple of scalars used to pass around per-color component
       * values.
       */
      struct color_u {
         color_u(unsigned x = 0) : r(x), g(x), b(x), a(x)
         {
         }

         color_u(unsigned r, unsigned g, unsigned b, unsigned a) :
            r(r), g(g), b(b), a(a)
         {
         }

         unsigned
         operator[](unsigned i) const
         {
            const unsigned xs[] = { r, g, b, a };
            return xs[i];
         }

         unsigned r, g, b, a;
      };

      /**
       * Return the per-channel bitfield widths for a given image format.
       */
      inline color_u
      get_bit_widths(isl_format format)
      {
         const isl_format_layout *fmtl = isl_format_get_layout(format);

         return color_u(fmtl->channels.r.bits,
                        fmtl->channels.g.bits,
                        fmtl->channels.b.bits,
                        fmtl->channels.a.bits);
      }

      /**
       * Return the per-channel bitfield shifts for a given image format.
       */
      inline color_u
      get_bit_shifts(isl_format format)
      {
         const color_u widths = get_bit_widths(format);
         return color_u(0, widths.r, widths.r + widths.g,
                        widths.r + widths.g + widths.b);
      }

      /**
       * Return true if all present components have the same bit width.
       */
      inline bool
      is_homogeneous(isl_format format)
      {
         const color_u widths = get_bit_widths(format);
         return ((widths.g == 0 || widths.g == widths.r) &&
                 (widths.b == 0 || widths.b == widths.r) &&
                 (widths.a == 0 || widths.a == widths.r));
      }

      /**
       * Return true if the format conversion boils down to a trivial copy.
       */
      inline bool
      is_conversion_trivial(const gen_device_info *devinfo, isl_format format)
      {
         return (get_bit_widths(format).r == 32 && is_homogeneous(format)) ||
                 format == isl_lower_storage_image_format(devinfo, format);
      }

      /**
       * Return true if the hardware natively supports some format with
       * compatible bitfield layout, but possibly different data types.
       */
      inline bool
      has_supported_bit_layout(const gen_device_info *devinfo,
                               isl_format format)
      {
         const color_u widths = get_bit_widths(format);
         const color_u lower_widths = get_bit_widths(
            isl_lower_storage_image_format(devinfo, format));

         return (widths.r == lower_widths.r &&
                 widths.g == lower_widths.g &&
                 widths.b == lower_widths.b &&
                 widths.a == lower_widths.a);
      }

      /**
       * Return true if we are required to spread individual components over
       * several components of the format used by the hardware (RG32 and
       * friends implemented as RGBA16UI).
       */
      inline bool
      has_split_bit_layout(const gen_device_info *devinfo, isl_format format)
      {
         const isl_format lower_format =
            isl_lower_storage_image_format(devinfo, format);

         return (isl_format_get_num_channels(format) <
                 isl_format_get_num_channels(lower_format));
      }

      /**
       * Return true if the hardware returns garbage in the unused high bits
       * of each component.  This may happen on IVB because we rely on the
       * undocumented behavior that typed reads from surfaces of the
       * unsupported R8 and R16 formats return useful data in their least
       * significant bits.
       */
      inline bool
      has_undefined_high_bits(const gen_device_info *devinfo,
                              isl_format format)
      {
         const isl_format lower_format =
            isl_lower_storage_image_format(devinfo, format);

         return (devinfo->gen == 7 && !devinfo->is_haswell &&
                 (lower_format == ISL_FORMAT_R16_UINT ||
                  lower_format == ISL_FORMAT_R8_UINT));
      }

      /**
       * Return true if the format represents values as signed integers
       * requiring sign extension when unpacking.
       */
      inline bool
      needs_sign_extension(isl_format format)
      {
         return isl_format_has_snorm_channel(format) ||
                isl_format_has_sint_channel(format);
      }
   }

   namespace image_validity {
      /**
       * Check whether the bound image is suitable for untyped access.
       */
      brw_predicate
      emit_untyped_image_check(const fs_builder &bld, const fs_reg &image,
                               brw_predicate pred)
      {
         const gen_device_info *devinfo = bld.shader->devinfo;
         const fs_reg stride = offset(image, bld, BRW_IMAGE_PARAM_STRIDE_OFFSET);

         if (devinfo->gen == 7 && !devinfo->is_haswell) {
            /* Check whether the first stride component (i.e. the Bpp value)
             * is greater than four, what on Gen7 indicates that a surface of
             * type RAW has been bound for untyped access.  Reading or writing
             * to a surface of type other than RAW using untyped surface
             * messages causes a hang on IVB and VLV.
             */
            set_predicate(pred,
                          bld.CMP(bld.null_reg_ud(), stride, brw_imm_d(4),
                                  BRW_CONDITIONAL_G));

            return BRW_PREDICATE_NORMAL;
         } else {
            /* More recent generations handle the format mismatch
             * gracefully.
             */
            return pred;
         }
      }

      /**
       * Check whether there is an image bound at the given index and write
       * the comparison result to f0.0.  Returns an appropriate predication
       * mode to use on subsequent image operations.
       */
      brw_predicate
      emit_typed_atomic_check(const fs_builder &bld, const fs_reg &image)
      {
         const gen_device_info *devinfo = bld.shader->devinfo;
         const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);

         if (devinfo->gen == 7 && !devinfo->is_haswell) {
            /* Check the first component of the size field to find out if the
             * image is bound.  Necessary on IVB for typed atomics because
             * they don't seem to respect null surfaces and will happily
             * corrupt or read random memory when no image is bound.
             */
            bld.CMP(bld.null_reg_ud(),
                    retype(size, BRW_REGISTER_TYPE_UD),
                    brw_imm_d(0), BRW_CONDITIONAL_NZ);

            return BRW_PREDICATE_NORMAL;
         } else {
            /* More recent platforms implement compliant behavior when a null
             * surface is bound.
             */
            return BRW_PREDICATE_NONE;
         }
      }

      /**
       * Check whether the provided coordinates are within the image bounds
       * and write the comparison result to f0.0.  Returns an appropriate
       * predication mode to use on subsequent image operations.
       */
      brw_predicate
      emit_bounds_check(const fs_builder &bld, const fs_reg &image,
                        const fs_reg &addr, unsigned dims)
      {
         const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);

         for (unsigned c = 0; c < dims; ++c)
            set_predicate(c == 0 ? BRW_PREDICATE_NONE : BRW_PREDICATE_NORMAL,
                          bld.CMP(bld.null_reg_ud(),
                                  offset(retype(addr, BRW_REGISTER_TYPE_UD), bld, c),
                                  offset(size, bld, c),
                                  BRW_CONDITIONAL_L));

         return BRW_PREDICATE_NORMAL;
      }
   }

   namespace image_coordinates {
      /**
       * Return the total number of coordinates needed to address a texel of
       * the surface, which may be more than the sum of \p surf_dims and \p
       * arr_dims if padding is required.
       */
      unsigned
      num_image_coordinates(const fs_builder &bld,
                            unsigned surf_dims, unsigned arr_dims,
                            isl_format format)
      {
         /* HSW in vec4 mode and our software coordinate handling for untyped
          * reads want the array index to be at the Z component.
          */
         const bool array_index_at_z =
            format != ISL_FORMAT_UNSUPPORTED &&
            !isl_has_matching_typed_storage_image_format(
               bld.shader->devinfo, format);
         const unsigned zero_dims =
            ((surf_dims == 1 && arr_dims == 1 && array_index_at_z) ? 1 : 0);

         return surf_dims + zero_dims + arr_dims;
      }

      /**
       * Transform image coordinates into the form expected by the
       * implementation.
       */
      fs_reg
      emit_image_coordinates(const fs_builder &bld, const fs_reg &addr,
                             unsigned surf_dims, unsigned arr_dims,
                             isl_format format)
      {
         const unsigned dims =
            num_image_coordinates(bld, surf_dims, arr_dims, format);

         if (dims > surf_dims + arr_dims) {
            assert(surf_dims == 1 && arr_dims == 1 && dims == 3);
            /* The array index is required to be passed in as the Z component,
             * insert a zero at the Y component to shift it to the right
             * position.
             *
             * FINISHME: Factor out this frequently recurring pattern into a
             * helper function.
             */
            const fs_reg srcs[] = { addr, brw_imm_d(0), offset(addr, bld, 1) };
            const fs_reg dst = bld.vgrf(addr.type, dims);
            bld.LOAD_PAYLOAD(dst, srcs, dims, 0);
            return dst;
         } else {
            return addr;
         }
      }

      /**
       * Calculate the offset in memory of the texel given by \p coord.
       *
       * This is meant to be used with untyped surface messages to access a
       * tiled surface, what involves taking into account the tiling and
       * swizzling modes of the surface manually so it will hopefully not
       * happen very often.
       *
       * The tiling algorithm implemented here matches either the X or Y
       * tiling layouts supported by the hardware depending on the tiling
       * coefficients passed to the program as uniforms.  See Volume 1 Part 2
       * Section 4.5 "Address Tiling Function" of the IVB PRM for an in-depth
       * explanation of the hardware tiling format.
       */
      fs_reg
      emit_address_calculation(const fs_builder &bld, const fs_reg &image,
                               const fs_reg &coord, unsigned dims)
      {
         const gen_device_info *devinfo = bld.shader->devinfo;
         const fs_reg off = offset(image, bld, BRW_IMAGE_PARAM_OFFSET_OFFSET);
         const fs_reg stride = offset(image, bld, BRW_IMAGE_PARAM_STRIDE_OFFSET);
         const fs_reg tile = offset(image, bld, BRW_IMAGE_PARAM_TILING_OFFSET);
         const fs_reg swz = offset(image, bld, BRW_IMAGE_PARAM_SWIZZLING_OFFSET);
         const fs_reg addr = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
         const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
         const fs_reg minor = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
         const fs_reg major = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
         const fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_UD);

         /* Shift the coordinates by the fixed surface offset.  It may be
          * non-zero if the image is a single slice of a higher-dimensional
          * surface, or if a non-zero mipmap level of the surface is bound to
          * the pipeline.  The offset needs to be applied here rather than at
          * surface state set-up time because the desired slice-level may
          * start mid-tile, so simply shifting the surface base address
          * wouldn't give a well-formed tiled surface in the general case.
          */
         for (unsigned c = 0; c < 2; ++c)
            bld.ADD(offset(addr, bld, c), offset(off, bld, c),
                    (c < dims ?
                     offset(retype(coord, BRW_REGISTER_TYPE_UD), bld, c) :
                     fs_reg(brw_imm_d(0))));

         /* The layout of 3-D textures in memory is sort-of like a tiling
          * format.  At each miplevel, the slices are arranged in rows of
          * 2^level slices per row.  The slice row is stored in tmp.y and
          * the slice within the row is stored in tmp.x.
          *
          * The layout of 2-D array textures and cubemaps is much simpler:
          * Depending on whether the ARYSPC_LOD0 layout is in use it will be
          * stored in memory as an array of slices, each one being a 2-D
          * arrangement of miplevels, or as a 2D arrangement of miplevels,
          * each one being an array of slices.  In either case the separation
          * between slices of the same LOD is equal to the qpitch value
          * provided as stride.w.
          *
          * This code can be made to handle either 2D arrays and 3D textures
          * by passing in the miplevel as tile.z for 3-D textures and 0 in
          * tile.z for 2-D array textures.
          *
          * See Volume 1 Part 1 of the Gen7 PRM, sections 6.18.4.7 "Surface
          * Arrays" and 6.18.6 "3D Surfaces" for a more extensive discussion
          * of the hardware 3D texture and 2D array layouts.
          */
         if (dims > 2) {
            /* Decompose z into a major (tmp.y) and a minor (tmp.x)
             * index.
             */
            bld.BFE(offset(tmp, bld, 0), offset(tile, bld, 2), brw_imm_d(0),
                    offset(retype(coord, BRW_REGISTER_TYPE_UD), bld, 2));
            bld.SHR(offset(tmp, bld, 1),
                    offset(retype(coord, BRW_REGISTER_TYPE_UD), bld, 2),
                    offset(tile, bld, 2));

            /* Take into account the horizontal (tmp.x) and vertical (tmp.y)
             * slice offset.
             */
            for (unsigned c = 0; c < 2; ++c) {
               bld.MUL(offset(tmp, bld, c),
                       offset(stride, bld, 2 + c), offset(tmp, bld, c));
               bld.ADD(offset(addr, bld, c),
                       offset(addr, bld, c), offset(tmp, bld, c));
            }
         }

         if (dims > 1) {
            /* Calculate the major/minor x and y indices.  In order to
             * accommodate both X and Y tiling, the Y-major tiling format is
             * treated as being a bunch of narrow X-tiles placed next to each
             * other.  This means that the tile width for Y-tiling is actually
             * the width of one sub-column of the Y-major tile where each 4K
             * tile has 8 512B sub-columns.
             *
             * The major Y value is the row of tiles in which the pixel lives.
             * The major X value is the tile sub-column in which the pixel
             * lives; for X tiling, this is the same as the tile column, for Y
             * tiling, each tile has 8 sub-columns.  The minor X and Y indices
             * are the position within the sub-column.
             */
            for (unsigned c = 0; c < 2; ++c) {
               /* Calculate the minor x and y indices. */
               bld.BFE(offset(minor, bld, c), offset(tile, bld, c),
                       brw_imm_d(0), offset(addr, bld, c));

               /* Calculate the major x and y indices. */
               bld.SHR(offset(major, bld, c),
                       offset(addr, bld, c), offset(tile, bld, c));
            }

            /* Calculate the texel index from the start of the tile row and
             * the vertical coordinate of the row.
             * Equivalent to:
             *   tmp.x = (major.x << tile.y << tile.x) +
             *           (minor.y << tile.x) + minor.x
             *   tmp.y = major.y << tile.y
             */
            bld.SHL(tmp, major, offset(tile, bld, 1));
            bld.ADD(tmp, tmp, offset(minor, bld, 1));
            bld.SHL(tmp, tmp, offset(tile, bld, 0));
            bld.ADD(tmp, tmp, minor);
            bld.SHL(offset(tmp, bld, 1),
                    offset(major, bld, 1), offset(tile, bld, 1));

            /* Add it to the start of the tile row. */
            bld.MUL(offset(tmp, bld, 1),
                    offset(tmp, bld, 1), offset(stride, bld, 1));
            bld.ADD(tmp, tmp, offset(tmp, bld, 1));

            /* Multiply by the Bpp value. */
            bld.MUL(dst, tmp, stride);

            if (devinfo->gen < 8 && !devinfo->is_baytrail) {
               /* Take into account the two dynamically specified shifts.
                * Both need are used to implement swizzling of X-tiled
                * surfaces.  For Y-tiled surfaces only one bit needs to be
                * XOR-ed with bit 6 of the memory address, so a swz value of
                * 0xff (actually interpreted as 31 by the hardware) will be
                * provided to cause the relevant bit of tmp.y to be zero and
                * turn the first XOR into the identity.  For linear surfaces
                * or platforms lacking address swizzling both shifts will be
                * 0xff causing the relevant bits of both tmp.x and .y to be
                * zero, what effectively disables swizzling.
                */
               for (unsigned c = 0; c < 2; ++c)
                  bld.SHR(offset(tmp, bld, c), dst, offset(swz, bld, c));

               /* XOR tmp.x and tmp.y with bit 6 of the memory address. */
               bld.XOR(tmp, tmp, offset(tmp, bld, 1));
               bld.AND(tmp, tmp, brw_imm_d(1 << 6));
               bld.XOR(dst, dst, tmp);
            }

         } else {
            /* Multiply by the Bpp/stride value.  Note that the addr.y may be
             * non-zero even if the image is one-dimensional because a
             * vertical offset may have been applied above to select a
             * non-zero slice or level of a higher-dimensional texture.
             */
            bld.MUL(offset(addr, bld, 1),
                    offset(addr, bld, 1), offset(stride, bld, 1));
            bld.ADD(addr, addr, offset(addr, bld, 1));
            bld.MUL(dst, addr, stride);
         }

         return dst;
      }
   }

   namespace image_format_conversion {
      using image_format_info::color_u;

      namespace {
         /**
          * Maximum representable value in an unsigned integer with the given
          * number of bits.
          */
         inline unsigned
         scale(unsigned n)
         {
            return (1 << n) - 1;
         }
      }

      /**
       * Pack the vector \p src in a bitfield given the per-component bit
       * shifts and widths.  Note that bitfield components are not allowed to
       * cross 32-bit boundaries.
       */
      fs_reg
      emit_pack(const fs_builder &bld, const fs_reg &src,
                const color_u &shifts, const color_u &widths)
      {
         const fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
         bool seen[4] = {};

         for (unsigned c = 0; c < 4; ++c) {
            if (widths[c]) {
               const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);

               /* Shift each component left to the correct bitfield position. */
               bld.SHL(tmp, offset(src, bld, c), brw_imm_ud(shifts[c] % 32));

               /* Add everything up. */
               if (seen[shifts[c] / 32]) {
                  bld.OR(offset(dst, bld, shifts[c] / 32),
                         offset(dst, bld, shifts[c] / 32), tmp);
               } else {
                  bld.MOV(offset(dst, bld, shifts[c] / 32), tmp);
                  seen[shifts[c] / 32] = true;
               }
            }
         }

         return dst;
      }

      /**
       * Unpack a vector from the bitfield \p src given the per-component bit
       * shifts and widths.  Note that bitfield components are not allowed to
       * cross 32-bit boundaries.
       */
      fs_reg
      emit_unpack(const fs_builder &bld, const fs_reg &src,
                  const color_u &shifts, const color_u &widths)
      {
         const fs_reg dst = bld.vgrf(src.type, 4);

         for (unsigned c = 0; c < 4; ++c) {
            if (widths[c]) {
               /* Shift left to discard the most significant bits. */
               bld.SHL(offset(dst, bld, c),
                       offset(src, bld, shifts[c] / 32),
                       brw_imm_ud(32 - shifts[c] % 32 - widths[c]));

               /* Shift back to the least significant bits using an arithmetic
                * shift to get sign extension on signed types.
                */
               bld.ASR(offset(dst, bld, c),
                       offset(dst, bld, c), brw_imm_ud(32 - widths[c]));
            }
         }

         return dst;
      }

      /**
       * Convert an integer vector into another integer vector of the
       * specified bit widths, properly handling overflow.
       */
      fs_reg
      emit_convert_to_integer(const fs_builder &bld, const fs_reg &src,
                              const color_u &widths, bool is_signed)
      {
         const unsigned s = (is_signed ? 1 : 0);
         const fs_reg dst = bld.vgrf(
            is_signed ? BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_UD, 4);
         assert(src.type == dst.type);

         for (unsigned c = 0; c < 4; ++c) {
            if (widths[c]) {
               /* Clamp to the maximum value. */
               bld.emit_minmax(offset(dst, bld, c), offset(src, bld, c),
                               brw_imm_d((int)scale(widths[c] - s)),
                               BRW_CONDITIONAL_L);

               /* Clamp to the minimum value. */
               if (is_signed)
                  bld.emit_minmax(offset(dst, bld, c), offset(dst, bld, c),
                                  brw_imm_d(-(int)scale(widths[c] - s) - 1),
                                  BRW_CONDITIONAL_GE);

               /* Mask off all but the bits we actually want.  Otherwise, if
                * we pass a negative number into the hardware when it's
                * expecting something like UINT8, it will happily clamp it to
                * +255 for us.
                */
               if (is_signed && widths[c] < 32)
                  bld.AND(offset(dst, bld, c), offset(dst, bld, c),
                          brw_imm_d(scale(widths[c])));
            }
         }

         return dst;
      }

      /**
       * Convert a normalized fixed-point vector of the specified signedness
       * and bit widths into a floating point vector.
       */
      fs_reg
      emit_convert_from_scaled(const fs_builder &bld, const fs_reg &src,
                               const color_u &widths, bool is_signed)
      {
         const unsigned s = (is_signed ? 1 : 0);
         const fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_F, 4);

         for (unsigned c = 0; c < 4; ++c) {
            if (widths[c]) {
               /* Convert to float. */
               bld.MOV(offset(dst, bld, c), offset(src, bld, c));

               /* Divide by the normalization constants. */
               bld.MUL(offset(dst, bld, c), offset(dst, bld, c),
                       brw_imm_f(1.0f / scale(widths[c] - s)));

               /* Clamp to the minimum value. */
               if (is_signed)
                  bld.emit_minmax(offset(dst, bld, c),
                                  offset(dst, bld, c), brw_imm_f(-1.0f),
                                  BRW_CONDITIONAL_GE);
            }
         }
         return dst;
      }

      /**
       * Convert a floating-point vector into a normalized fixed-point vector
       * of the specified signedness and bit widths.
       */
      fs_reg
      emit_convert_to_scaled(const fs_builder &bld, const fs_reg &src,
                             const color_u &widths, bool is_signed)
      {
         const unsigned s = (is_signed ? 1 : 0);
         const fs_reg dst = bld.vgrf(
            is_signed ? BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_UD, 4);
         const fs_reg fdst = retype(dst, BRW_REGISTER_TYPE_F);

         for (unsigned c = 0; c < 4; ++c) {
            if (widths[c]) {
               /* Clamp the normalized floating-point argument. */
               if (is_signed) {
                  bld.emit_minmax(offset(fdst, bld, c), offset(src, bld, c),
                                  brw_imm_f(-1.0f), BRW_CONDITIONAL_GE);

                  bld.emit_minmax(offset(fdst, bld, c), offset(fdst, bld, c),
                                  brw_imm_f(1.0f), BRW_CONDITIONAL_L);
               } else {
                  set_saturate(true, bld.MOV(offset(fdst, bld, c),
                                             offset(src, bld, c)));
               }

               /* Multiply by the normalization constants. */
               bld.MUL(offset(fdst, bld, c), offset(fdst, bld, c),
                       brw_imm_f((float)scale(widths[c] - s)));

               /* Convert to integer. */
               bld.RNDE(offset(fdst, bld, c), offset(fdst, bld, c));
               bld.MOV(offset(dst, bld, c), offset(fdst, bld, c));

               /* Mask off all but the bits we actually want.  Otherwise, if
                * we pass a negative number into the hardware when it's
                * expecting something like UINT8, it will happily clamp it to
                * +255 for us.
                */
               if (is_signed && widths[c] < 32)
                  bld.AND(offset(dst, bld, c), offset(dst, bld, c),
                          brw_imm_d(scale(widths[c])));
            }
         }

         return dst;
      }

      /**
       * Convert a floating point vector of the specified bit widths into a
       * 32-bit floating point vector.
       */
      fs_reg
      emit_convert_from_float(const fs_builder &bld, const fs_reg &src,
                              const color_u &widths)
      {
         const fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
         const fs_reg fdst = retype(dst, BRW_REGISTER_TYPE_F);

         for (unsigned c = 0; c < 4; ++c) {
            if (widths[c]) {
               bld.MOV(offset(dst, bld, c), offset(src, bld, c));

               /* Extend 10-bit and 11-bit floating point numbers to 15 bits.
                * This works because they have a 5-bit exponent just like the
                * 16-bit floating point format, and they have no sign bit.
                */
               if (widths[c] < 16)
                  bld.SHL(offset(dst, bld, c),
                          offset(dst, bld, c), brw_imm_ud(15 - widths[c]));

               /* Convert to 32-bit floating point. */
               bld.F16TO32(offset(fdst, bld, c), offset(dst, bld, c));
            }
         }

         return fdst;
      }

      /**
       * Convert a vector into a floating point vector of the specified bit
       * widths.
       */
      fs_reg
      emit_convert_to_float(const fs_builder &bld, const fs_reg &src,
                            const color_u &widths)
      {
         const fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
         const fs_reg fdst = retype(dst, BRW_REGISTER_TYPE_F);

         for (unsigned c = 0; c < 4; ++c) {
            if (widths[c]) {
               bld.MOV(offset(fdst, bld, c), offset(src, bld, c));

               /* Clamp to the minimum value. */
               if (widths[c] < 16)
                  bld.emit_minmax(offset(fdst, bld, c), offset(fdst, bld, c),
                                  brw_imm_f(0.0f), BRW_CONDITIONAL_GE);

               /* Convert to 16-bit floating-point. */
               bld.F32TO16(offset(dst, bld, c), offset(fdst, bld, c));

               /* Discard the least significant bits to get floating point
                * numbers of the requested width.  This works because the
                * 10-bit and 11-bit floating point formats have a 5-bit
                * exponent just like the 16-bit format, and they have no sign
                * bit.
                */
               if (widths[c] < 16)
                  bld.SHR(offset(dst, bld, c), offset(dst, bld, c),
                          brw_imm_ud(15 - widths[c]));
            }
         }

         return dst;
      }

      /**
       * Fill missing components of a vector with 0, 0, 0, 1.
       */
      fs_reg
      emit_pad(const fs_builder &bld, const fs_reg &src,
               const color_u &widths)
      {
         const fs_reg dst = bld.vgrf(src.type, 4);
         const unsigned pad[] = { 0, 0, 0, 1 };

         for (unsigned c = 0; c < 4; ++c)
            bld.MOV(offset(dst, bld, c),
                    widths[c] ? offset(src, bld, c)
                              : fs_reg(brw_imm_ud(pad[c])));

         return dst;
      }
   }
}

namespace brw {
   namespace image_access {
      /**
       * Load a vector from a surface of the given format and dimensionality
       * at the given coordinates.  \p surf_dims and \p arr_dims give the
       * number of non-array and array coordinates of the image respectively.
       */
      fs_reg
      emit_image_load(const fs_builder &bld,
                      const fs_reg &image, const fs_reg &addr,
                      unsigned surf_dims, unsigned arr_dims,
                      unsigned gl_format)
      {
         using namespace image_format_info;
         using namespace image_format_conversion;
         using namespace image_validity;
         using namespace image_coordinates;
         using namespace surface_access;
         const gen_device_info *devinfo = bld.shader->devinfo;
         const isl_format format = isl_format_for_gl_format(gl_format);
         const isl_format lower_format =
            isl_lower_storage_image_format(devinfo, format);
         fs_reg tmp;

         /* Transform the image coordinates into actual surface coordinates. */
         const fs_reg saddr =
            emit_image_coordinates(bld, addr, surf_dims, arr_dims, format);
         const unsigned dims =
            num_image_coordinates(bld, surf_dims, arr_dims, format);

         if (isl_has_matching_typed_storage_image_format(devinfo, format)) {
            /* Hopefully we get here most of the time... */
            tmp = emit_typed_read(bld, image, saddr, dims,
                                  isl_format_get_num_channels(lower_format));
         } else {
            /* Untyped surface reads return 32 bits of the surface per
             * component, without any sort of unpacking or type conversion,
             */
            const unsigned size = isl_format_get_layout(format)->bpb / 32;
            /* they don't properly handle out of bounds access, so we have to
             * check manually if the coordinates are valid and predicate the
             * surface read on the result,
             */
            const brw_predicate pred =
               emit_untyped_image_check(bld, image,
                                        emit_bounds_check(bld, image,
                                                          saddr, dims));

            /* and they don't know about surface coordinates, we need to
             * convert them to a raw memory offset.
             */
            const fs_reg laddr = emit_address_calculation(bld, image, saddr, dims);

            tmp = emit_untyped_read(bld, image, laddr, 1, size, pred);

            /* An out of bounds surface access should give zero as result. */
            for (unsigned c = 0; c < size; ++c)
               set_predicate(pred, bld.SEL(offset(tmp, bld, c),
                                           offset(tmp, bld, c), brw_imm_d(0)));
         }

         /* Set the register type to D instead of UD if the data type is
          * represented as a signed integer in memory so that sign extension
          * is handled correctly by unpack.
          */
         if (needs_sign_extension(format))
            tmp = retype(tmp, BRW_REGISTER_TYPE_D);

         if (!has_supported_bit_layout(devinfo, format)) {
            /* Unpack individual vector components from the bitfield if the
             * hardware is unable to do it for us.
             */
            if (has_split_bit_layout(devinfo, format))
               tmp = emit_pack(bld, tmp, get_bit_shifts(lower_format),
                               get_bit_widths(lower_format));
            else
               tmp = emit_unpack(bld, tmp, get_bit_shifts(format),
                                 get_bit_widths(format));

         } else if ((needs_sign_extension(format) &&
                     !is_conversion_trivial(devinfo, format)) ||
                    has_undefined_high_bits(devinfo, format)) {
            /* Perform a trivial unpack even though the bit layout matches in
             * order to get the most significant bits of each component
             * initialized properly.
             */
            tmp = emit_unpack(bld, tmp, color_u(0, 32, 64, 96),
                              get_bit_widths(format));
         }

         if (!isl_format_has_int_channel(format)) {
            if (is_conversion_trivial(devinfo, format)) {
               /* Just need to cast the vector to the target type. */
               tmp = retype(tmp, BRW_REGISTER_TYPE_F);
            } else {
               /* Do the right sort of type conversion to float. */
               if (isl_format_has_float_channel(format))
                  tmp = emit_convert_from_float(
                     bld, tmp, get_bit_widths(format));
               else
                  tmp = emit_convert_from_scaled(
                     bld, tmp, get_bit_widths(format),
                     isl_format_has_snorm_channel(format));
            }
         }

         /* Initialize missing components of the result. */
         return emit_pad(bld, tmp, get_bit_widths(format));
      }

      /**
       * Store a vector in a surface of the given format and dimensionality at
       * the given coordinates.  \p surf_dims and \p arr_dims give the number
       * of non-array and array coordinates of the image respectively.
       */
      void
      emit_image_store(const fs_builder &bld, const fs_reg &image,
                       const fs_reg &addr, const fs_reg &src,
                       unsigned surf_dims, unsigned arr_dims,
                       unsigned gl_format)
      {
         using namespace image_format_info;
         using namespace image_format_conversion;
         using namespace image_validity;
         using namespace image_coordinates;
         using namespace surface_access;
         const isl_format format = isl_format_for_gl_format(gl_format);
         const gen_device_info *devinfo = bld.shader->devinfo;

         /* Transform the image coordinates into actual surface coordinates. */
         const fs_reg saddr =
            emit_image_coordinates(bld, addr, surf_dims, arr_dims, format);
         const unsigned dims =
            num_image_coordinates(bld, surf_dims, arr_dims, format);

         if (gl_format == GL_NONE) {
            /* We don't know what the format is, but that's fine because it
             * implies write-only access, and typed surface writes are always
             * able to take care of type conversion and packing for us.
             */
            emit_typed_write(bld, image, saddr, src, dims, 4);

         } else {
            const isl_format lower_format =
               isl_lower_storage_image_format(devinfo, format);
            fs_reg tmp = src;

            if (!is_conversion_trivial(devinfo, format)) {
               /* Do the right sort of type conversion. */
               if (isl_format_has_float_channel(format))
                  tmp = emit_convert_to_float(bld, tmp, get_bit_widths(format));

               else if (isl_format_has_int_channel(format))
                  tmp = emit_convert_to_integer(bld, tmp, get_bit_widths(format),
                                                isl_format_has_sint_channel(format));

               else
                  tmp = emit_convert_to_scaled(bld, tmp, get_bit_widths(format),
                                               isl_format_has_snorm_channel(format));
            }

            /* We're down to bit manipulation at this point. */
            tmp = retype(tmp, BRW_REGISTER_TYPE_UD);

            if (!has_supported_bit_layout(devinfo, format)) {
               /* Pack the vector components into a bitfield if the hardware
                * is unable to do it for us.
                */
               if (has_split_bit_layout(devinfo, format))
                  tmp = emit_unpack(bld, tmp, get_bit_shifts(lower_format),
                                    get_bit_widths(lower_format));

               else
                  tmp = emit_pack(bld, tmp, get_bit_shifts(format),
                                  get_bit_widths(format));
            }

            if (isl_has_matching_typed_storage_image_format(devinfo, format)) {
               /* Hopefully we get here most of the time... */
               emit_typed_write(bld, image, saddr, tmp, dims,
                                isl_format_get_num_channels(lower_format));

            } else {
               /* Untyped surface writes store 32 bits of the surface per
                * component, without any sort of packing or type conversion,
                */
               const unsigned size = isl_format_get_layout(format)->bpb / 32;

               /* they don't properly handle out of bounds access, so we have
                * to check manually if the coordinates are valid and predicate
                * the surface write on the result,
                */
               const brw_predicate pred =
                  emit_untyped_image_check(bld, image,
                                           emit_bounds_check(bld, image,
                                                             saddr, dims));

               /* and, phew, they don't know about surface coordinates, we
                * need to convert them to a raw memory offset.
                */
               const fs_reg laddr = emit_address_calculation(
                  bld, image, saddr, dims);

               emit_untyped_write(bld, image, laddr, tmp, 1, size, pred);
            }
         }
      }

      /**
       * Perform an atomic read-modify-write operation in a surface of the
       * given dimensionality at the given coordinates.  \p surf_dims and \p
       * arr_dims give the number of non-array and array coordinates of the
       * image respectively.  Main building block of the imageAtomic GLSL
       * built-ins.
       */
      fs_reg
      emit_image_atomic(const fs_builder &bld,
                        const fs_reg &image, const fs_reg &addr,
                        const fs_reg &src0, const fs_reg &src1,
                        unsigned surf_dims, unsigned arr_dims,
                        unsigned rsize, unsigned op)
      {
         using namespace image_validity;
         using namespace image_coordinates;
         using namespace surface_access;
         /* Avoid performing an atomic operation on an unbound surface. */
         const brw_predicate pred = emit_typed_atomic_check(bld, image);

         /* Transform the image coordinates into actual surface coordinates. */
         const fs_reg saddr =
            emit_image_coordinates(bld, addr, surf_dims, arr_dims,
                                   ISL_FORMAT_R32_UINT);
         const unsigned dims =
            num_image_coordinates(bld, surf_dims, arr_dims,
                                  ISL_FORMAT_R32_UINT);

         /* Thankfully we can do without untyped atomics here. */
         const fs_reg tmp = emit_typed_atomic(bld, image, saddr, src0, src1,
                                              dims, rsize, op, pred);

         /* An unbound surface access should give zero as result. */
         if (rsize && pred)
            set_predicate(pred, bld.SEL(tmp, tmp, brw_imm_d(0)));

         return retype(tmp, src0.type);
      }
   }
}