aboutsummaryrefslogtreecommitdiffstats
path: root/src/intel/compiler/brw_fs_reg_allocate.cpp
blob: ee758009cadba0d861b4bfc5e0ad35197ef244ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
/*
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "brw_eu.h"
#include "brw_fs.h"
#include "brw_cfg.h"
#include "util/register_allocate.h"

using namespace brw;

static void
assign_reg(unsigned *reg_hw_locations, fs_reg *reg)
{
   if (reg->file == VGRF) {
      reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
      reg->offset %= REG_SIZE;
   }
}

void
fs_visitor::assign_regs_trivial()
{
   unsigned hw_reg_mapping[this->alloc.count + 1];
   unsigned i;
   int reg_width = dispatch_width / 8;

   /* Note that compressed instructions require alignment to 2 registers. */
   hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
   for (i = 1; i <= this->alloc.count; i++) {
      hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
			   this->alloc.sizes[i - 1]);
   }
   this->grf_used = hw_reg_mapping[this->alloc.count];

   foreach_block_and_inst(block, fs_inst, inst, cfg) {
      assign_reg(hw_reg_mapping, &inst->dst);
      for (i = 0; i < inst->sources; i++) {
         assign_reg(hw_reg_mapping, &inst->src[i]);
      }
   }

   if (this->grf_used >= max_grf) {
      fail("Ran out of regs on trivial allocator (%d/%d)\n",
	   this->grf_used, max_grf);
   } else {
      this->alloc.count = this->grf_used;
   }

}

/**
 * Size of a register from the aligned_bary_class register class.
 */
static unsigned
aligned_bary_size(unsigned dispatch_width)
{
   return (dispatch_width == 8 ? 2 : 4);
}

static void
brw_alloc_reg_set(struct brw_compiler *compiler, int dispatch_width)
{
   const struct gen_device_info *devinfo = compiler->devinfo;
   int base_reg_count = BRW_MAX_GRF;
   const int index = util_logbase2(dispatch_width / 8);

   if (dispatch_width > 8 && devinfo->gen >= 7) {
      /* For IVB+, we don't need the PLN hacks or the even-reg alignment in
       * SIMD16.  Therefore, we can use the exact same register sets for
       * SIMD16 as we do for SIMD8 and we don't need to recalculate them.
       */
      compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0];
      return;
   }

   /* The registers used to make up almost all values handled in the compiler
    * are a scalar value occupying a single register (or 2 registers in the
    * case of SIMD16, which is handled by dividing base_reg_count by 2 and
    * multiplying allocated register numbers by 2).  Things that were
    * aggregates of scalar values at the GLSL level were split to scalar
    * values by split_virtual_grfs().
    *
    * However, texture SEND messages return a series of contiguous registers
    * to write into.  We currently always ask for 4 registers, but we may
    * convert that to use less some day.
    *
    * Additionally, on gen5 we need aligned pairs of registers for the PLN
    * instruction, and on gen4 we need 8 contiguous regs for workaround simd16
    * texturing.
    */
   const int class_count = MAX_VGRF_SIZE;
   int class_sizes[MAX_VGRF_SIZE];
   for (unsigned i = 0; i < MAX_VGRF_SIZE; i++)
      class_sizes[i] = i + 1;

   memset(compiler->fs_reg_sets[index].class_to_ra_reg_range, 0,
          sizeof(compiler->fs_reg_sets[index].class_to_ra_reg_range));
   int *class_to_ra_reg_range = compiler->fs_reg_sets[index].class_to_ra_reg_range;

   /* Compute the total number of registers across all classes. */
   int ra_reg_count = 0;
   for (int i = 0; i < class_count; i++) {
      if (devinfo->gen <= 5 && dispatch_width >= 16) {
         /* From the G45 PRM:
          *
          * In order to reduce the hardware complexity, the following
          * rules and restrictions apply to the compressed instruction:
          * ...
          * * Operand Alignment Rule: With the exceptions listed below, a
          *   source/destination operand in general should be aligned to
          *   even 256-bit physical register with a region size equal to
          *   two 256-bit physical register
          */
         ra_reg_count += (base_reg_count - (class_sizes[i] - 1)) / 2;
      } else {
         ra_reg_count += base_reg_count - (class_sizes[i] - 1);
      }
      /* Mark the last register. We'll fill in the beginnings later. */
      class_to_ra_reg_range[class_sizes[i]] = ra_reg_count;
   }

   /* Fill out the rest of the range markers */
   for (int i = 1; i < 17; ++i) {
      if (class_to_ra_reg_range[i] == 0)
         class_to_ra_reg_range[i] = class_to_ra_reg_range[i-1];
   }

   uint8_t *ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
   struct ra_regs *regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
   if (devinfo->gen >= 6)
      ra_set_allocate_round_robin(regs);
   int *classes = ralloc_array(compiler, int, class_count);
   int aligned_bary_class = -1;

   /* Allocate space for q values.  We allocate class_count + 1 because we
    * want to leave room for the aligned barycentric class if we have it.
    */
   unsigned int **q_values = ralloc_array(compiler, unsigned int *,
                                          class_count + 1);
   for (int i = 0; i < class_count + 1; ++i)
      q_values[i] = ralloc_array(q_values, unsigned int, class_count + 1);

   /* Now, add the registers to their classes, and add the conflicts
    * between them and the base GRF registers (and also each other).
    */
   int reg = 0;
   int aligned_bary_base_reg = 0;
   int aligned_bary_reg_count = 0;
   for (int i = 0; i < class_count; i++) {
      int class_reg_count;
      if (devinfo->gen <= 5 && dispatch_width >= 16) {
         class_reg_count = (base_reg_count - (class_sizes[i] - 1)) / 2;

         /* See comment below.  The only difference here is that we are
          * dealing with pairs of registers instead of single registers.
          * Registers of odd sizes simply get rounded up. */
         for (int j = 0; j < class_count; j++)
            q_values[i][j] = (class_sizes[i] + 1) / 2 +
                             (class_sizes[j] + 1) / 2 - 1;
      } else {
         class_reg_count = base_reg_count - (class_sizes[i] - 1);

         /* From register_allocate.c:
          *
          * q(B,C) (indexed by C, B is this register class) in
          * Runeson/Nyström paper.  This is "how many registers of B could
          * the worst choice register from C conflict with".
          *
          * If we just let the register allocation algorithm compute these
          * values, is extremely expensive.  However, since all of our
          * registers are laid out, we can very easily compute them
          * ourselves.  View the register from C as fixed starting at GRF n
          * somwhere in the middle, and the register from B as sliding back
          * and forth.  Then the first register to conflict from B is the
          * one starting at n - class_size[B] + 1 and the last register to
          * conflict will start at n + class_size[B] - 1.  Therefore, the
          * number of conflicts from B is class_size[B] + class_size[C] - 1.
          *
          *   +-+-+-+-+-+-+     +-+-+-+-+-+-+
          * B | | | | | |n| --> | | | | | | |
          *   +-+-+-+-+-+-+     +-+-+-+-+-+-+
          *             +-+-+-+-+-+
          * C           |n| | | | |
          *             +-+-+-+-+-+
          */
         for (int j = 0; j < class_count; j++)
            q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
      }
      classes[i] = ra_alloc_reg_class(regs);

      /* Save this off for the aligned barycentric class at the end. */
      if (class_sizes[i] == int(aligned_bary_size(dispatch_width))) {
         aligned_bary_base_reg = reg;
         aligned_bary_reg_count = class_reg_count;
      }

      if (devinfo->gen <= 5 && dispatch_width >= 16) {
         for (int j = 0; j < class_reg_count; j++) {
            ra_class_add_reg(regs, classes[i], reg);

            ra_reg_to_grf[reg] = j * 2;

            for (int base_reg = j;
                 base_reg < j + (class_sizes[i] + 1) / 2;
                 base_reg++) {
               ra_add_reg_conflict(regs, base_reg, reg);
            }

            reg++;
         }
      } else {
         for (int j = 0; j < class_reg_count; j++) {
            ra_class_add_reg(regs, classes[i], reg);

            ra_reg_to_grf[reg] = j;

            for (int base_reg = j;
                 base_reg < j + class_sizes[i];
                 base_reg++) {
               ra_add_reg_conflict(regs, base_reg, reg);
            }

            reg++;
         }
      }
   }
   assert(reg == ra_reg_count);

   /* Applying transitivity to all of the base registers gives us the
    * appropreate register conflict relationships everywhere.
    */
   for (int reg = 0; reg < base_reg_count; reg++)
      ra_make_reg_conflicts_transitive(regs, reg);

   /* Add a special class for aligned barycentrics, which we'll put the
    * first source of LINTERP on so that we can do PLN on Gen <= 6.
    */
   if (devinfo->has_pln && (devinfo->gen == 6 ||
                            (dispatch_width == 8 && devinfo->gen <= 5))) {
      aligned_bary_class = ra_alloc_reg_class(regs);

      for (int i = 0; i < aligned_bary_reg_count; i++) {
	 if ((ra_reg_to_grf[aligned_bary_base_reg + i] & 1) == 0) {
	    ra_class_add_reg(regs, aligned_bary_class,
                             aligned_bary_base_reg + i);
	 }
      }

      for (int i = 0; i < class_count; i++) {
         /* These are a little counter-intuitive because the barycentric
          * registers are required to be aligned while the register they are
          * potentially interferring with are not.  In the case where the size
          * is even, the worst-case is that the register is odd-aligned.  In
          * the odd-size case, it doesn't matter.
          */
         q_values[class_count][i] = class_sizes[i] / 2 +
                                    aligned_bary_size(dispatch_width) / 2;
         q_values[i][class_count] = class_sizes[i] +
                                    aligned_bary_size(dispatch_width) - 1;
      }
      q_values[class_count][class_count] = aligned_bary_size(dispatch_width) - 1;
   }

   ra_set_finalize(regs, q_values);

   ralloc_free(q_values);

   compiler->fs_reg_sets[index].regs = regs;
   for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++)
      compiler->fs_reg_sets[index].classes[i] = -1;
   for (int i = 0; i < class_count; i++)
      compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
   compiler->fs_reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
   compiler->fs_reg_sets[index].aligned_bary_class = aligned_bary_class;
}

void
brw_fs_alloc_reg_sets(struct brw_compiler *compiler)
{
   brw_alloc_reg_set(compiler, 8);
   brw_alloc_reg_set(compiler, 16);
   brw_alloc_reg_set(compiler, 32);
}

static int
count_to_loop_end(const bblock_t *block)
{
   if (block->end()->opcode == BRW_OPCODE_WHILE)
      return block->end_ip;

   int depth = 1;
   /* Skip the first block, since we don't want to count the do the calling
    * function found.
    */
   for (block = block->next();
        depth > 0;
        block = block->next()) {
      if (block->start()->opcode == BRW_OPCODE_DO)
         depth++;
      if (block->end()->opcode == BRW_OPCODE_WHILE) {
         depth--;
         if (depth == 0)
            return block->end_ip;
      }
   }
   unreachable("not reached");
}

void fs_visitor::calculate_payload_ranges(int payload_node_count,
                                          int *payload_last_use_ip) const
{
   int loop_depth = 0;
   int loop_end_ip = 0;

   for (int i = 0; i < payload_node_count; i++)
      payload_last_use_ip[i] = -1;

   int ip = 0;
   foreach_block_and_inst(block, fs_inst, inst, cfg) {
      switch (inst->opcode) {
      case BRW_OPCODE_DO:
         loop_depth++;

         /* Since payload regs are deffed only at the start of the shader
          * execution, any uses of the payload within a loop mean the live
          * interval extends to the end of the outermost loop.  Find the ip of
          * the end now.
          */
         if (loop_depth == 1)
            loop_end_ip = count_to_loop_end(block);
         break;
      case BRW_OPCODE_WHILE:
         loop_depth--;
         break;
      default:
         break;
      }

      int use_ip;
      if (loop_depth > 0)
         use_ip = loop_end_ip;
      else
         use_ip = ip;

      /* Note that UNIFORM args have been turned into FIXED_GRF by
       * assign_curbe_setup(), and interpolation uses fixed hardware regs from
       * the start (see interp_reg()).
       */
      for (int i = 0; i < inst->sources; i++) {
         if (inst->src[i].file == FIXED_GRF) {
            int node_nr = inst->src[i].nr;
            if (node_nr >= payload_node_count)
               continue;

            for (unsigned j = 0; j < regs_read(inst, i); j++) {
               payload_last_use_ip[node_nr + j] = use_ip;
               assert(node_nr + j < unsigned(payload_node_count));
            }
         }
      }

      /* Special case instructions which have extra implied registers used. */
      switch (inst->opcode) {
      case CS_OPCODE_CS_TERMINATE:
         payload_last_use_ip[0] = use_ip;
         break;

      default:
         if (inst->eot) {
            /* We could omit this for the !inst->header_present case, except
             * that the simulator apparently incorrectly reads from g0/g1
             * instead of sideband.  It also really freaks out driver
             * developers to see g0 used in unusual places, so just always
             * reserve it.
             */
            payload_last_use_ip[0] = use_ip;
            payload_last_use_ip[1] = use_ip;
         }
         break;
      }

      ip++;
   }
}

class fs_reg_alloc {
public:
   fs_reg_alloc(fs_visitor *fs):
      fs(fs), devinfo(fs->devinfo), compiler(fs->compiler),
      live(fs->live_analysis.require()), g(NULL),
      have_spill_costs(false)
   {
      mem_ctx = ralloc_context(NULL);

      /* Most of this allocation was written for a reg_width of 1
       * (dispatch_width == 8).  In extending to SIMD16, the code was
       * left in place and it was converted to have the hardware
       * registers it's allocating be contiguous physical pairs of regs
       * for reg_width == 2.
       */
      int reg_width = fs->dispatch_width / 8;
      rsi = util_logbase2(reg_width);
      payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width);

      /* Get payload IP information */
      payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count);

      spill_vgrf_ip = NULL;
      spill_vgrf_ip_alloc = 0;
      spill_node_count = 0;
   }

   ~fs_reg_alloc()
   {
      ralloc_free(mem_ctx);
   }

   bool assign_regs(bool allow_spilling, bool spill_all);

private:
   void setup_live_interference(unsigned node,
                                int node_start_ip, int node_end_ip);
   void setup_inst_interference(const fs_inst *inst);

   void build_interference_graph(bool allow_spilling);
   void discard_interference_graph();

   void set_spill_costs();
   int choose_spill_reg();
   fs_reg alloc_spill_reg(unsigned size, int ip);
   void spill_reg(unsigned spill_reg);

   void *mem_ctx;
   fs_visitor *fs;
   const gen_device_info *devinfo;
   const brw_compiler *compiler;
   const fs_live_variables &live;

   /* Which compiler->fs_reg_sets[] to use */
   int rsi;

   ra_graph *g;
   bool have_spill_costs;

   int payload_node_count;
   int *payload_last_use_ip;

   int node_count;
   int first_payload_node;
   int first_mrf_hack_node;
   int grf127_send_hack_node;
   int first_vgrf_node;
   int first_spill_node;

   int *spill_vgrf_ip;
   int spill_vgrf_ip_alloc;
   int spill_node_count;
};

/**
 * Sets the mrf_used array to indicate which MRFs are used by the shader IR
 *
 * This is used in assign_regs() to decide which of the GRFs that we use as
 * MRFs on gen7 get normally register allocated, and in register spilling to
 * see if we can actually use MRFs to do spills without overwriting normal MRF
 * contents.
 */
static void
get_used_mrfs(const fs_visitor *v, bool *mrf_used)
{
   int reg_width = v->dispatch_width / 8;

   memset(mrf_used, 0, BRW_MAX_MRF(v->devinfo->gen) * sizeof(bool));

   foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
      if (inst->dst.file == MRF) {
         int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
         mrf_used[reg] = true;
         if (reg_width == 2) {
            if (inst->dst.nr & BRW_MRF_COMPR4) {
               mrf_used[reg + 4] = true;
            } else {
               mrf_used[reg + 1] = true;
            }
         }
      }

      if (inst->mlen > 0) {
	 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
            mrf_used[inst->base_mrf + i] = true;
         }
      }
   }
}

namespace {
   /**
    * Maximum spill block size we expect to encounter in 32B units.
    *
    * This is somewhat arbitrary and doesn't necessarily limit the maximum
    * variable size that can be spilled -- A higher value will allow a
    * variable of a given size to be spilled more efficiently with a smaller
    * number of scratch messages, but will increase the likelihood of a
    * collision between the MRFs reserved for spilling and other MRFs used by
    * the program (and possibly increase GRF register pressure on platforms
    * without hardware MRFs), what could cause register allocation to fail.
    *
    * For the moment reserve just enough space so a register of 32 bit
    * component type and natural region width can be spilled without splitting
    * into multiple (force_writemask_all) scratch messages.
    */
   unsigned
   spill_max_size(const backend_shader *s)
   {
      /* FINISHME - On Gen7+ it should be possible to avoid this limit
       *            altogether by spilling directly from the temporary GRF
       *            allocated to hold the result of the instruction (and the
       *            scratch write header).
       */
      /* FINISHME - The shader's dispatch width probably belongs in
       *            backend_shader (or some nonexistent fs_shader class?)
       *            rather than in the visitor class.
       */
      return static_cast<const fs_visitor *>(s)->dispatch_width / 8;
   }

   /**
    * First MRF register available for spilling.
    */
   unsigned
   spill_base_mrf(const backend_shader *s)
   {
      return BRW_MAX_MRF(s->devinfo->gen) - spill_max_size(s) - 1;
   }
}

void
fs_reg_alloc::setup_live_interference(unsigned node,
                                      int node_start_ip, int node_end_ip)
{
   /* Mark any virtual grf that is live between the start of the program and
    * the last use of a payload node interfering with that payload node.
    */
   for (int i = 0; i < payload_node_count; i++) {
      if (payload_last_use_ip[i] == -1)
         continue;

      /* Note that we use a <= comparison, unlike vgrfs_interfere(),
       * in order to not have to worry about the uniform issue described in
       * calculate_live_intervals().
       */
      if (node_start_ip <= payload_last_use_ip[i])
         ra_add_node_interference(g, node, first_payload_node + i);
   }

   /* If we have the MRF hack enabled, mark this node as interfering with all
    * MRF registers.
    */
   if (first_mrf_hack_node >= 0) {
      for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->gen); i++)
         ra_add_node_interference(g, node, first_mrf_hack_node + i);
   }

   /* Add interference with every vgrf whose live range intersects this
    * node's.  We only need to look at nodes below this one as the reflexivity
    * of interference will take care of the rest.
    */
   for (unsigned n2 = first_vgrf_node;
        n2 < (unsigned)first_spill_node && n2 < node; n2++) {
      unsigned vgrf = n2 - first_vgrf_node;
      if (!(node_end_ip <= live.vgrf_start[vgrf] ||
            live.vgrf_end[vgrf] <= node_start_ip))
         ra_add_node_interference(g, node, n2);
   }
}

void
fs_reg_alloc::setup_inst_interference(const fs_inst *inst)
{
   /* Certain instructions can't safely use the same register for their
    * sources and destination.  Add interference.
    */
   if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
      for (unsigned i = 0; i < inst->sources; i++) {
         if (inst->src[i].file == VGRF) {
            ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
                                        first_vgrf_node + inst->src[i].nr);
         }
      }
   }

   /* In 16-wide instructions we have an issue where a compressed
    * instruction is actually two instructions executed simultaneously.
    * It's actually ok to have the source and destination registers be
    * the same.  In this case, each instruction over-writes its own
    * source and there's no problem.  The real problem here is if the
    * source and destination registers are off by one.  Then you can end
    * up in a scenario where the first instruction over-writes the
    * source of the second instruction.  Since the compiler doesn't know
    * about this level of granularity, we simply make the source and
    * destination interfere.
    */
   if (inst->exec_size >= 16 && inst->dst.file == VGRF) {
      for (int i = 0; i < inst->sources; ++i) {
         if (inst->src[i].file == VGRF) {
            ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
                                        first_vgrf_node + inst->src[i].nr);
         }
      }
   }

   if (grf127_send_hack_node >= 0) {
      /* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference",
       * subsection "EUISA Instructions", Send Message (page 990):
       *
       * "r127 must not be used for return address when there is a src and
       * dest overlap in send instruction."
       *
       * We are avoiding using grf127 as part of the destination of send
       * messages adding a node interference to the grf127_send_hack_node.
       * This node has a fixed asignment to grf127.
       *
       * We don't apply it to SIMD16 instructions because previous code avoids
       * any register overlap between sources and destination.
       */
      if (inst->exec_size < 16 && inst->is_send_from_grf() &&
          inst->dst.file == VGRF)
         ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
                                     grf127_send_hack_node);

      /* Spilling instruction are genereated as SEND messages from MRF but as
       * Gen7+ supports sending from GRF the driver will maps assingn these
       * MRF registers to a GRF. Implementations reuses the dest of the send
       * message as source. So as we will have an overlap for sure, we create
       * an interference between destination and grf127.
       */
      if ((inst->opcode == SHADER_OPCODE_GEN7_SCRATCH_READ ||
           inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ) &&
          inst->dst.file == VGRF)
         ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
                                     grf127_send_hack_node);
   }

   /* From the Skylake PRM Vol. 2a docs for sends:
    *
    *    "It is required that the second block of GRFs does not overlap with
    *    the first block."
    *
    * Normally, this is taken care of by fixup_sends_duplicate_payload() but
    * in the case where one of the registers is an undefined value, the
    * register allocator may decide that they don't interfere even though
    * they're used as sources in the same instruction.  We also need to add
    * interference here.
    */
   if (devinfo->gen >= 9) {
      if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
          inst->src[2].file == VGRF && inst->src[3].file == VGRF &&
          inst->src[2].nr != inst->src[3].nr)
         ra_add_node_interference(g, first_vgrf_node + inst->src[2].nr,
                                     first_vgrf_node + inst->src[3].nr);
   }

   /* When we do send-from-GRF for FB writes, we need to ensure that the last
    * write instruction sends from a high register.  This is because the
    * vertex fetcher wants to start filling the low payload registers while
    * the pixel data port is still working on writing out the memory.  If we
    * don't do this, we get rendering artifacts.
    *
    * We could just do "something high".  Instead, we just pick the highest
    * register that works.
    */
   if (inst->eot) {
      const int vgrf = inst->opcode == SHADER_OPCODE_SEND ?
                       inst->src[2].nr : inst->src[0].nr;
      int size = fs->alloc.sizes[vgrf];
      int reg = compiler->fs_reg_sets[rsi].class_to_ra_reg_range[size] - 1;

      if (first_mrf_hack_node >= 0) {
         /* If something happened to spill, we want to push the EOT send
          * register early enough in the register file that we don't
          * conflict with any used MRF hack registers.
          */
         reg -= BRW_MAX_MRF(devinfo->gen) - spill_base_mrf(fs);
      } else if (grf127_send_hack_node >= 0) {
         /* Avoid r127 which might be unusable if the node was previously
          * written by a SIMD8 SEND message with source/destination overlap.
          */
         reg--;
      }

      ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
   }
}

void
fs_reg_alloc::build_interference_graph(bool allow_spilling)
{
   /* Compute the RA node layout */
   node_count = 0;
   first_payload_node = node_count;
   node_count += payload_node_count;
   if (devinfo->gen >= 7 && allow_spilling) {
      first_mrf_hack_node = node_count;
      node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
   } else {
      first_mrf_hack_node = -1;
   }
   if (devinfo->gen >= 8) {
      grf127_send_hack_node = node_count;
      node_count ++;
   } else {
      grf127_send_hack_node = -1;
   }
   first_vgrf_node = node_count;
   node_count += fs->alloc.count;
   first_spill_node = node_count;

   fs->calculate_payload_ranges(payload_node_count,
                                payload_last_use_ip);

   assert(g == NULL);
   g = ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count);
   ralloc_steal(mem_ctx, g);

   /* Set up the payload nodes */
   for (int i = 0; i < payload_node_count; i++) {
      /* Mark each payload node as being allocated to its physical register.
       *
       * The alternative would be to have per-physical-register classes, which
       * would just be silly.
       */
      if (devinfo->gen <= 5 && fs->dispatch_width >= 16) {
         /* We have to divide by 2 here because we only have even numbered
          * registers.  Some of the payload registers will be odd, but
          * that's ok because their physical register numbers have already
          * been assigned.  The only thing this is used for is interference.
          */
         ra_set_node_reg(g, first_payload_node + i, i / 2);
      } else {
         ra_set_node_reg(g, first_payload_node + i, i);
      }
   }

   if (first_mrf_hack_node >= 0) {
      /* Mark each MRF reg node as being allocated to its physical
       * register.
       *
       * The alternative would be to have per-physical-register classes,
       * which would just be silly.
       */
      for (int i = 0; i < BRW_MAX_MRF(devinfo->gen); i++) {
         ra_set_node_reg(g, first_mrf_hack_node + i,
                            GEN7_MRF_HACK_START + i);
      }
   }

   if (grf127_send_hack_node >= 0)
      ra_set_node_reg(g, grf127_send_hack_node, 127);

   /* Specify the classes of each virtual register. */
   for (unsigned i = 0; i < fs->alloc.count; i++) {
      unsigned size = fs->alloc.sizes[i];

      assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) &&
             "Register allocation relies on split_virtual_grfs()");

      ra_set_node_class(g, first_vgrf_node + i,
                        compiler->fs_reg_sets[rsi].classes[size - 1]);
   }

   /* Special case: on pre-Gen7 hardware that supports PLN, the second operand
    * of a PLN instruction needs to be an even-numbered register, so we have a
    * special register class aligned_bary_class to handle this case.
    */
   if (compiler->fs_reg_sets[rsi].aligned_bary_class >= 0) {
      foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
         if (inst->opcode == FS_OPCODE_LINTERP && inst->src[0].file == VGRF &&
             fs->alloc.sizes[inst->src[0].nr] ==
               aligned_bary_size(fs->dispatch_width)) {
            ra_set_node_class(g, first_vgrf_node + inst->src[0].nr,
                              compiler->fs_reg_sets[rsi].aligned_bary_class);
         }
      }
   }

   /* Add interference based on the live range of the register */
   for (unsigned i = 0; i < fs->alloc.count; i++) {
      setup_live_interference(first_vgrf_node + i,
                              live.vgrf_start[i],
                              live.vgrf_end[i]);
   }

   /* Add interference based on the instructions in which a register is used.
    */
   foreach_block_and_inst(block, fs_inst, inst, fs->cfg)
      setup_inst_interference(inst);
}

void
fs_reg_alloc::discard_interference_graph()
{
   ralloc_free(g);
   g = NULL;
   have_spill_costs = false;
}

static void
emit_unspill(const fs_builder &bld, fs_reg dst,
             uint32_t spill_offset, unsigned count)
{
   const gen_device_info *devinfo = bld.shader->devinfo;
   const unsigned reg_size = dst.component_size(bld.dispatch_width()) /
                             REG_SIZE;
   assert(count % reg_size == 0);

   for (unsigned i = 0; i < count / reg_size; i++) {
      /* The Gen7 descriptor-based offset is 12 bits of HWORD units.  Because
       * the Gen7-style scratch block read is hardwired to BTI 255, on Gen9+
       * it would cause the DC to do an IA-coherent read, what largely
       * outweighs the slight advantage from not having to provide the address
       * as part of the message header, so we're better off using plain old
       * oword block reads.
       */
      bool gen7_read = (devinfo->gen >= 7 && devinfo->gen < 9 &&
                        spill_offset < (1 << 12) * REG_SIZE);
      fs_inst *unspill_inst = bld.emit(gen7_read ?
                                       SHADER_OPCODE_GEN7_SCRATCH_READ :
                                       SHADER_OPCODE_GEN4_SCRATCH_READ,
                                       dst);
      unspill_inst->offset = spill_offset;

      if (!gen7_read) {
         unspill_inst->base_mrf = spill_base_mrf(bld.shader);
         unspill_inst->mlen = 1; /* header contains offset */
      }

      dst.offset += reg_size * REG_SIZE;
      spill_offset += reg_size * REG_SIZE;
   }
}

static void
emit_spill(const fs_builder &bld, fs_reg src,
           uint32_t spill_offset, unsigned count)
{
   const unsigned reg_size = src.component_size(bld.dispatch_width()) /
                             REG_SIZE;
   assert(count % reg_size == 0);

   for (unsigned i = 0; i < count / reg_size; i++) {
      fs_inst *spill_inst =
         bld.emit(SHADER_OPCODE_GEN4_SCRATCH_WRITE, bld.null_reg_f(), src);
      src.offset += reg_size * REG_SIZE;
      spill_inst->offset = spill_offset + i * reg_size * REG_SIZE;
      spill_inst->mlen = 1 + reg_size; /* header, value */
      spill_inst->base_mrf = spill_base_mrf(bld.shader);
   }
}

void
fs_reg_alloc::set_spill_costs()
{
   float block_scale = 1.0;
   float spill_costs[fs->alloc.count];
   bool no_spill[fs->alloc.count];

   for (unsigned i = 0; i < fs->alloc.count; i++) {
      spill_costs[i] = 0.0;
      no_spill[i] = false;
   }

   /* Calculate costs for spilling nodes.  Call it a cost of 1 per
    * spill/unspill we'll have to do, and guess that the insides of
    * loops run 10 times.
    */
   foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
      for (unsigned int i = 0; i < inst->sources; i++) {
	 if (inst->src[i].file == VGRF)
            spill_costs[inst->src[i].nr] += regs_read(inst, i) * block_scale;
      }

      if (inst->dst.file == VGRF)
         spill_costs[inst->dst.nr] += regs_written(inst) * block_scale;

      switch (inst->opcode) {

      case BRW_OPCODE_DO:
	 block_scale *= 10;
	 break;

      case BRW_OPCODE_WHILE:
	 block_scale /= 10;
	 break;

      case BRW_OPCODE_IF:
      case BRW_OPCODE_IFF:
         block_scale *= 0.5;
         break;

      case BRW_OPCODE_ENDIF:
         block_scale /= 0.5;
         break;

      case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
	 if (inst->src[0].file == VGRF)
            no_spill[inst->src[0].nr] = true;
	 break;

      case SHADER_OPCODE_GEN4_SCRATCH_READ:
      case SHADER_OPCODE_GEN7_SCRATCH_READ:
	 if (inst->dst.file == VGRF)
            no_spill[inst->dst.nr] = true;
	 break;

      default:
	 break;
      }
   }

   for (unsigned i = 0; i < fs->alloc.count; i++) {
      /* Do the no_spill check first.  Registers that are used as spill
       * temporaries may have been allocated after we calculated liveness so
       * we shouldn't look their liveness up.  Fortunately, they're always
       * used in SCRATCH_READ/WRITE instructions so they'll always be flagged
       * no_spill.
       */
      if (no_spill[i])
         continue;

      int live_length = live.vgrf_end[i] - live.vgrf_start[i];
      if (live_length <= 0)
         continue;

      /* Divide the cost (in number of spills/fills) by the log of the length
       * of the live range of the register.  This will encourage spill logic
       * to spill long-living things before spilling short-lived things where
       * spilling is less likely to actually do us any good.  We use the log
       * of the length because it will fall off very quickly and not cause us
       * to spill medium length registers with more uses.
       */
      float adjusted_cost = spill_costs[i] / logf(live_length);
      ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost);
   }

   have_spill_costs = true;
}

int
fs_reg_alloc::choose_spill_reg()
{
   if (!have_spill_costs)
      set_spill_costs();

   int node = ra_get_best_spill_node(g);
   if (node < 0)
      return -1;

   assert(node >= first_vgrf_node);
   return node - first_vgrf_node;
}

fs_reg
fs_reg_alloc::alloc_spill_reg(unsigned size, int ip)
{
   int vgrf = fs->alloc.allocate(size);
   int n = ra_add_node(g, compiler->fs_reg_sets[rsi].classes[size - 1]);
   assert(n == first_vgrf_node + vgrf);
   assert(n == first_spill_node + spill_node_count);

   setup_live_interference(n, ip - 1, ip + 1);

   /* Add interference between this spill node and any other spill nodes for
    * the same instruction.
    */
   for (int s = 0; s < spill_node_count; s++) {
      if (spill_vgrf_ip[s] == ip)
         ra_add_node_interference(g, n, first_spill_node + s);
   }

   /* Add this spill node to the list for next time */
   if (spill_node_count >= spill_vgrf_ip_alloc) {
      if (spill_vgrf_ip_alloc == 0)
         spill_vgrf_ip_alloc = 16;
      else
         spill_vgrf_ip_alloc *= 2;
      spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int,
                               spill_vgrf_ip_alloc);
   }
   spill_vgrf_ip[spill_node_count++] = ip;

   return fs_reg(VGRF, vgrf);
}

void
fs_reg_alloc::spill_reg(unsigned spill_reg)
{
   int size = fs->alloc.sizes[spill_reg];
   unsigned int spill_offset = fs->last_scratch;
   assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */

   /* Spills may use MRFs 13-15 in the SIMD16 case.  Our texturing is done
    * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
    * up to m13 (gen6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
    * m15 (gen4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
    * depth), starting from m1.  In summary: We may not be able to spill in
    * SIMD16 mode, because we'd stomp the FB writes.
    */
   if (!fs->spilled_any_registers) {
      bool mrf_used[BRW_MAX_MRF(devinfo->gen)];
      get_used_mrfs(fs, mrf_used);

      for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->gen); i++) {
         if (mrf_used[i]) {
            fs->fail("Register spilling not supported with m%d used", i);
          return;
         }
      }

      fs->spilled_any_registers = true;
   }

   fs->last_scratch += size * REG_SIZE;

   /* We're about to replace all uses of this register.  It no longer
    * conflicts with anything so we can get rid of its interference.
    */
   ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0);
   ra_reset_node_interference(g, first_vgrf_node + spill_reg);

   /* Generate spill/unspill instructions for the objects being
    * spilled.  Right now, we spill or unspill the whole thing to a
    * virtual grf of the same size.  For most instructions, though, we
    * could just spill/unspill the GRF being accessed.
    */
   int ip = 0;
   foreach_block_and_inst (block, fs_inst, inst, fs->cfg) {
      const fs_builder ibld = fs_builder(fs, block, inst);
      exec_node *before = inst->prev;
      exec_node *after = inst->next;

      for (unsigned int i = 0; i < inst->sources; i++) {
	 if (inst->src[i].file == VGRF &&
             inst->src[i].nr == spill_reg) {
            int count = regs_read(inst, i);
            int subset_spill_offset = spill_offset +
               ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE);
            fs_reg unspill_dst = alloc_spill_reg(count, ip);

            inst->src[i].nr = unspill_dst.nr;
            inst->src[i].offset %= REG_SIZE;

            /* We read the largest power-of-two divisor of the register count
             * (because only POT scratch read blocks are allowed by the
             * hardware) up to the maximum supported block size.
             */
            const unsigned width =
               MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1));

            /* Set exec_all() on unspill messages under the (rather
             * pessimistic) assumption that there is no one-to-one
             * correspondence between channels of the spilled variable in
             * scratch space and the scratch read message, which operates on
             * 32 bit channels.  It shouldn't hurt in any case because the
             * unspill destination is a block-local temporary.
             */
            emit_unspill(ibld.exec_all().group(width, 0),
                         unspill_dst, subset_spill_offset, count);
	 }
      }

      if (inst->dst.file == VGRF &&
          inst->dst.nr == spill_reg) {
         int subset_spill_offset = spill_offset +
            ROUND_DOWN_TO(inst->dst.offset, REG_SIZE);
         fs_reg spill_src = alloc_spill_reg(regs_written(inst), ip);

         inst->dst.nr = spill_src.nr;
         inst->dst.offset %= REG_SIZE;

         /* If we're immediately spilling the register, we should not use
          * destination dependency hints.  Doing so will cause the GPU do
          * try to read and write the register at the same time and may
          * hang the GPU.
          */
         inst->no_dd_clear = false;
         inst->no_dd_check = false;

         /* Calculate the execution width of the scratch messages (which work
          * in terms of 32 bit components so we have a fixed number of eight
          * channels per spilled register).  We attempt to write one
          * exec_size-wide component of the variable at a time without
          * exceeding the maximum number of (fake) MRF registers reserved for
          * spills.
          */
         const unsigned width = 8 * MIN2(
            DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE),
            spill_max_size(fs));

         /* Spills should only write data initialized by the instruction for
          * whichever channels are enabled in the excution mask.  If that's
          * not possible we'll have to emit a matching unspill before the
          * instruction and set force_writemask_all on the spill.
          */
         const bool per_channel =
            inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 &&
            inst->exec_size == width;

         /* Builder used to emit the scratch messages. */
         const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0);

	 /* If our write is going to affect just part of the
          * regs_written(inst), then we need to unspill the destination since
          * we write back out all of the regs_written().  If the original
          * instruction had force_writemask_all set and is not a partial
          * write, there should be no need for the unspill since the
          * instruction will be overwriting the whole destination in any case.
	  */
         if (inst->is_partial_write() ||
             (!inst->force_writemask_all && !per_channel))
            emit_unspill(ubld, spill_src, subset_spill_offset,
                         regs_written(inst));

         emit_spill(ubld.at(block, inst->next), spill_src,
                    subset_spill_offset, regs_written(inst));
      }

      for (fs_inst *inst = (fs_inst *)before->next;
           inst != after; inst = (fs_inst *)inst->next)
         setup_inst_interference(inst);

      /* We don't advance the ip for scratch read/write instructions
       * because we consider them to have the same ip as instruction we're
       * spilling around for the purposes of interference.
       */
      if (inst->opcode != SHADER_OPCODE_GEN4_SCRATCH_WRITE &&
          inst->opcode != SHADER_OPCODE_GEN4_SCRATCH_READ &&
          inst->opcode != SHADER_OPCODE_GEN7_SCRATCH_READ)
         ip++;
   }
}

bool
fs_reg_alloc::assign_regs(bool allow_spilling, bool spill_all)
{
   build_interference_graph(fs->spilled_any_registers || spill_all);

   bool spilled = false;
   while (1) {
      /* Debug of register spilling: Go spill everything. */
      if (unlikely(spill_all)) {
         int reg = choose_spill_reg();
         if (reg != -1) {
            spill_reg(reg);
            continue;
         }
      }

      if (ra_allocate(g))
         break;

      if (!allow_spilling)
         return false;

      /* Failed to allocate registers.  Spill a reg, and the caller will
       * loop back into here to try again.
       */
      int reg = choose_spill_reg();
      if (reg == -1)
         return false;

      /* If we're going to spill but we've never spilled before, we need to
       * re-build the interference graph with MRFs enabled to allow spilling.
       */
      if (!fs->spilled_any_registers) {
         discard_interference_graph();
         build_interference_graph(true);
      }

      spilled = true;

      spill_reg(reg);
   }

   if (spilled)
      fs->invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);

   /* Get the chosen virtual registers for each node, and map virtual
    * regs in the register classes back down to real hardware reg
    * numbers.
    */
   unsigned hw_reg_mapping[fs->alloc.count];
   fs->grf_used = fs->first_non_payload_grf;
   for (unsigned i = 0; i < fs->alloc.count; i++) {
      int reg = ra_get_node_reg(g, first_vgrf_node + i);

      hw_reg_mapping[i] = compiler->fs_reg_sets[rsi].ra_reg_to_grf[reg];
      fs->grf_used = MAX2(fs->grf_used,
			  hw_reg_mapping[i] + fs->alloc.sizes[i]);
   }

   foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
      assign_reg(hw_reg_mapping, &inst->dst);
      for (int i = 0; i < inst->sources; i++) {
         assign_reg(hw_reg_mapping, &inst->src[i]);
      }
   }

   fs->alloc.count = fs->grf_used;

   return true;
}

bool
fs_visitor::assign_regs(bool allow_spilling, bool spill_all)
{
   fs_reg_alloc alloc(this);
   bool success = alloc.assign_regs(allow_spilling, spill_all);
   if (!success && allow_spilling) {
      fail("no register to spill:\n");
      dump_instructions(NULL);
   }
   return success;
}