1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
|
/* -*- c++ -*- */
/*
* Copyright © 2010-2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef BRW_FS_BUILDER_H
#define BRW_FS_BUILDER_H
#include "brw_ir_fs.h"
#include "brw_shader.h"
namespace brw {
/**
* Toolbox to assemble an FS IR program out of individual instructions.
*
* This object is meant to have an interface consistent with
* brw::vec4_builder. They cannot be fully interchangeable because
* brw::fs_builder generates scalar code while brw::vec4_builder generates
* vector code.
*/
class fs_builder {
public:
/** Type used in this IR to represent a source of an instruction. */
typedef fs_reg src_reg;
/** Type used in this IR to represent the destination of an instruction. */
typedef fs_reg dst_reg;
/** Type used in this IR to represent an instruction. */
typedef fs_inst instruction;
/**
* Construct an fs_builder that inserts instructions into \p shader.
* \p dispatch_width gives the native execution width of the program.
*/
fs_builder(backend_shader *shader,
unsigned dispatch_width) :
shader(shader), block(NULL), cursor(NULL),
_dispatch_width(dispatch_width),
_group(0),
force_writemask_all(false),
annotation()
{
}
/**
* Construct an fs_builder that inserts instructions into \p shader
* before instruction \p inst in basic block \p block. The default
* execution controls and debug annotation are initialized from the
* instruction passed as argument.
*/
fs_builder(backend_shader *shader, bblock_t *block, fs_inst *inst) :
shader(shader), block(block), cursor(inst),
_dispatch_width(inst->exec_size),
_group(inst->group),
force_writemask_all(inst->force_writemask_all)
{
annotation.str = inst->annotation;
annotation.ir = inst->ir;
}
/**
* Construct an fs_builder that inserts instructions before \p cursor in
* basic block \p block, inheriting other code generation parameters
* from this.
*/
fs_builder
at(bblock_t *block, exec_node *cursor) const
{
fs_builder bld = *this;
bld.block = block;
bld.cursor = cursor;
return bld;
}
/**
* Construct an fs_builder appending instructions at the end of the
* instruction list of the shader, inheriting other code generation
* parameters from this.
*/
fs_builder
at_end() const
{
return at(NULL, (exec_node *)&shader->instructions.tail_sentinel);
}
/**
* Construct a builder specifying the default SIMD width and group of
* channel enable signals, inheriting other code generation parameters
* from this.
*
* \p n gives the default SIMD width, \p i gives the slot group used for
* predication and control flow masking in multiples of \p n channels.
*/
fs_builder
group(unsigned n, unsigned i) const
{
assert(force_writemask_all ||
(n <= dispatch_width() && i < dispatch_width() / n));
fs_builder bld = *this;
bld._dispatch_width = n;
bld._group += i * n;
return bld;
}
/**
* Alias for group() with width equal to eight.
*/
fs_builder
half(unsigned i) const
{
return group(8, i);
}
/**
* Construct a builder with per-channel control flow execution masking
* disabled if \p b is true. If control flow execution masking is
* already disabled this has no effect.
*/
fs_builder
exec_all(bool b = true) const
{
fs_builder bld = *this;
if (b)
bld.force_writemask_all = true;
return bld;
}
/**
* Construct a builder with the given debug annotation info.
*/
fs_builder
annotate(const char *str, const void *ir = NULL) const
{
fs_builder bld = *this;
bld.annotation.str = str;
bld.annotation.ir = ir;
return bld;
}
/**
* Get the SIMD width in use.
*/
unsigned
dispatch_width() const
{
return _dispatch_width;
}
/**
* Get the channel group in use.
*/
unsigned
group() const
{
return _group;
}
/**
* Allocate a virtual register of natural vector size (one for this IR)
* and SIMD width. \p n gives the amount of space to allocate in
* dispatch_width units (which is just enough space for one logical
* component in this IR).
*/
dst_reg
vgrf(enum brw_reg_type type, unsigned n = 1) const
{
assert(dispatch_width() <= 32);
if (n > 0)
return dst_reg(VGRF, shader->alloc.allocate(
DIV_ROUND_UP(n * type_sz(type) * dispatch_width(),
REG_SIZE)),
type);
else
return retype(null_reg_ud(), type);
}
/**
* Create a null register of floating type.
*/
dst_reg
null_reg_f() const
{
return dst_reg(retype(brw_null_reg(), BRW_REGISTER_TYPE_F));
}
dst_reg
null_reg_df() const
{
return dst_reg(retype(brw_null_reg(), BRW_REGISTER_TYPE_DF));
}
/**
* Create a null register of signed integer type.
*/
dst_reg
null_reg_d() const
{
return dst_reg(retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
}
/**
* Create a null register of unsigned integer type.
*/
dst_reg
null_reg_ud() const
{
return dst_reg(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
}
/**
* Get the mask of SIMD channels enabled by dispatch and not yet
* disabled by discard.
*/
src_reg
sample_mask_reg() const
{
assert(shader->stage != MESA_SHADER_FRAGMENT ||
group() + dispatch_width() <= 16);
if (shader->stage != MESA_SHADER_FRAGMENT) {
return brw_imm_d(0xffffffff);
} else if (brw_wm_prog_data(shader->stage_prog_data)->uses_kill) {
return brw_flag_reg(0, 1);
} else {
return retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD);
}
}
/**
* Insert an instruction into the program.
*/
instruction *
emit(const instruction &inst) const
{
return emit(new(shader->mem_ctx) instruction(inst));
}
/**
* Create and insert a nullary control instruction into the program.
*/
instruction *
emit(enum opcode opcode) const
{
return emit(instruction(opcode, dispatch_width()));
}
/**
* Create and insert a nullary instruction into the program.
*/
instruction *
emit(enum opcode opcode, const dst_reg &dst) const
{
return emit(instruction(opcode, dispatch_width(), dst));
}
/**
* Create and insert a unary instruction into the program.
*/
instruction *
emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0) const
{
switch (opcode) {
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SQRT:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_COS:
return emit(instruction(opcode, dispatch_width(), dst,
fix_math_operand(src0)));
default:
return emit(instruction(opcode, dispatch_width(), dst, src0));
}
}
/**
* Create and insert a binary instruction into the program.
*/
instruction *
emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
const src_reg &src1) const
{
switch (opcode) {
case SHADER_OPCODE_POW:
case SHADER_OPCODE_INT_QUOTIENT:
case SHADER_OPCODE_INT_REMAINDER:
return emit(instruction(opcode, dispatch_width(), dst,
fix_math_operand(src0),
fix_math_operand(src1)));
default:
return emit(instruction(opcode, dispatch_width(), dst, src0, src1));
}
}
/**
* Create and insert a ternary instruction into the program.
*/
instruction *
emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
const src_reg &src1, const src_reg &src2) const
{
switch (opcode) {
case BRW_OPCODE_BFE:
case BRW_OPCODE_BFI2:
case BRW_OPCODE_MAD:
case BRW_OPCODE_LRP:
return emit(instruction(opcode, dispatch_width(), dst,
fix_3src_operand(src0),
fix_3src_operand(src1),
fix_3src_operand(src2)));
default:
return emit(instruction(opcode, dispatch_width(), dst,
src0, src1, src2));
}
}
/**
* Create and insert an instruction with a variable number of sources
* into the program.
*/
instruction *
emit(enum opcode opcode, const dst_reg &dst, const src_reg srcs[],
unsigned n) const
{
return emit(instruction(opcode, dispatch_width(), dst, srcs, n));
}
/**
* Insert a preallocated instruction into the program.
*/
instruction *
emit(instruction *inst) const
{
assert(inst->exec_size <= 32);
assert(inst->exec_size == dispatch_width() ||
force_writemask_all);
inst->group = _group;
inst->force_writemask_all = force_writemask_all;
inst->annotation = annotation.str;
inst->ir = annotation.ir;
if (block)
static_cast<instruction *>(cursor)->insert_before(block, inst);
else
cursor->insert_before(inst);
return inst;
}
/**
* Select \p src0 if the comparison of both sources with the given
* conditional mod evaluates to true, otherwise select \p src1.
*
* Generally useful to get the minimum or maximum of two values.
*/
instruction *
emit_minmax(const dst_reg &dst, const src_reg &src0,
const src_reg &src1, brw_conditional_mod mod) const
{
assert(mod == BRW_CONDITIONAL_GE || mod == BRW_CONDITIONAL_L);
return set_condmod(mod, SEL(dst, fix_unsigned_negate(src0),
fix_unsigned_negate(src1)));
}
/**
* Copy any live channel from \p src to the first channel of the result.
*/
src_reg
emit_uniformize(const src_reg &src) const
{
/* FIXME: We use a vector chan_index and dst to allow constant and
* copy propagration to move result all the way into the consuming
* instruction (typically a surface index or sampler index for a
* send). This uses 1 or 3 extra hw registers in 16 or 32 wide
* dispatch. Once we teach const/copy propagation about scalars we
* should go back to scalar destinations here.
*/
const fs_builder ubld = exec_all();
const dst_reg chan_index = vgrf(BRW_REGISTER_TYPE_UD);
const dst_reg dst = vgrf(src.type);
ubld.emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, chan_index);
ubld.emit(SHADER_OPCODE_BROADCAST, dst, src, component(chan_index, 0));
return src_reg(component(dst, 0));
}
/**
* Assorted arithmetic ops.
* @{
*/
#define ALU1(op) \
instruction * \
op(const dst_reg &dst, const src_reg &src0) const \
{ \
return emit(BRW_OPCODE_##op, dst, src0); \
}
#define ALU2(op) \
instruction * \
op(const dst_reg &dst, const src_reg &src0, const src_reg &src1) const \
{ \
return emit(BRW_OPCODE_##op, dst, src0, src1); \
}
#define ALU2_ACC(op) \
instruction * \
op(const dst_reg &dst, const src_reg &src0, const src_reg &src1) const \
{ \
instruction *inst = emit(BRW_OPCODE_##op, dst, src0, src1); \
inst->writes_accumulator = true; \
return inst; \
}
#define ALU3(op) \
instruction * \
op(const dst_reg &dst, const src_reg &src0, const src_reg &src1, \
const src_reg &src2) const \
{ \
return emit(BRW_OPCODE_##op, dst, src0, src1, src2); \
}
ALU2(ADD)
ALU2_ACC(ADDC)
ALU2(AND)
ALU2(ASR)
ALU2(AVG)
ALU3(BFE)
ALU2(BFI1)
ALU3(BFI2)
ALU1(BFREV)
ALU1(CBIT)
ALU2(CMPN)
ALU3(CSEL)
ALU1(DIM)
ALU2(DP2)
ALU2(DP3)
ALU2(DP4)
ALU2(DPH)
ALU1(F16TO32)
ALU1(F32TO16)
ALU1(FBH)
ALU1(FBL)
ALU1(FRC)
ALU2(LINE)
ALU1(LZD)
ALU2(MAC)
ALU2_ACC(MACH)
ALU3(MAD)
ALU1(MOV)
ALU2(MUL)
ALU1(NOT)
ALU2(OR)
ALU2(PLN)
ALU1(RNDD)
ALU1(RNDE)
ALU1(RNDU)
ALU1(RNDZ)
ALU2(SAD2)
ALU2_ACC(SADA2)
ALU2(SEL)
ALU2(SHL)
ALU2(SHR)
ALU2_ACC(SUBB)
ALU2(XOR)
#undef ALU3
#undef ALU2_ACC
#undef ALU2
#undef ALU1
/** @} */
/**
* CMP: Sets the low bit of the destination channels with the result
* of the comparison, while the upper bits are undefined, and updates
* the flag register with the packed 16 bits of the result.
*/
instruction *
CMP(const dst_reg &dst, const src_reg &src0, const src_reg &src1,
brw_conditional_mod condition) const
{
/* Take the instruction:
*
* CMP null<d> src0<f> src1<f>
*
* Original gen4 does type conversion to the destination type
* before comparison, producing garbage results for floating
* point comparisons.
*
* The destination type doesn't matter on newer generations,
* so we set the type to match src0 so we can compact the
* instruction.
*/
return set_condmod(condition,
emit(BRW_OPCODE_CMP, retype(dst, src0.type),
fix_unsigned_negate(src0),
fix_unsigned_negate(src1)));
}
/**
* Gen4 predicated IF.
*/
instruction *
IF(brw_predicate predicate) const
{
return set_predicate(predicate, emit(BRW_OPCODE_IF));
}
/**
* Emit a linear interpolation instruction.
*/
instruction *
LRP(const dst_reg &dst, const src_reg &x, const src_reg &y,
const src_reg &a) const
{
if (shader->devinfo->gen >= 6 && shader->devinfo->gen <= 10) {
/* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
* we need to reorder the operands.
*/
return emit(BRW_OPCODE_LRP, dst, a, y, x);
} else {
/* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
const dst_reg y_times_a = vgrf(dst.type);
const dst_reg one_minus_a = vgrf(dst.type);
const dst_reg x_times_one_minus_a = vgrf(dst.type);
MUL(y_times_a, y, a);
ADD(one_minus_a, negate(a), brw_imm_f(1.0f));
MUL(x_times_one_minus_a, x, src_reg(one_minus_a));
return ADD(dst, src_reg(x_times_one_minus_a), src_reg(y_times_a));
}
}
/**
* Collect a number of registers in a contiguous range of registers.
*/
instruction *
LOAD_PAYLOAD(const dst_reg &dst, const src_reg *src,
unsigned sources, unsigned header_size) const
{
instruction *inst = emit(SHADER_OPCODE_LOAD_PAYLOAD, dst, src, sources);
inst->header_size = header_size;
inst->size_written = header_size * REG_SIZE;
for (unsigned i = header_size; i < sources; i++) {
inst->size_written +=
ALIGN(dispatch_width() * type_sz(src[i].type) * dst.stride,
REG_SIZE);
}
return inst;
}
backend_shader *shader;
private:
/**
* Workaround for negation of UD registers. See comment in
* fs_generator::generate_code() for more details.
*/
src_reg
fix_unsigned_negate(const src_reg &src) const
{
if (src.type == BRW_REGISTER_TYPE_UD &&
src.negate) {
dst_reg temp = vgrf(BRW_REGISTER_TYPE_UD);
MOV(temp, src);
return src_reg(temp);
} else {
return src;
}
}
/**
* Workaround for source register modes not supported by the ternary
* instruction encoding.
*/
src_reg
fix_3src_operand(const src_reg &src) const
{
if (src.file == VGRF || src.file == UNIFORM || src.stride > 1) {
return src;
} else {
dst_reg expanded = vgrf(src.type);
MOV(expanded, src);
return expanded;
}
}
/**
* Workaround for source register modes not supported by the math
* instruction.
*/
src_reg
fix_math_operand(const src_reg &src) const
{
/* Can't do hstride == 0 args on gen6 math, so expand it out. We
* might be able to do better by doing execsize = 1 math and then
* expanding that result out, but we would need to be careful with
* masking.
*
* Gen6 hardware ignores source modifiers (negate and abs) on math
* instructions, so we also move to a temp to set those up.
*
* Gen7 relaxes most of the above restrictions, but still can't use IMM
* operands to math
*/
if ((shader->devinfo->gen == 6 &&
(src.file == IMM || src.file == UNIFORM ||
src.abs || src.negate)) ||
(shader->devinfo->gen == 7 && src.file == IMM)) {
const dst_reg tmp = vgrf(src.type);
MOV(tmp, src);
return tmp;
} else {
return src;
}
}
bblock_t *block;
exec_node *cursor;
unsigned _dispatch_width;
unsigned _group;
bool force_writemask_all;
/** Debug annotation info. */
struct {
const char *str;
const void *ir;
} annotation;
};
}
#endif
|